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March 24, 2021

APT Encounters of the Third Kind
igor-blue.github.io/2021/03/24/apt1.html

18 minute read

A few weeks ago an ordinary security assessment turned into an incident response
whirlwind. It was definitely a first for me, and I was kindly granted permission to outline the
events in this blog post. This investigation started scary but turned out be quite fun, and I
hope reading it will be informative to you too. I'll be back to posting about my hardware
research soon.

How it started

Twice a year I am hired to do security assessments for a specific client. We have been
working together for several years, and I had a pretty good understanding of their network
and what to look for.

This time my POC, Klaus, asked me to focus on privacy issues and GDPR compliance.
However, he asked me to first look at their cluster of reverse gateways / load balancers:

I had some prior knowledge of these gateways, but decided to start by creating my own test
environment first. The gateways run a custom Linux stack: basically a monolithic compiled
kernel (without any modules), and a static GOlang application on top. The 100+ machines
have no internal storage, but rather boot from an external USB media that has the kernel and
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the application. The GOlang app serves in two capacities: an init  replacement and the
reverse gateway software. During initialization it mounts /proc, /sys, devfs and so on, then
mounts an NFS share hardcoded in the app. The NFS share contains the app's
configuration, TLS certificates, blacklist data and a few more. It starts listening on 443, filters
incoming communication and passes valid requests on different services in the production
segment.

I set up a self contained test environment, and spent a day in black box examination. Having
found nothing much I suggested we move on to looking at the production network, but Klaus
insisted I continue with the gateways. Specifically he wanted to know if I could develop a
methodology for testing if an attacker has gained access to the gateways and is trying to
access PII (Personally Identifiable Information) from within the decrypted HTTP stream.

I couldn't SSH into the host (no SSH), so I figured we will have to add some kind of
instrumentation to the GO app. Klaus still insisted I start by looking at the traffic before (red)
and after the GW (green), and gave me access to a mirrored port on both sides so I could
capture traffic to a standalone laptop he prepared for me and I could access through an LTE
modem but was not allowed to upload data from:
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The problem I faced now was how to find out what HTTPS traffic corresponded to requests
with embedded PII. One possible avenue was to try and correlate the encrypted traffic with
the decrypted HTTP traffic. This proved impossible using timing alone. However, unspecting
the decoded traffic I noticed the GW app adds an 'X-Orig-Connection' with the four-tuple of
the TLS connection! Yay!
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I wrote a small python program to scan the port 80 traffic capture and create a mapping from
each four-tuple TLS connection to a boolean - True for connection with PII and False for all
others:

10.4.254.254,443,[Redacted],43404,376106847.319,False 
10.4.254.254,443,[Redacted],52064,376106856.146,False 
10.4.254.254,443,[Redacted],40946,376106856.295,False 
10.4.254.254,443,[Redacted],48366,376106856.593,False 
10.4.254.254,443,[Redacted],48362,376106856.623,True 
10.4.254.254,443,[Redacted],45872,376106856.645,False 
10.4.254.254,443,[Redacted],40124,376106856.675,False  
... 

With this in mind I could now extract the data from the PCAPs and do some correlations.
After a few long hours getting scapy  to actually parse timestamps consistently enough for
comparisons, I had a list of connection timing information correlated with PII. A few more fun
hours with Excel and I got histogram graphs of time vs count of packets. Everything looked
normal for the HTTP traffic, although I expected more of a normal distribution than the
power-low type thingy I got. Port 443 initially looked the same, and I got the normal
distribution I expected. But when filtering for PII something was seriously wrong. The
distribution was skewed and shifted to longer time frames. And there was nothing similar on
the port 80 end.
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My only explanation was that something was wrong with my testing setup (the blue bars) vs.
the real live setup (the orange bars). I wrote on our slack channel 'I think my setup is sh*t,
can anyone resend me the config files?', but this was already very late at night, and no one
responded. Having a slight OCD I couldn’t let this go. To my rescue came another security?
feature of the GWs: Thet restarted daily, staggered one by one, with about 10 minutes
between hosts. This means that every ten minutes or so one of them would reboot, and thus
reload it’s configuration files over NFS. And since I could see the NFS traffic through the port
mirror I had access to, I recokoned I could get the production configuration files from the
NFS capture (bottom dotted blue line in the diagram before).

So to cut a long story short I found the NFS read reply packet, and got the data I need. But
… why the hack is eof  77685??? Come on people, its 3:34AM!

What's more, the actual data was 77685 bytes, exactly 8192 bytes more then the ‘Read
length’. The entropy for that data was pretty uniform, suggesting it was encrypted. The file I
had was definitely not encrypted.
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Histogram of extra 8192 bytes:

When I mounted the NFS export myself I got a normal EOF value of 1 !
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What hell is this?

