Hidden menace: Peeling back the secrets of
OnionCrypter

B} decoded.avast.io/jakubkaloc/onion-crypter/

March 17, 2021

by Jakub Kalo€March 17, 202120 min read

One of the goals of malware authors is to keep their creation undetected by antivirus
software. One possible solution for this are crypters. A crypter encrypts a program, so it
looks like meaningless data and it creates an envelope for this encrypted program also
called a stub. This stub looks like an innocent program, it may also perform some tasks
which are not harmful at all but its primary task is to decrypt a payload and run it.

Why is this one intriguing?

The crypter discussed in this blogpost uses a combination of multiple interesting techniques
that make it hard for analysts and for proper detection. One of the key techniques this
crypter uses is multiple layers of encryption. Because of this we are calling it
“‘OnionCrypter”. It's important to note the name reflects the many layers this crypter uses,
it's in no way related to the TOR browser or network.

This blogpost covers most of the techniques OnionCrypter used to complicate analysis and
breaks down its structure. This can help malware analysts because seeing samples like
these might get confusing and overwhelming at first not only for humans but also for

1/21

https://decoded.avast.io/jakubkaloc/onion-crypter/
https://decoded.avast.io/author/jakubkaloc/

dynamic analysis sandboxes.

Most interestingly, we have found that OnionCrypter has been used by over 30 different
malware families since 2016. This includes some of the best known-most prevalent families
such as Ursnif, Lokibot, Zeus, AgentTesla, and Smokeloader among others. In the last three
years we have protected almost 400,000 users around the world from malware protected by
this crypter. Its widespread use and length of time in use make it a key malware
infrastructure component. We believe that likely the authors of OnionCrypter offer it as an
encrypting service. Based on the uniqueness of the first layer it is also safe to assume that
authors of OnionCrypter offer the option of a unique stub file to ensure that encrypted
malware will be undetectable. A service like this is frequently advertised as a FUD (fully
undetectable) crypter.

2/21

OnionCrypter forms a malware family on its own, even though it is used to protect malware
from many different families. OnionCrypter has been around for several years so it is not
something entirely new, however it is interesting that because of the multiple layers and
uniqueness of the first layer, nobody was detecting this crypter as one malware family. After
downloading thousands of samples of this crypter from VirusTotal, we were able to confirm
that most of the detections from all AVs are based on detecting what's encrypted inside this
crypter. Even when AVs are recognizing the samples as a crypter with some other malware
packed inside, they are detecting the samples as tens of different malware families.

Statistics

With the data from more than 15,000 samples (where oldest samples date back to 2016) it
was possible to create a statistic on malware families which are using this crypter. The chart
below shows that OnionCrypter is used by multiple malware authors.

Occurrence of malware families in samples
With the same data it was possible to create graphical insight on prevalence of the crypter
during its existence.

Prevalence of the OnionCrypter

This data can be further interpreted. The peaks suggest that in that time period there could
have emerged a new malware campaign which was using services of the OnionCrypter and
was spreading widely through the world. After a closer look at the highest peak and
identification of malware families inside the OnionCrypter encrypted samples, it was
possible to confirm that this peak corresponds to the spread of BetaBot malware family, a
family that spreads ransomware and other malware, during the summer of 2019.

3/21

https://www.securityweek.com/multi-layered-infection-attack-installs-betabot-malware

— All hits
—— BetaBot

BetaBot campaign using the OnionCrypter during the summer of 2019

Analysis

OnionCrypter is 32-bit software written in C++. Architecture of OnionCrypter consists of
three layers. Each layer will be discussed in a separate section along with techniques which
can be found there.

4/21

Exception . _ Pass execution to
throwing Memory allocation Decrypt layer 2] next layer

Pass execution o

Decrypt layer 3 \ next layer

Load DLLs and DLL
functions

Load DLLs and SreerilErS Change memory [—— ngngiﬁlﬁgsw Pass execution to
DLL functions SCryptiayer. flags to RWX I . g g payload
J]| used by payload
Execute payload

OnionCrypter Program structure

Layer 1

This is the outer layer of OnionCrypter. Even though the first layer includes usually at least
a few hundred functions, there is always one long function (let’s call it main function) with a
lot of junk code but it also includes following functionalities which are important parts of
OnionCrypter:

o Creation of a named event object
Allocation of a memory

Load data to memory

Decrypt of the loaded data

Pass execution to decrypted data

The easiest way to find this function is to check cross references to the CreateEventA
API function.

