
1/8

March 16, 2021

Threatening within Budget: How WSH-RAT is abused by Cyber-Crooks
yoroi.company/research/threatening-within-budget-how-wsh-rat-is-abused-by-cyber-crooks/

03/16/2021

Introduction

Nowadays malware attacks work like a complex industry based on their own supply chains, data providers, access brokers and craftsmen
developing and maintaining intrusion tools. During our monitoring operations we frequently face malware samples based on known
families and code-bases, mangled and then used to conduct even more sophisticated attacks.

Recently, we intercepted a particularly representative attack campaign of this phenomenon. We found and analyzed a infection chain
leveraging the WSH-RAT kit, a complete Remote Administration tool sold in the underground and frequently abused by criminal actors
relying on off-the-shelf kits to build their offensive campaigns.

In this report, we dissect the entire infection chain of the malware in order to investigate the threat capabilities of one of the latest WSH-
RAT versions, and how attackers weaponize it to survive the traditional perimetral defences.

WSH-RAT Announce

Technical Analysis

The initial stage of the infection chain is weaponized RTF malicious document document having the following static information:

https://yoroi.company/research/threatening-within-budget-how-wsh-rat-is-abused-by-cyber-crooks/

2/8

Hash a4933a4607727ada5ae7ed0c79607911b7199876995e8e7dc835fe32437a6b06

Threat RTF document weaponized with MS-17-11882

Brief Description WSH RAT dropper

Ssdeep 384:HgTRA9Zw4Fg4+GUAhvasrLWRkpbaQL4IYbTiFxHGDb:ATRYw8kGNvaUfb4bTiHHGX

Table 1. Sample information

The exploit used to prepare the document is the “classic” MS-17-11882. It reveals to be also in 2021 one of the most active threats for the
users.

Figure 1: Evidence of the exploit MS17-11882

The shellcode of the equation editor downloads the second component of the infection chain from a previously compromised WordPress
website. This component is an executable file having the following static information:

Hash a2b55ffb492faeced1033c534e4f462d3c0ac9f914f991361ba67067538a05d1

Threat WSH RAT

Brief Description WSH RAT .NET packer

Ssdeep 24576:Yma+QZG0nbLYR1yTb6h0BacWadNihTIvGn7Rk3w6hWNudTzIfAH:jcZnbLYXyTb6oacjosOu8O0G

Table 1. Sample information

Figure 2: Signature Evidence

This sample is only a wrapper opportunely packed and with the only purpose to deploy the next stage, the entire Visual Basic Script of
WSH-Rat. Anyway, before talking about that, let’s dig into the packer.

The .NET Packer

This packer is heavily obfuscated and we proceeded to the debug it:

Figure 3: Resource “Formulario” routine

The highlight of the sample is when the packer loads a resource named “Formulario.Properties.Resources”, a sort of bitmap image which
is decrypted using a custom algorithm.

3/8

Figure 4: Preview of the encrypted resource

Once loaded the byte array, a static method named “KeepAlive.Kuchi” is used to decrypt the byte array seen in the following figure inside
the variable “array”:

Figure 5: Evidence of the loading of the encrypted

resource and the subsequent decrypting routine
The decrypted array is another .NET PE file, immediately executed through the “<Assembly>.Invoke” routine:

Figure 6: Decryption routine complete and invoking

routine
At this point, we started to debug this second binary file and, debugging it, we obtained a similar situation, arriving to obtain another MZ
header, as shown in the following screen.

4/8

Figure 7: Evidence of the decryption routine of the

second PE file
This third MZ file is quite particular, because it contains a long base-64 encoded string. We extracted that payload using the basic
“strings” tool and the base64-decode and we obtained the WSH-RAT payload.

Figure 8: Piece of the base-64 encoded payload

The WSH-RAT Core

The core of the infection is the WSH-RAT payload, obtained from the previous stage. In this section we’ll deepen inside to the capability
and also to the configuration of this malware.