Comparing the capture from my testing machine with the one from the port mirror I saw
something else weird:
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For other NFS open requests (on all of my test system captures and for other files in the
production system) we get:

Spot the difference?

The open id:  string became open-id: . Was I dealing with some corrupt packet? But the
exact same problem reappeared the next time blacklist.db  was send over the wire by
another GW host.

Time to look at the kernel source code:

The “open id” string is hardcoded. What's up?

After a good night sleep and no beer this time I repeated the experiment and convincing
myself I was not hullucinating I decided to compare the source code of the exact kernel
version with the kernel binary I got.

What I expected to see was this (from nfs4xdr.c):
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static inline void encode_openhdr(struct xdr_stream *xdr, const struct nfs_openargs 
*arg) 
{ 
   __be32 *p; 
/* 
* opcode 4, seqid 4, share_access 4, share_deny 4, clientid 8, ownerlen 4, 
* owner 4 = 32 
*/ 
   encode_nfs4_seqid(xdr, arg->seqid); 
   encode_share_access(xdr, arg->share_access); 
   p = reserve_space(xdr, 36); 
   p = xdr_encode_hyper(p, arg->clientid); 
   *p++ = cpu_to_be32(24); 
   p = xdr_encode_opaque_fixed(p, "open id:", 8); 
   *p++ = cpu_to_be32(arg->server->s_dev); 
   *p++ = cpu_to_be32(arg->id.uniquifier); 
   xdr_encode_hyper(p, arg->id.create_time); 
} 

Running binwalk -e -M bzImage  I got the internal ELF image, and opened it in IDA. Of
course I didn’t have any symbols, but I got nfs4_xdr_enc_open()  from /proc/kallsyms, and
from there to encode_open()  which led me to encode_openhdr() . With some help from
hex-rays I got code that looked very similiar, but with one key difference:

static inline void encode_openhdr(struct xdr_stream *xdr, const struct nfs_openargs 
*arg) 
{ 
   ... 
   p = xdr_encode_opaque_fixed(p, unknown_func("open id:", arg), 8); 
   ... 
} 

The function unknown_func  was pretty long and complicated but eventually sometimes
decided to replace the space between 'open' and 'id' with a hyphen.

Does the NFS server care? Apparently this string it is some opaque client identifier that is
ignored by the NFS server, so no one would see the difference. That is unless they were
trying to extract something from an NFS stream, and obviously this was not a likely scenario.
OK, back to the weird 'eof' thingy from the NFS server.

The NFS Server

The server was running the 'NFS-ganesha-3.3' package. This is a very modular user-space
NFS server that is implemented as a series of loadable modules called FSALs. For example
support for files on the regular filesystem is implemented through a module called
libfsalvfs.so . Having verified all the files on disk had the same SHA1 as the distro

package, I decided to dump the process memory. I didn't have any tools on the host, so I
used GDB which helpfully was already there. Unexpectadly GDB was suddenly killed, the file
I specified as output got erased, and the nfs server process restarted.
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I took the dump again but there was nothing special there!

I was pretty suspicious at this time, and wanted to recover the original dump file from the first
dump. Fortunately for me I was dumping the file to the laptop, again over NFS. The file had
been deleted, but I managed to recover it from the disk on that server.

2nd malicious binary

The memory dump was truncated, but had a corrupt version of NFS-ganesha inside. There
were two libfsalvfs.so  libraries loaded: the original one and an injected SO file with the
same name. The injected file was clearly malicious. The main binary was patched in a few
places, and the function table into libfsalvfs.so  as replaced with the alternate
libfsalvfs.so . The alternate file was compiled from NFS-ganesha sources, but modified

to include new and improved (wink wink) functionality.

The most interesting of the new functionality were two separate implementations of covert
channels.

The first one we encountered already:

When an open request comes in with 'open-id' instead of 'open id', the file handle is
marked. This change is opaque to the NFS server, so unpatched servers just ignore it
and nothing much happens.
For infiltrated NFS server, when the file handle opened this way is read, the NFS server
appends the last block with a payload coming from the malware's runtime storage, and
the 'eof' on-the-wire value is changed to be the new total size. An unpatched kernel
(which shouldn’t really happen, since it marked the file in the first place) will just ignore
the extra bytes. The EOF value is used as a bool, e.g. checked for 0 or not and not a
specific value, so having a large integer values doesn’t change anything in the flow of
an unmodified kernel.

The second covert channel is used for command and control, and is implemented in the VFS
code as a fake directory.