Uniqueness

After finding this main function in multiple samples there is the first obstacle — uniqueness.
Each one of the analyzed samples had a unique main function. Differences vary between
big ones like completely different API function calls in the junk part of code or small ones
like those that use different registers and local variables in a cycle which seem the same.
As a consequence, creation of static rules for detection gets quite complicated if someone
wants to cover the majority of samples.

5/21

After seeing some samples it is possible to quite easily estimate which function is the main
function. The main function is always quite long, because of junk code and often because of
loop unrolling. It may happen that memory allocation or decryption happens in a small part
of code between unrolled iterations of loops full of junk code.

o

L]

Overview of main function in IDA Pro

From left to right
260003293D1785571FEF5A2CF54E89B7AFOC1FBD5B970D2285F21BFC65E2981C
05AAB2F7D5D432CBEB970BC5471B3FAE1E45F23E0933CC673BE923F7609F53AE
17C2E36EE4387365AC00A84E91B59CE4D31D3BA04624902512810B7797A2356B
81C479BF71196724055F1AF30CA05C9162B7D32E7B3363B7F93D1AAF0161E760
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE

In many cases one or more sleep calls (sleep function from synchapi.h) are included
in the junk code. These sleep calls along with loops that have many iterations can increase
execution time by a few minutes. This can cause some simple dynamic analysis sandboxes
to fail. Even when a sandbox is able to detect the final payload and scan it with Yara rules, it
is often necessary to increase timeouts to 3 or more minutes.

Yyy
M
Ltext:eadad268
Ltext:oeded2e8 loc_484263:
Jtext:@a484268 A1 94 21 438 @8 Mo eax, hDlg
text:Be484260 53 push ebx 3 hiind
.text:@848426E 89 85 18 F7 FF FF Mo [ebp+hHeap], eax
LJextread4ed2i4 FF 15 14 92 47 @8 call ds:GetDC
Ltext:8a48427A BA BB push 8 ; index
Ltext:aaded27C 58 push eax ; hdc
Ltext:@a4e4270 89 85 1C F7 FF FF mov [ebpt+dwBytes], eax

6/21

Jtext: 20484283 FF 1S 34 90 47 @8 call ds:GetDeviceCaps
text: 20484289 64 B4 push @sh ; index
.text:88484288 FF BS 1C F7 FF FF push [ebptdwBytes] ; hdc
Ltext: 28484201 FF 15 34 98 47 @8 call ds:GetDeviceCaps
Ltext:88484297 FF BS 1C F7 FF FF push [ebp+dwBytes] ; hDC
Ltext:ee4ed4290 53 push ebx 3 htind
Ltext:@848429E FF 15 18 92 47 @8 call ds:ReleaselC
Ltexti@a4e4284 BD 35 28 F7 FF FF lea eax, [ebp+rc]
Jtext:aeded4288 S0 push eax ; lpRect
.text:804842A8 FF BS 18 F7 FF FF push [ebp+hHeap] 3 hiind
Ltext:88484281 FF 15 28 92 47 @8 call ds:GetWindowRect
Jtext: 08484287 FF D7 call edi ; GetConsoleWindow
Lgext:ee484289 6A B3 push 3
Ltext: 88484288 89 45 DC mowv [ebp+mii.wID], eax
Lext:ea4e426E AL 98 21 48 @8 Mo eaxM,
Lewt:eadad2C3 59 pop BCx
Jtext:@e484204 C7 45 CC 30 20 20 a9 mov [ebptmii.chSize], 3@8h ; ‘@'
text: 80484208 59 4D D@ Mo [ebp+mii.fMask], ecx
text:@04842CE 59 4D D8 Mo [ebp+mii.fState], ecx
LJext:ea4a4201 3B 85 8C 21 48 @@ cmp eax, dnDevInst
Ltext:eeded4207 75 25 jnz short loc_4B42FE
i L 4
ol s
Ltext:8e484209 8D 45 CC lea eax, [ebp+mii]
Ltext:eaded2DC 58 push eax ; lpmii
Ltext: 8484200 53 push ebx ; TByPositon
Ltext:004242DE 65 68 F@ B0 BB push araseh ; item
Jtext:Ba4842E3 53 push ebx ; bRevert
Ltext:884842E4 FF D7 call edi ; GetConsoleWindow
Ltext:Be4842E6 58 push eax 3 hind
Ltext:B84842E7 FF 15 24 92 47 88 call ds:GetSystemMenu
Ltext:Baded2ED S8 push eax 3 hmenu
.text:B84842EE FF 15 F4 91 47 @e call ds:5etMenultemInfol
Tdextieaded2r4 35 8 test eax, eax
text:@a4842F6 75 86 jnz short loc 4@842FE
_ L 4
I
Jgext:beded2Fs FF 8D S0 21 43 &6 dec type
i #‘I’ L 4
bl s =
LLext:ee4a42FE
Jtext @484 2FE loc_4@42FE: 3 lpIconName
Jtext:BB4B42FE 56 push esi
Ltext:284842FF 53 push ebx 3 hInstance
Ltext:@e4843008 FF 15 35 92 47 @8 call ds:LoadIlconh
Ldext:eedadies 568 @D 8C 21 48 88 Mow ecx, dnDevwInst
LJtextreadadsaC Al 94 21 43 el mov eax, hDlg
Ltext:@e484311 89 80 1C F7 FF FF mov [ebpt+dwBytes], ecx