Hash 13b1302f2e0c9fbfebba0ff3f133d2403a03eed5d66f60121dc26549180c4f50

Threat WSH RAT

Brief
Description

WSH RAT VBS payload

Ssdeep 3072:VAg8xSdAmshISeWJQ0bamQvEz7ZAbURC3eGK/6xbIpklgVDSxGfmuZ1D:VAg8xSymshISeWmM6iRC3eGKoAklgF28

Table 2. Sample information

The first interesting note appears on the header:

Figure 9: Malware configuration and seller

We have the details of the actor who forked that malware and re-coded it for its purposes. After that, there is the malware configuration
with all the settings of the current RAT. After some variable declaration we’ll skip, we have the starting of the real malicious code.

5/8

Figure 10: Initial code script

The rows of code reported in the above script are the first of the real malicious code of the WSH-RAT. The install subroutine performs the
operations to guarantee the persistence of the sample through the copy of itself inside the
“C:\Users\admin\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup” directory.

However, it is more interesting to spend more words on the C2 mechanism. We have a sort of gathering of the C2 though the GetHost
function seen in Figure 9.

Figure 11: Retrieving of the C2

The malware retrieves the real C2 from a Pastebin’s page and during the analysis the real C2 was “hxxp://mercedez].duckdns.]org:7723”,
dynamic DNS from a private IP. The master of the malicious page is able to change every moment the second C2, making all the
infrastructure very flexible.

After that, the bot retrieves the commands to execute from the C2 and it saves the inside the variable “cmd” seen at the last row of Figure
9. The command list is quite easy to understand, because, at this level of analysis we don’t have any level of obfuscation. Thus, we can
synthetize the commands in the following table.

Command Description

disconnect Exit the Wscript.exe process of the RAT

reboot Reboot the PC

shutdown Shutdown the PC

execute Execute a command

install-sdk Download from the C2 a file zip named “wshsdk.zip” and install it into the folder of the infection

remove-sdk Remove the sdk files

get-pass Execute the module PassGrabber useful to steal the credentials of the common web browsers and mail clients and
then upload on the C2

get-pass-
offline

The same command of “get-pass” but the stolen credential will be stored on the machine

update Update the WSH-RAT core

uninstall Remove all the files of the infection

up-n-exec Upload a file on the C2 and execute it

bring-log Upload the “wshlogs” folder onto the C2

down-n-exec Download a file and Execute it

filemanager Install a Service for the filemanager

rdp Install a Remote Desktop Protocol plugin

hbrowser Install a minimal web browser plugin

rev-proxy Install a Reverse Proxy on a port

exit-proxy Disable The reverse PRoxy

6/8

keylogger Install the Keylogger module and the immediately update the captured keystrokes

offline-
keylogger

The same of keylogger but the captured keystrokes are saved offline

browse-logs Print the captured log and upload onto the C2

cmd-shell Spawn a CMD shell

get-
processes

Print the running processes and upload on the C2

disable-uac Disable the UAC protection system

check-eligible Check the presence of a specific file and notify to the C2

rev-rdp Install a Reverse RDP plugin

uvnc Install a UltraVNC plugin

force-eligible Check the privileges of a file and notify that to the C2

elevate Elevate the privileges of the WSH-RAT

if-elevate Check if the WSH-RAT has high privileges and notify the C2

kill-process Kill a specific Process

sleep Sleep for a certain time

Table 3: Synthesis of the commands

Besides that command we want to keep your attention to two technical details we found inside the malicious code. The first one is that
some plugins are embedded inside the script, like the following example:

Figure 12: Example of decoding function

The “faceMask” function has to decode the plugin payload from the string. It is actually encoded in base64 format and compressed in
GZip format. The called functions are the following:

Figure 13: Decoding functions

The two functions reported in Figure 13 show the mechanism adopted to install and execute the plugin. The first function is “faceMask”
which decodes the string through a Powershell script and stores the result into a temporary registry key named
“HKCU\SOFTWARE\Microsoft\test”. After that, the “loopTill” function reads the content of the regkey, deletes it and, finally, returns the
result.