Any writes to /<export>/.snapshot/meta/<cmdid>  are handled by the malware code and
not passed on to the FS. They are pseudo-files that implement commands through read and
write operations.

The malware implemented the following commands:

1701 - self destruct
1702 - set auto self destruct time
1703 - run shell command
1704 - load SO file from buffer specified in command
1706 - get basic system description
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1707 - get network connections
170A - upgrade to new SO file
74201 - put buffer in memory dict by ID
74202 - get buffer from memory dict by ID
74650 - put a payload in memory for the first covert channel
74651 - arm the first covert channel
74652 - disarm the first covert channel

For example cp payload.so /mnt/server/.snapshot/meta/1704  will load the SO file in
the NFS ganesha process on the target server, and echo 1616580589 >
/mnt/server/.snapshot/meta/1702  will set an autodestruct time. Reading this file will
retrieve the time.

The self destruct command (0x1701) is very interesting - it sends a UDP broadcast on port
41701 with a random payload of size 321 bytes, and then restarts a clean NFS-ganesha. I
guess this is some kind of network signalling.

It appears the malware has a watchdog that iterates over all /proc/<pid>/fd/*  links
every 25ms, and if a link is open to /proc/<malware pid>/maps  or /proc/<malware
pid>/smaps  or /proc/<malware pid>/mem  it:

kills the offending process,
deletes any writeable file handle it had opened (before it was killed) in
/proc/<pid>/fd/ , first trying to wipe it,

calls the self destruct command (0x1701).

Further forensics

Lets go back to that awful Saturday I triggered the self-destruct. Having a faint understanding
I triggered something (that being before I reversed the devil) I asked Klaus to disconnect all
the network connections to the outer world and we started taking memory dumps of
whatever we could, storing them all on the laptop. In hindsight we destroyed quiet a bit of
evidence by triggering more self destructs in other subnets, but I think the self destruct signal
has already gone out to the bad guys through a different piece of malware that I later partially
recovered, and probably "heard" the UDP distress signal (that's what is was called in the
binary, not my naming).

After getting all the forensics the client insisted on reconnecting his systems to the web, they
were "losing money". I switched from forensics to reversing. In the process, while inspecting
the malicious libfsalvfs.so  I discovered the commands I mentioned above, and
discovered a "feature" that helped me fill more paces of the puzzle.
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Reversing malware you always find some feeble attempt to obfuscate string using XOR or
RC4, or just scrambling the letter ordering. In this case I pretty quickly found a function I
called get_obfuscated_string(buffer, string_id) . The difference however, was that
this one was just horrendous, practically irreversible:

It had like a billion nested switches:
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I think they let some intern fresh out of college write that one. It seems the complete list of
strings used by the tool are encoded inside in a tree of nested switches, with a variable
length encoding, e.g. in one branch the 2nd level might have 3 bits and in another it might
have 5 and in a third only a single bit. Some kind of prefix tree if I remember anything from
Uni.
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Eventually I managed to write code to just brute force the function:

#include <stdio.h> 
#include <stdlib.h> 
#include <sys/mman.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <string> 
#include <set> 

int main(int argc, char* argv[]) 
{ 

// error handling code omitted 
const char* filename = (argc > 1) ? argv[1] : "reconstructed.elf"; 
unsigned long offset = (argc > 1) ? strtol(argv[2], NULL, 16) : 0x22a0; 

int fd = open(filename, O_RDONLY); 
struct stat stbuf; 
fstat(fd, &stbuf); 
const char* addr = (char*)mmap(NULL, stbuf.st_size, PROT_READ | PROT_EXEC, 

MAP_PRIVATE, fd, 0); 
close(fd); 
const char* base = addr + offset; 

typedef int (*entry_t)(char* outbuf, int id); 
entry_t entry = (entry_t)base; 
std::set<std::string> found;
char buffer[1024]; 
 
for(long bits = 1; bits < 64; ++ bits) { 
 bool any_new = false; 
 for(long id = (bits == 1) ? 0 : (1 << (bits - 1)); id < (1<<bits); ++ 

id) { 
  int status = entry(buffer, id); 
  if(status == 0) 
   continue; 
  if(found.find(buffer) != found.end()) 
   continue; 
  found.insert(buffer); 
  printf("Got '%s'! [0x%x]\n", buffer, id); 
  any_new = true; 
 } 
 if(!any_new) 
  break; 
} 