text:ea484317 8D 8D 1C F7 FF FF lea
Jtext:ee48431D0 51 push
Jtext:ee48431E S8 push
Ltext:@e48431F 89 85 18 F7 FF FF M
LJext:@ed4a4325 FF 15 EC 91 47 @@ call

of junk code in IDA Pro
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE

ecx, [ebptdwBytes]

ecx ; lpdwProcessId
2ax 3 hkind
[ebp+hHeap], eax
ds:GetWindowThreadProcessId

Example

7/21

UPX impostors

One of the most common packers is the UPX packer which can compress programs and
also hide their original code. A few samples have the first layer modified to look like they are
UPX packed even when they are not. At the first glance it is possible to see that the sample
has sections exactly like UPX, even when you analyze the sample with tools like “Detect It
Easy”, the tool will incorrectly tell you that the sample is UPX packed.

This can lead to the confusion of an inexperienced analyst, but what is even worse it can
confuse analytical tools. There are multiple tools for automatic and static unpack of UPX
packed programs and for extraction of original code for further analysis. When a tool like
this unpacks an UPX impostor sample the result will be random corrupted data. On data like
this any static detection will not be possible and a corrupted sample won’t run in dynamic
analytical boxes.

Exceptions

The majority of samples raise exceptions during debugging. In most cases it happens at the
beginning of the main function. Dealing with these exceptions can slow down manual
analysis and definitely make dynamic analysis more difficult. It's a good idea to identify the
place where exceptions are raised, because even if some samples are throwing only a few
exceptions, others do it in a loop and passing them one by one may be too time consuming.

The most common exceptions which could appear are:

e Microsoft C++ exception with code 0xE06D7363
This exception is usually thrown by some exotic functions used in junk code.
Some of the functions causing this exception are:
m SCardEstablishContext
m SCardConnectA
= SCardTransmit
« Instruction referenced memory at xyz . Memory could not be read. Exception code
OXCOOOOOOS
¢ Unknown exception code 0Ox6EF
From function GetServiceDisplayNameA

We have also found that OnionCrypter combines functions that throw exceptions with the
data about the position of the mouse cursor. OnionCrypter uses a loop where it finds out the
cursor position (X and Y coordinates) using the function GetCursorPos and compares it
with the position values from the previous iteration of the loop. If the X or Y coordinate didn’t
change, the program calls more functions that throw the exceptions, waits for a few
seconds and starts the next iteration of the loop. It is expected from a normal user that he
will move his mouse during this timeframe, but it is not expected from a sandbox or analyst

8/21

who is pressing the F9 key repeatedly to pass the throwing exception part of the program.
Because of that we believe that throwing the exceptions is an anti-debug trick to make the
manual work of analysts harder.

Named event object

OnionCrypter uses named event objects, which are hardcoded into the code and created in
the main function to avoid multiple executions of the payload. This feature is important for
the malware hidden inside, because many times can multiple simultaneous executions of
particular malware on one device cause some unexpected or unwanted behavior (e.g. there
is no need to run the same ransomware twice on one device). After deeper analysis it was
possible to connect multiple event objects to this particular software.

.text:00401B81 push offset Name ; 'milsin”
.text:00401B86 push ebx ; bInitialState
.text:00401B87 push ebx ; bManualReset
.text:00401B88 push ebx ; lpEventAttributes

.text:00401B89 call ds:CreateEventA

Creation of named event object
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE
To facilitate extraction of new names of the event object and to automate processing, an
IDAPython script was created. Among most common names of event objects are:

e milsin

e svet

« lifecicled

e parames

e cueevn

e Strolls

e Menulapkievent
e doroga

Allocation of memory

At some point during the execution of the main function OnionCrypter has to create the
memory space where it loads and decrypts data. Another aspect of uniqueness is
demonstrated here. For allocation OnionCrypter uses one of the following functions:

1. GlobalAlloc
2. VirtualAlloc
3. HeapAlloc

9/21

In other malware families it is normal that samples of a crypter belonging to the same family
use the same memory allocation function across all samples. In this case there are three
different functions. This complicates analysis and it is another anti-analysis trick to hide the
payload, because it is not enough to hook one function and monitor allocated memory in
order to find the payload. What is even worse, hooking all these functions may be a very
slow way to find allocated memory, because the important allocation happens in some part
of the junk code. At the same time, during execution of the junk code, allocation functions
may be called many times to allocate insignificant memory. Especially when these functions
are used in a loop, monitoring all allocated places will be overwhelming. One possible
solution to solve this is the knowledge that the allocated memory for the encrypted data has
all three of the read/write/execute flags setto true . With some cleverly placed
breakpoints in main function and monitoring of memory segments it is possible to find a
moment when a segment with read/write/execute flags was created.

Decryption of the second layer

After memory allocation, data is moved into created space and decrypted. Either a decrypt
loop is implemented inline in the main function or a separate function is called. Finding the
decrypt loop is easy with an R/w breakpoint for allocated memory. Even here every
sample is quite unique. Even though all samples read data byte by byte and xor it with
another value, implementation of the decrypt algorithm is totally different, as can be seen in
the images below.

10/21

V¥
s — __'
.text:00404570
.text:00404570 loc_404570:

.text:00404570 mov eax, esi
Ltext:00404572 imul eax, esi
.text:00404575 lea ecx, [eax+eax*2]
.text:00404578 mov ebx, esi
.text:0040457A imul ebx, ecx
.text:0040457D mov eax, ecx

.text:0040457F cdq

.text:00404580 sub eax, edx
.text:00404582 mov edx, [ebp+phCard]
.text:00404585 add ebx, edi
Ltext:00404587 sar eax, 1

Ltext:00404589 add eax, ebx
.text:00404588 mov ebx, [ebp+pcbRecvLength]
.text:0040458E mov dl, [edx+ebx]
.text:00404591 xor dl, al
.text:00404593 mov [ebp+var_58.y], ecx
.text:00404596 test edi, edi
Ltext:00404598 jz short loc_4045B0
¥ i v
.text:0040459A mov ecx, [ebp+phCard] .text:004045B0
.text:0040459D mov [ecx+ebx], dl .text:004045B0 loc_4045B0:
.text:004045A0 mov ecx, [ebp+var_58.y]||.text:004045B0 mov edx, [ebp+phCard]
.text:004045A3 jmp short loc_4045B6 .text:004045B3 mov [edx+ebx], dl
[T |
e =
.text:00404586
.text:004045B6 loc_4045B6:
.text:004045B6 mov edx, eax
.text:004045B8 mov ebx, esi

.text:004045BA imul edx, edi
.text:004045BD imul ebx, edi

.text:004045C0 sub edx, ebx
.text:004045C2 add edx, ecx
.text:004045C4 lea eax, [edx+eax*4+5]
.text:004045C8 imul esi, eax
.text:004045CB mov eax, [ebp+pcbRecviength]
.text:004045CE inc eax
.text:804045CF cmp eax, [ebp+nShowCmd]
.text:004045D2 mov [ebp+pcbRecviength], eax
.text:004045D5 j1 short loc_404570
T 1
vy

Structure of decrypt loop in IDA Pro

left — 75E692519607C2E58A3E4F5606D17262D4387D8EEA92FABIC11C64C4A6035FBC
right —
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE

On the left side the decrypt algorithm of layer 2 is implemented as a part of the main
function. This algorithm is quite simple — it uses one byte as a key value and does XOR
operation on all bytes of encrypted data. What is even more interesting, this algorithm is so
naive, that if the key was originally set to zero, layer 2 would not be (de/en)crypted at all.

On the other hand the decrypt algorithm on the right side is quite complicated. Itis a
standalone function, which receives as parameters pointer to the encrypted data, length of
the encrypted data and key seed value. Decryption goes from the beginning of the
encrypted data and it does XOR operation of key value and each encrypted byte. Unlike the
previous decrypt algorithm, this one is a stream cipher, which generates a key stream. Key
stream consists of key values where a new key value is generated from a key value used in
the previous iteration.

Passing execution to the second layer

Even here are some creative ways of how to start the execution of the decrypted code. The
simplest, which is also the most frequent one, is to load a pointer to the decrypted code into
the register and call it.

11/21

Things can get more interesting when there is no call to a register. Some samples use
‘Enum” functions like EnumSystemLanguageGroupsA to pass execution. Originally this
function enumerates the language groups that are either installed on or supported by an
operating system, but one of the parameters of this function is a pointer to an application-
defined callback function. This callback function should process the enumerated language
group information provided by the EnumSystemLanguageGroupsA function. Instead of
providing a pointer to the callback function a pointer to the decrypted code is given as
parameter and as a result decrypted code gets executed.

