
1/8

HAFNIUM, China Chopper and ASP.NET Runtime
trustwave.com/en-us/resources/blogs/spiderlabs-blog/hafnium-china-chopper-and-aspnet-runtime/

Loading...

Blogs & Stories

SpiderLabs Blog

Attracting more than a half-million annual readers, this is the security community's go-to
destination for technical breakdowns of the latest threats, critical vulnerability disclosures
and cutting-edge research.

The recent Microsoft Exchange Server zero-day exploits (CVE-2021-26855, CVE-2021-
26857, CVE-2021-26858, CVE-2021-27065) have seen tens of thousands of organizations
compromised by HAFNIUM and numerous other threat actor groups. Working closely with
our customers across the globe, we have quickly been able to identify and isolate attributes
of those attacks – particularly the China Chopper web shell being uploaded to compromised
Microsoft Exchange servers with a publicly facing Internet Information Services (IIS) web
server. Although the China Chopper web shell has been around for years, in the interest of

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hafnium-china-chopper-and-aspnet-runtime/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html

2/8

providing more information to the security community during this time, we decided to dig
even deeper into how the China Chopper web shell works as well as how the ASP.NET
runtime serves these web shells.

China Chopper is an Active Server Page Extended (ASPX) web shell that is typically
planted on an Internet Information Services (IIS) server through an exploit. China Chopper
is used for post-exploitation by giving attackers access to execute any code they want on
the server.

The China Chopper server-side ASPX web shell is extremely small and typically, the entire
thing is just one line. There are multiple versions of this web shell for executing code in
different languages such as ASP, ASPX, PHP, JSP, and CFM. In this blog, we will cover the
JScript version; however, they all are very similar aside from the language used.

Figure 1 - China Chopper ASPX Script

This script is essentially a page where when an HTTP POST request is made to the page,
and the script will call the JScript “eval” function to execute the string inside a given POST
request variable. In the above script, the POST request variable is named “secret”, meaning
any JScript contained in the “secret” variable will be executed on the server.

JScript is implemented as an active scripting engine allowing the language to use ActiveX
objects on the client it is running on. This can be and is abused by attackers to achieve
reverse shells, file management, process execution, and much more.

After setting up a test IIS server and placing the web shell on the server, we can now test
our own payloads against it. To do this, we used Python to send HTTP POST requests to
the China Chopper page and put our malicious JScript in an HTTP POST “secret” variable.

Here is our example payload, which starts a command prompt and pings itself. This
demonstrates the possibility of process execution.

Figure 2 - JScript Payload 01

https://npercoco.typepad.com/.a/6a0133f264aa62970b0278801b1023200d-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e995d573200b-pi

3/8

Attackers Viewpoint

For the attacker, typically a client component of the China Chopper web shell is used on the
attacker’s systems. This client is a C binary file.

This client allows the attacker to perform many nefarious tasks such as downloading and
uploading files, running a virtual terminal to execute anything you normally could using
cmd.exe, modifying file times, executing custom JScript, file browsing, and more. All this is
made available just from the one line of code running on the server.

Figure 3 - Custom Script Execution

Figure 4 - Virtual Terminal

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e995d59b200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e995d5ad200b-pi

4/8

Figure 5 - File Manager

To see exactly what the client is sending to the web shell, we captured the HTTP request for
executing the following custom JScript:

Response.Write(“Hello World”);

This script was expected to be sent as an HTTP POST request from the client to the server,
with the custom JScript to be sent in the “secret” POST field. The following code is the
request which was sent:

Figure 6 - Custom JScript Response

We can see that the client encodes the custom JScript in Base64 and uses the markers ->|
and <-| to help the client identify the portion of the response relating to the web shell.

Executing a more complex command such as the virtual terminal and running “ipconfig”
yields the same result; however, the base64 encoded command is automatically generated
from the client and decodes to the following code:

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdec324b8200c-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdec324f4200c-pi

5/8

Figure 7 - Virtual Terminal ipconfig Response

This request introduces two new POST variables containing Base64 encoded strings:

According to this code, the Virtual Terminal feature will start the CMD process silently and
execute the command sent from the client. The output is then captured and sent back to the
client.

ASP.NET Runtime and .NET DLLs

Some of the artifacts found on the compromised IIS servers were DLLs. When an ASPX
script is seen by the ASP.NET runtime for the first time, the ASPX script is parsed and
transformed into a C# or VB.NET class file. This class file is then either compiled into its
own .NET assembly or, depending on the IIS settings, combined with other converted ASPX
scripts to form one larger .NET assembly. This .NET assembly is what is served to an end-
user rather than the ASPX script itself. These .NET DLLs are stored in a temporary location
along with an XML file specifically crafted for that .NET DLL called a preservation file.

https://npercoco.typepad.com/.a/6a0133f264aa62970b0278801b112f200d-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdec32560200c-pi

6/8

Figure 8 - ASP.NET Runtime Flow

For the China Chopper ASPX file, a .NET Assembly was compiled along with a
preservation file and stored in a temporary directory for compiled ASPX files. For our IIS
server, the locations were:

The suspicious looking random strings are just hashes of the file names and paths for
internal use with the ASP.NET runtime.

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e995d699200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0278801b116e200d-pi

7/8

Opening the App_Web_bvbfecjk.dll file in DNSpy, we can see several methods inside of the
DLL. Only one of these methods contains the C# .NET version of the China Chopper ASPX
script, and the other methods are boilerplate code for the ASP.NET Runtime to execute
before getting to the compiled ASPX script.

Figure 9 - C# Converted ASPX Script

In this method, we can see a strong resemblance to the ASPX China Chopper web shell in
a compiled C# .NET assembly format. This is what is served to a user when the page is
requested.

Something interesting to note here is the JScript stack frame. We can see that two local
variables have been pushed onto the JScript stack. These variables are “__w” and
“parameterContainer”. In theory, in the JScript we send to be executed, we should be able
to access these variables. Let's try it out.

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e995d6bd200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdec325ac200c-pi

8/8

Figure 10 - JScript Payload 02

We can see that the JScript was executed successfully and made use of the “__w” variable
pushed on the stack to render the text “Hello World” in bold on the page. This can be useful
for the attacker to render the output of their script.

The preserve file for the generated assembly is an XML file and has a “.compiled”
extension. The content in this file is not very interesting. It primarily contains metadata for
the ASP.NET Runtime to use for identifying if the origin ASPX file needs recompiling as well
as to know which assembly file to serve a page request for.

Figure 11 - Preserve File

To wrap up, when examining servers for signs of compromise, in addition to ASPX scripts,
be aware also of the corresponding DLLs generated by ASP.NET runtime. As we are likely
to see many systems compromised with web shells in the future due to the zero-day
exploits by HAFNIUM and multiple other threat actor groups, it does not hurt to know a little
more about how these ASPX web shell scripts work behind the scenes with the ASP.NET
runtime and what the attack looks like from the attacker’s perspective.

IOCs

Name Hash (SHA-1) File Type

App_Web_rkpouxdy.dll fa3dc5cd49bd6aadb7f4c30e3381d0da0c7adb96 DLL

chinachopper.aspx 55f29d511d39e87b32c710a3ad32e61d4c40a30a ASPX

ChinaChopperClient.exe 056a60ec1f6a8959bfc43254d97527b003ae5edb PE32

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e995d6e1200b-pi