return 0; 
} 

This first binary had the following strings (I am keeping 3 to myself as they have client related
info):
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'/proc/self/mem',  
'/proc/self/maps', 
'/proc/self/cwd', 
'/proc/self/environ', 
'/proc/self/fd/%d', 
'/proc/self/fdinfo/%d', 
'/proc/self/limits', 
'/proc/self/cgroup', 
'/proc/self/exe', 
'/proc/self/cmdline', 
'/proc/self/mounts', 
'/proc/self/smaps', 
'/proc/self/stat', 
'/proc/%d/mem',  
'/proc/%d/maps', 
'/proc/%d/cwd', 
'/proc/%d/environ', 
'/proc/%d/fd/%d', 
'/proc/%d/fdinfo/%d', 
'/proc/%d/limits', 
'/proc/%d/cgroup', 
'/proc/%d/exe', 
'/proc/%d/cmdline', 
'/proc/%d/mounts', 
'/proc/%d/smaps', 
'/proc/%d/stat',         
'nfs', 
'nfs4', 
'tmpfs', 
'devtmpfs', 
'procfs', 
'sysfs', 
'WSL2', 
'/etc/os-release', 
'/etc/passwd', 
'/etc/lsb-release', 
'/etc/debian_version', 
'/etc/redhat-release', 
'/home/%s/.ssh', 
'/var/log/wtmp', 
'/var/log/syslog', 
'/var/log/auth.log', 
'/var/log/cron.log', 
'/var/log/syslog.log', 
'/etc/netplan/*.yaml', 
'/etc/yp.conf', 
'/var/yp/binding/', 
'/etc/krb5.conf', 
'/var/kerberos/krb5kdc/kdc.conf', 
'/var/log/ganesha.log', 
'/etc/ganesha/ganesha.conf', 
'/etc/ganesha/exports', 
'/etc/exports', 
'Error: init failed', 
'DELL', 
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'/usr/lib/x86_64-linux-gnu/libnfs.so.4', 
'/tmp/.Test-unix/.fa76c5adb8c04239ff3034106842773b', 
'Error: config missing', 
'Error: sysdep missing', 
'Running', 
'LOG', 
'/usr/lib/x86_64-linux-gnu/ganesha/libfsalvfs.so', 
'none', 
'/etc/sudoers', 
'/proc/net/tcp', 
'/proc/net/udp', 
'/etc/selinux/config', 
'libdl.so.2', 
'libc-', 
'.so', 
'cluster-config', 
'recovery-signal', 

Eureka Moment

Staring endlessly at this weird function I thought to myself: maybe I can look for code that is
structured like this in all the dumps we obtained. We have all those block of mov byte ptr
[rdi+?], '?' :

So lets look for blocks of code that are highly dense with these opcodes:
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import sys 

with open(sys.argv[1], 'rb') as f: 
   data = f.read() 

STATE=None 
for i in range(len(data) - 6): 
   if ord(data[i]) == 0xc6 and ord(data[i + 1]) == 0x47: 
       if STATE and (STATE[0] + STATE[1] + 0x40) >= i: 
           STATE[1] = i - STATE[0] 
           STATE[2] += 1 
       else: 
           if STATE and STATE[2] >= 20: 
               print('Found region at 0x%x - 0x%x' % (STATE[0], STATE[0] + 
STATE[1])) 
           STATE = [i, 4, 1]  

And I found them. Oh I did. Some adjustment even led to a version for ARM systems:
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The GOlang thingy

I finally found the payload that was sent over to the GW machines. It had 2 stages: the first
was the 8192 buffer loaded through the first covert channel. The kernel was modified to
inject this buffer into the GOlang application and hook it. This will get fairly technical, but I
enjoyed it and so will you:

First note that in the Golang stdlib an HTTP connection can be read through the
net/http.(connReader).Read  function. The calls are made through a io.Reader

interface, so the calls are made through a virtual table, and the call locations cannot be
statically identified.
the kernel inject begins by allocating a bunch of RWX memory immediately after the
GOlang binary - let's call it the trampoline area, and it will include two types of
generated trampoline functions,
Next the ELF symbol table was used to find the 'net/http.(*connReader).Read' symbol,
What we’ll call the 1st trampoline function (code below) is copied to the trampoline
area, patching the area marked with HERE  with the first 9 bytes of net/http.
(\*connReader).Read

mprotect(net_http_connReader_read & ~0xfff, 8192, PROT_EXEC |

PROT_READ | PROT_WRITE)

modified the beginning of net/http.(\*connReader).Read  to a near jump into the
trampoline - using 5 bytes of the 9 original used by 'move rcx, fs:….' that are the
preamble to function.