.text:00404EA1 push ebx ; 1Param

.text:00404EA2 inc ecx

.text:00404EA3 push ecx ; dwFlags
.text:00404EA4 push eax ; ptr_to decrypted data

.text:00404EA5 call ds:EnumSystemLanguageGroupsA

Passing execution to second layer
909A94BCB5C0354D85B8BDB64D4EE49093CCA070653F73B99C201136B72CB94A

A similar technique is used with all kinds of “Enum” functions e.g. CertEnumSystemStore
or EnumbDisplayMonitors . Because of the amount of these functions and possibility of
their legitimate use, it is not feasible to detect OnionCrypter by this technique.

.text:004031CB push ebx ; ptr_to decrypted data
.text:0804031CC push esi ;5 PVArg

.text:004031CD push esi ; pvSystemStorelLocationPara
.text:004031CE push 10000h ; dwFlags

.text:004031D3 call ds:CertEnumSystemStore

Passing execution to second layer no.2
846DCC9BCDC5C6103B2979FF93F4E1789B63827413B2FE56B1362129DF069DAF
List of functions known to be used by OnionCrypter:

e EnumSystemLanguageGroupsA
e CertEnumSystemStore

e EnumDisplayMonitors

e EnumObjects

e EnumFontFamiliesA

e EnumTimeFormatsA

e EnumDesktopsA

e EnumeratelLoadedModules
e EnumDateFormatsA

e EnumPropsA

e EnumFontsA

e EnumSystemGeolID

e EnumwWindowStationsW

e EnumResourceTypesA

e acmFormatEnumA

12/21

e EnumSystemCodePagesW

Layer 2

Layer 2 is a shell code whose ultimate task is to decrypt another layer. This process is not
straightforward at all. The overview of what happens on layer 2 can be seen on image
below, but the “Decrypt layer 3" bubble hides quite a complicated process of decryption.
The layer 3 is decrypted in parts, but the decryption happens on another sublayer of the
layer 2, in shell codes. As if it's not enough, even these shell codes are decrypted in small
parts and then put together to form a decrypt sequence.

Shell code start

Load pointer pointing to
stack & jump to
main shell function

Load DLLs and pointers
to DLL functions Main structure of layer 2

Decryptlayer 3

13/21

Call layer 3 through

EAXTreqister

shell code

Finding DLLs and functions

As a first thing, OnionCrypter loads pointers to kernel32.d11 . ltuses TIB (Thread
Information Block) to find the Process Information Block and there is a pointer to a structure
(PEB_LDR_DATA) that contains information about all of the loaded modules in the current
process. By searching this structure, OnionCrypter finds the base address of
kernel32.dll .

debug®72:029504C4 mov edx, fs:[edx+36h] ; TIB[©x3@] = addr_of TEB
debug072:029504C8 mov edx, [edx+@Ch] ; TEB[@x®C] = _PEB_LDR_DATA * 1ldr
debug@72:029504CB mov edx, [edx+14h] ; module list

Loading list of modules
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE
When OnionCrypter has the base address of kernell32.dl1l , it loads the address of the
Export Table, which is well known. Then OnionCrypter iterates through the Name Pointer
Table containing names of DLL functions. OnionCrypter calculates the CRC32 from every
function name and compares that number to one received as a hard-coded parameter.
When there is a match, an iterator value is used to find the function’s ordinal number in the
Ordinal Table. With this number it is possible to look up the function’s address in the Export
Address Table. Even if this method is known, OnionCrypter tries to hide what it’s loading by
using pre-calculated CRC32 numbers instead of strings with function names.

debugB72:82953867 push ; crc32("GlobalAlloc™)
debug@72:8295386C mov eax, [ebp+var 1C]

debug@72:8295386F push eax

debug@72:82953870 call load_func_by_crc

debug@72:82953875 mov [ebp+var 78], eax

debugB72:02953878 mov ecx, [ebpt+var 54]

debug@72:8295387B mov edx, [ebp+var 78]

debug®72:0295387E mov [ecx+BCh], edx

debugt72:82953881 push BD22284E4h ;5 crc32("GetSystemTime")
Aahiiaf77 -AIGEIRKAE manr aav Tahnivan 101