The Payload Launcher

The second interesting element is that the code launches every plugin through a pre-built RunPE hackTool written in .NET Framework.

7/8

Figure 14: Evidence of the “payloadLauncher”

function
Every plugin is executed through the “payloadLauncher” function and, so, we decided to deepen that.

Figure 15: Snippet of “payloadLauncher” function

Inside the function there is another string encoded in the same mode previously described and it actually is a component we saw in
another older campaign we tracked, and it is aimed at perform the Process Hollowing technique to inject the malicious plugins inside
other host processes.

Conclusion

The so-called “commodity malwares” are the part of the underground cyber criminal that enables a wide range of attackers to leverage
advanced capabilities to conduct intrusion operations and frauds, lowering the entry bar of cyber-crime and hacking.

During our threat intelligence monitoring operations and defence services we used to stay up to date with the evolution of this “known
unknowns”. In fact, despite the fact the malware families are actually known, intrusion kits like WSH-RAT are continuously customized
and wrapped by additional layers of multi-language code, most of the time unknown to the community. This is one of the reasons why
here in Yoroi, we leverage Threat Intelligence operations and Malware Analysis capabilities to enable our managed defence services to
offer superior detection, protection and response capabilities, to prevent, mitigate and handle cyber risks.

Indicators of Compromise

Dropurl
http]://192].210].218[.29/regasm/document.doc
http://kinghome].logsik].net/wp-includes/dozz.exe

C2:
hxxp://mercedez].duckdns.]org:7723

Hash
a4933a4607727ada5ae7ed0c79607911b7199876995e8e7dc835fe32437a6b06
9db1edd8eab084ef0e078e850ead4e743a0067c5ad9ded073edd3f533b3efd76
a2b55ffb492faeced1033c534e4f462d3c0ac9f914f991361ba67067538a05d1
13b1302f2e0c9fbfebba0ff3f133d2403a03eed5d66f60121dc26549180c4f50
400b411a9bffd687c5e74f51d43b7dc92cdb8d5ca9f674456b75a5d37587d342
64c1d1108c04bff24f629f60a43419424001087f3f9f032cfaad422b1abd99ff
272e64291748fa8be01109faa46c0ea919bf4baf4924177ea6ac2ee0574f1c1a
d24396bab076f62921a8be8f54e5255a641b646ff47aa72292bcf40d04aec25e
d65a3033e440575a7d32f4399176e0cdb1b7e4efa108452fcdde658e90722653
bb2bb116cc414b05ebc9b637b22fa77e5d45e8f616c4dc396846283c875bd129
0421fab0c9260a7fe3361361581d84c000ed3057b9587eb4a97b6f5dc284a7af

Yara Rules

https://yoroi.company/research/the-evolution-of-aggah-from-roma225-to-the-rg-campaign/

8/8

rule WshRAT_Dotnet_packer_2102{

 meta:
 description = "Yara Rule for WSH rat .NET packer of February 2021 "
 author = "Yoroi Malware ZLab"
 last_updated = "2021-03-09"
 tlp = "white"
 category = "informational"

 strings:
 $a1 = { BE DD 60 8C 34 49 9A 54 D2 40 }

 $a2 = { 1D D7 24 22 47 A6 B1 A5 }
 $a3 = { 13 30 03 00 07 00 00 00 01 }
 $a4 = { 11 02 03 7D 78 00 00 04 2A }
 $a5 = { A8 8A F4 C8 61 2B CA 07 }

$a6 = { 15 AE 5E AB 5A 20 FE B5 56 B4 61 2B BB 06 2A}

 condition:
 uint16(0) == 0x5A4D and 3 of them

}

This blog post was authored by Luigi Martire and Luca Mella of Yoroi Malware ZLAB