First trampoline function

    pop     rax             
    pop     rcx 
    push    rcx 
    push    rax 
    mov     r11, cs:qword_<relocated> 
    mov     rdi, rcx 
    call    qword ptr [r11+8] 
    pop     rax 
    pop     rcx 
    push    rcx 
    mov     rcx, fs:0FFFFFFFFFFFFFFF8h <---- HERE 
    cmp     rsp, [rcx+10h] 
    jmp     rax 

When the trampoline is called (from the new near jump in the beginning of net/http.
(*connReader).Read ) it examines the stack to locate the return address, and checks
if a second type of trampoline we'll refer to as the return trampoline has already been
allocated for the return address for the function,
If not it allocates a new trampoline per call location of net/http.
(*connReader).Read  from the code below, replacing 123456789ABCDEFh with the
absolute address of a function in the malware,
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GOlang uses memory for all function argument passing, so immediately after the virtual
function call to Read()  there will always be a 5 byte mov reg, [rsp+?]  to load
Read() 's result into a register. This mov  instruction is copied into the first db 5
dup(0)  area,
those same 5 bytes are then replacing with a near jump to the 2nd trampoline
the 2nd db 5 dup(0) are filled with a relative near jmp  back to the original code patch
site.

   mov     rax, 123456789ABCDEFh 
   mov     rdi, rsp 
   call    rax 
   db 5 dup(0) 
   db 5 dup(0)       

This way eventually all the net/http.(*connReader).Read  call sites are patched to call a
function immediatly after net/http.(*connReader).Read  virtual call returns. This lets the
malicous code inspect the decoded HTTP packet.

On initialization the 1st stage malware also loads the hefty 2nd stage through the 2nd covert
channel, and passes each buffer received from the patch on net/http.
(*connReader).Read  to it for inspection. The data collected is collected and compressed by
the malware and stored back to the NFS server (the 2nd covert channel which bypasses
read ACLs on NFS).

Before this case I did not think there was any nice way to hook random GO binaries, this
technique is pretty cool.

Unfortunatly I cannot discuss what the 2nd payload actually as it will reveal stuff my
employer isn't ready for yet.

How the kernel got patched? and why not the golang app?

The golang app is built inside the CI/CD network segment. This segment can only be
accessed through monitored jump hosts with MFA. Each day, the CI/CD pipline clones the
source code from the GIT server, builds it, and automatically tests it in a pre-production
segment. Once tested it gets digitally signed and uploaded to the NFS server. The running
app self updates, checking the digital signature beforehand.

The kernel, on the other hand, is manually built by the guy responsible for it on his own
laptop. He then digitally signs it and stores it on a server where it is used by the CI/CD
pipeline. Fortunatly for us a commented out line in a script in the CI/CD pipline (a line that
was not commented out in the GIT!) did not delete old versions of the kernel and we know
which versions were tampered with.



20/21

We noticed a 3 month gap about 5 month ago, and it corresponded with the guy moving the
kernel build from a Linux laptop to a new Windows laptop with a VirtualBox VM in it for
compiling the kernel. It looks as if it took the attackers three months to gain access back into
the box and into the VM build.

What we have so far

We found a bunch of malware sitting in the network collecting PII information from incoming
HTTPS connection after they are decoded in a GOlang app. The data is exfiltrated through
the malware network and eventually is sent to the bad guys. We have more info but I am still
working on it, expect another blog post in the future with more details, samples, etc’.

Q&A

Q: What was the initial access vector?

A: We have a pretty good idea, but I cannot publish it yet (RD and stuff). Stay tuned!

Q: Why didn't you upload anything to VT yet?

A: A few reasons:

I need to make sure no client info is in the binaries - some of the binaries have
hardcoded strings that cannot be shared
All of the binaries I have have been reconstructed from memory dumps, so are
not in their original form. Does anyone know how to upload partial dumps into
VT?

Q: It there a security vulnerability in GO? in the Kernel?

A: Defenitly not! this is just an obnoxious attacker doing what obnoxious attacker do. I
might even say the complexity of the stuff means they don’t have a 0day for this
platform.

Q: What about YARA rules, C2 address, etc'?

A: Wait for it, there is a lot more coming!

Q: Why did you publish instead of collecting more?

A: To quote the client "I don't care who else they are attacking. I just want them off my
lawn!", and he thinks publishing will prevent them from returning to THIS network.
Hopefully what we publish next time will get them off other people’s lawns.

Q: Any Windows malware?

A: Definitly, including what we believe is an EDR bypass. Still working on it.
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Q: Any zero days?

A: Maybe …

Q: Who are these bad guys you keep refering to?

A: No clue. Didn’t find anything similiar published. There is now sure way to make
anything except unsubstantiated guesses, and I won’t do that.

To be continued.