14/21

A LA S S

debugB72:
debugB72:
debugb72:
debugh72:
debugB72:
debugh72:
debugB72:
debugB72:
debugB72:
debugB72:
debugb72:
debugh72:
debugB72:
debugh72:
debugB72:
debugB72:
debugB72:
debugB72:
debugb72:
debugh72:
debugB72:
debugh72:
debugB72:
debugB72:
debugd72:
debug872:
debugb72:
debugh72:
debugB72:
debugh72:
debugB72:
debugB72:
debugB72:
debugB72:
debugb72:
debugh72:
debugB72:
debugh72:
debugB72:
debugB72:
debugB72:
debugB72:
debugb72:

B A o

82953889
82953884
B295388F
82953892
82953895
82953898
82953898
82953808
B2953843
B82953804
B29538A9
B829538AC
B295384AF
B29538B2
82953865
B829538BA
B829538BD
B29538BE
B829538C3
B829538C6
B29538C9
B29538CC
B29538CF
82953804
82953807
B829538D8
82953800
B29538E8
B29538E3
B29538E6
B29538E9
B29538EE
B29538F1
B29538F2
B29538F7
B29538FA
B29538FD
82953908
829539603
82953908
82953968
B8295398C
82953911

push
call
mov
mov
mov
mov
push
mov
push
call
mov
mov
mov
mov
push
mov
push
call
mov
mov
mov
mov
push
mov
push
call
mov
mov
mov
mov
push
mov
push
call
mov
mov
mov
mov
push
mov
push
call
mov

s 1

eax
load_func_by_crc
[ebp+var 28], eax
ecx, [ebpt+var 54]
edx, [ebp+var 28]
[ecx+18h], edx

391ABGAFh

L s var _ aw

eax, [ebp+var_ 1C]
eax
load_func_by_crc
[ebp+var 38], eax
ecx, [ebpt+var 54]
edx, [ebp+var 38]
[ecx+14dh], edx
BCD53F5DDh 3
eax, [ebp+var_ 1C]
eax
load_func_by_crc
[ebp+var 5(C], eax
ecx, [ebpt+var 54]
edx, [ebp+var 5C]
[ecx+18h], edx
9CE@DAAR ;
eax, [ebp+var_ 1C]
eax
load_func_by_crc
[ebp+var 4(], eax
ecx, [ebpt+var 54]
edx, [ebp+var_ 4C]
[ecx+1Ch], edx

(elelelel o o g 3
eax, [ebp+var_ 1C]
eax
load_func_by_crc
[ebp+var 28], eax
ecx, [ebpt+var 54]
edx, [ebp+var 28]
[ecx+28h], edx
3FC1BD8Dh ;
eax, [ebp+var_ 1C]
eax
load_func_by_crc

[ebp+var 24], eax

crc32("UnmapViewOfFile")

crc32("VirtualFree™)

crc32("VirtualAlloc")

crc32("VirtualProtect™)

crc32("LoadLibraryA™)

Example of loading pointers to DLL functions by CRC32 of their name
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE
As a first function, OnionCrypter loads GetModuleHandleA . With this function it can then
load advapi32.dll and ntdll.d1l . Inthe next steps the program loads multiple
functions from DLLs and stores them in the same memory space, where shell code is

15/21

running. Fixed storage is created for that.

debugb78:0928206FA off_28206FA dd offset kernel32_GetModuleHandleA
debugb78:028206FA ; DATA XREF: Stack[©©001094]:8019F4ECTo
debugb78:028206FE dd offset kernel32 GetProcAddress
debugb78:928207062 dd 90909090h

debugb78:02820706 dd offset kernel32_GlobalAlloc
debuge78:09282070A dd 90909090h

debugb78:9282070E dd 9©909090h

debugb78:02820712 dd offset kernel32_VirtualFree
debuge78:092820716 dd offset kernel32 VirtualAlloc
debug78:9282071A dd 90909090h

debugb78:0282071E dd 90909090h

debug78:92820722 dd 90909090h

debugb78:02820726 dd 90909090h

debugb78:0282072A dd offset ntdll_RtlDecompressBuffer
debugb78:9282072E dd 90909090h

debugb78:02820732 dd 90909090h

debugb78:02820736 dd 90909090h

debugb78:9282073A dd 96909090h

debugb78:0282073E dd 90909090h

debuge78:02820742 dd 9©969090h

debugb78:092820746 dd offset kernel32_GlobalFree
debugb78:0282074A dd offset kernel32 CreateFileA
debug878:09282074F dd offset kernel32 WriteFile
debugb78:92820752 dd offset kernel32_CloseHandle

Storage of loaded functions inside shell code
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE

Decrypting next layer

Now shell code running on layer 2 starts decrypting layer 3. The structure of decryption is
complex. At the highest level there is a big allocation of memory and a loop. Inside this loop
is data decrypted in small chunks and copied into big memory, but it is not as simple as it
seems.

Before that data chunk gets decrypted, the program first does one VvirtualAlloc of size
0x1000 bytes and with Rwx flags. After that, the program starts decrypting pieces of data
with size of 16 bytes and putting them together. This is accompanied by such a large

number of memory allocations that hooking allocation functions is useless (and annoying).

After decrypting and joining the pieces with the size of 16 bytes, data is copied to
VirtualAllocated memory. As it turned out, the data is another shellcode, which consists only
of a decrypt loop. This shell code is called and decrypts some data from layer 2. Then the
decrypted data is transformed again by another function and copied into memory, whose
address is returned.

16/21

Locate piece of data
to decrypt

VirtualAlloc
01000 wit

GlobalAlloc memA

GlobalAloc memB

Anything mo
decrypt?

lobalAlloc memC

Load 16 bytes of
data into memC

Decrypt memC

crypted to
memB

CopymemE to
VirualAllocated memory

copy data to mem#A

Main structure of decrypt next layer code

17/21

Decrypt memA by calling shell
code in VirtualAlocated memory

Copy decrypted chunk
to "big memory”

Is there another piece to
decrypt?

OnionCrypter has an option to compress data (or just some parts of data) with the
Rt1lCompressBuffer function. This compression is used before encryption. During the
decryption process chunks of data are decompressed after they are decrypted, but before

they are merged with other chunks.

When all pieces are decrypted and joined, execution is passed to the place where the
decrypted data is stored and the crypter starts execution of layer 3.

Layer 3

This layer is quite similar to the previous layer. At the beginning the same trick as described
before is used to load some important API functions. This time the shell code loads even
more functions than before.

18/21

debug@78:
debugo78:
debugo78:
debug@78:
debugo78:
debugo78:
debug@78:
debugo78:
debugo78:
debug@78:
debugo78:
debugo78:
debug@78:
debug078:
debugo78:
debug@78:
debug078:
debugo78:
debug@78:
debug@78:
debugo78:
debug@78:
debug@78:
debugo78:

0282373E
02823742
02823746
©282374A
©282374E
02823752
02823756
©282375A
©28237/5E
02823762
02823766
©282376A
©282376E
02823772
02823776
©282377A
©282377E
02823782
02823786
©282378A
©28237/8E
02823792
02823796
©282379A

dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

kernel32 GetModuleHandleA
kernel32 GetProcAddress
ntdll NtUnmapViewOfSection
kernel32 GlobalAlloc
kernel32 GetSystemTime
kernel32 UnmapViewOfFile
kernel32 VirtualFree
kernel32 VirtualAlloc
kernel32 VirtualProtect
kernel32 LoadlLibraryA
ntdll RtlProcessFlsData
offset ntdll LdrShutdownProcess
offset ntdll RtlDecompressBuffer
909090960h

909090960h

90909090h

offset kernel32 CreateThread
offset ntdll RtlExitUserThread
offset ntdll RtlImageDirectoryEntryToData
offset kernel32 GlobalFree
offset kernel32 CreateFileA
offset kernel32 WriteFile

offset kernel32 CloseHandle
offset kernel32 Sleep

Storage of loaded functions inside shell code
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE
Even when these function pointers are loaded, they are not necessarily used. Some
samples use RtlDecompressBuffer and some do not. The most probable cause of this is
that OnionCrypter offers options like “additional compression” or “sleep”, which the user can
choose when encrypting.

Decryption of the data is the same as in the previous layer. After decryption, OnionCrypter
calls the virtualProtect function in aloop and changes permissions of memory starting
from the base address of the program itself to R/w/Xx . After this change, OnionCrypter
copies decrypted data and overwrites itself, including the PE header and following sections.
Then the program changes back memory permissions using VirtualProtect to ones
that seem legit.

In the end, OnionCrypter finds the entry point in the new PE header and passes execution
there. This is the point where the payload which is now injected into the crypter process
starts running.

19/21

Member Offset Size Value Member Offset Size Value
Magic 00000118 Word 0108 Magic 00000118 Word 0108
MajorLinkerVersion 00000114 Byte 09 MajerLinkerVersion 0000D11A Byte 09
MinarLinkerersion 00000118 Byte 00 MinorLinkerVersion 00D00T1B Byte 00
SizeOfCode 0000011C Dword 00078000 SizeOfCode 0000011C Dword 000045600
SizeOfInitializedData 00000120 Dword 00019600 sizeOflnitializedData 00000120 Dword 00002200
SizeOfUninitializedData 00000124 Dword 00000000 SizeOfUninitializedData 00000124 Dword 00000000
AddressOfEntryPoint 00000128 Dword 000076A3 AddressOfEntryPoint 00000128 Dword 000010ET
BaseOfCode 0000012C Dword 00001000 BaseOfCode 0000012C Dword 00001000
BaseOfData 00000130 Dword 00079000 BaseOfData 00000130 Dword 0ODD0BO0D
ImageBase 00000134 Dword 00400000 ImageBase 00000734 Dword 00400000

PE header information before and after self-injection
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE

Mame Virtual Size Virtual Address | Raw Size Raw Address Mame Virtual Size Virtual Address | Raw Size Raw Address
Byte[8] Dwaord Dwaord Dwaord Dwaord Byte[8] Dword Dword Dword Dword

text DOOTTERS 00001000 00078000 00000400 ‘text 00004450 00001000 00004600 00000400
rdata D00DBFAC 00079000 00007000 00078400 -rdata O0DOCEDA 0000G00D 00001000 00004400
.data 00003364 00080000 00001800 0007F400 .data 00000GCC 00007000 00000400 00005A00
rsrc 0000DE18 00084000 0000DC00 00080C00 -bss 00DODGCF 0000000 00000300 ODDOSEDD
reloc 00003152 00092000 00003200 00DSES00 JTsrE 0003A000 0000000 00059400 0O0D0BE00

Section headers before and after self-injection
8B85A4D9DF1140D25F11914EC4E429C505BD97551EDE19197D2B795C44770AFE

Conclusion

OnionCrypter is a malware family which has been around for some time. Combined with the
prevalence of this crypter and the fact that samples have such a unique first layer it’s logical
to assume that crypter wasn’t developed as a one time thing. On the contrary, according to
analysis of multiple samples and their capture date, it was possible to see multiple versions
of some parts of OnionCrypter.

Across all of samples these main features of the Onion crypter stay the same:

The three layer architecture

Unique first layer with a lot of junk code

Existence of the “main” function on layer 1

General purpose and functionality of layer 2 and layer 3

On the other hand these are some of the things that may vary between samples from
different versions:

o The decrypt algorithm of the second layer — There can be found simpler and also
more complicated decryption algorithms used to decrypt the layer 2, as was described
in previous sections. It is improbable that authors would come up with a complicated
algorithm and then change it to something simple, just to make analysis easier. That is
why it is possible that this part of OnionCrypter was updated with newer versions.

20/21

e The location of the “main” function — In older samples the “main” function on layer
1 generally can be found very easily, because it is the winMain function, which is the
user-provided entry point of the application. This was changed in newer versions,
because the majority of recently captured samples have quite a simple and short
winMain function and the “main” function can be found as one of the other functions.

o Structure of layer 2 and layer 3 — Even though these layers can be found in all
samples of OnionCrypter and always serve the same purpose they may differ in
implementation. As an example there are versions, which are loading less DLL
functions. Also in some older versions the loading of DLL functions is not a standalone
function. Based on the analysis, the internal layers have been reworked a bit to make
the layers more complex, to add new features and to make the decryption process
more complicated and obfuscated.

 Injection of the final payload — Although the majority of samples are using the
technique of self-injection described in the previous section, there were cases where
the decrypted payload was injected into a new process created in a suspended state.
This technique is analogous to the self injection, but is done using a combination of
functions CreateProcessInternalW , VirtualProtectEx , WriteProcessMemory
and ResumeThread .

This blogpost covered techniques discovered in both older and new versions of
OnionCrypter. The whole process of decryption and execution of payload was described for
the most complex and the most obfuscated versions, which can be considered to be the
newest and the most difficult to analyze.

Indicators of Compromise (1oC)

o Hashes: https://github.com/avast/ioc/tree/master/OnionCrypter/samples.sha256
o List of the most common event names:
https://github.com/avast/ioc/tree/master/OnionCrypter/event_names.txt

Appendix

» Repository: https://github.com/avast/ioc/tree/master/OnionCrypter
» IDAPython script for extraction of event names from samples:
https://github.com/avast/ioc/tree/master/OnionCrypter/extras/extract_event_names.py.

Tagged asanalysis, crypter, malware, obfuscation, reversing

21/21

https://github.com/avast/ioc/tree/master/OnionCrypter/samples.sha256
https://github.com/avast/ioc/tree/master/OnionCrypter/event_names.txt
https://github.com/avast/ioc/tree/master/OnionCrypter
https://github.com/avast/ioc/tree/master/OnionCrypter/extras/extract_event_names.py
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/crypter/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/obfuscation/
https://decoded.avast.io/tag/reversing/

