
1/11

March 12, 2021

IcedID GZIPLOADER Analysis
binarydefense.com/icedid-gziploader-analysis/

In late February, while tracking a malicious spam campaign from the Qakbot distributor “TR,”
Binary Defense’s analysts identified a new version of IcedID being delivered through
malicious Word and Excel files. The updated IcedID has a new first stage loading
mechanism, which we’ve dubbed “gziploader,” along with new encryption algorithms for
hiding its configuration and embedded strings. After reverse-engineering the inner workings
of the malware, the Binary Defense Threat Hunting team allowed it to run in a laboratory
Active Directory environment, set up to look like a small business, and observed that after
only a few hours of running, threat actors used the access provided by IcedID to deploy
Cobalt Strike beacons and downloaded tools to explore and profile the network environment.
The IcedID infection was long-lived and exhibited several recognizable patterns of behaviors
over time, allowing analysts to identify some post-infection detection opportunities that were
implemented as alerts for security operations analysts.

In addition to this analysis, Binary Defense’s analysts are also releasing a software tool to
decrypt the new IcedID gziploader payloads, along with the .dat logfile. The tool can also be
used to attempt to extract the Command and Control (C2) configuration stored in non-
gziploader IcedID payloads.

View the decryption tool on the Binary Defense GitHub
here: https://github.com/BinaryDefense/IcedDecrypt

https://www.binarydefense.com/icedid-gziploader-analysis/
https://github.com/BinaryDefense/IcedDecrypt

2/11

Fig 1.1, IcedID’s gziploader infection chain

IcedID Background

IcedID is a sophisticated banking trojan that makes use of memory-only payloads along with
browser hooking to steal banking credentials and other PII. While typically spread through
malspam, IcedID has also been seen loaded by Emotet (when it was still live) and even has
its own Trickbot module. Additionally, with cert pinning capabilities, multiple stages, and
several analysis environment checks, IcedID is a formidable threat that makes analysis
complex and challenging.

Arrival on System: TR Infrastructure

The IcedID covered in this analysis was found by Binary Defense’s analysts while tracking
Qakbot’s “TR” malspam distribution infrastructure. “TR” is the group tag given by Qakbot to
designate a particular malspam distribution affiliate. After identifying the infrastructure used
by this actor, Binary Defense has also witnessed this actor distributing other malware
including Gozi/isfb, Smokeloader, ZLoader, and most recently, this IcedID campaign.

Arriving on the system as a hijacked reply chain email with an Excel XLS file attachment, the
lure was a standard fake DocuSign message that has been used frequently in many
malicious documents and spreadsheets (as seen in Fig 1.2)

3/11

Fig 1.2 Malicious XLS Sheet, with instructions on how to open the malsheet and enable
macros.
Once macros are enabled, the malsheet connects out to an embedded URL, attempts to
download a file, and then tries to open that downloaded file with rundll32.exe and the
command line parameter “DllRegisterServer”. Binary Defense’s analysts have also seen the
TR infrastructure loading DLLs with regsvr32.exe.

Detection Opportunity: Watch for regsvr32.exe or rundll32.exe (or any other program)
spawned from Office programs such as Excel and Word

IcedID Stage1: “Gziploader”

The first stage of the IcedID infection chain is in charge of performing the initial host
enumeration calls, as well as requesting and loading the IcedID payload masquerading as a
gzip file. In addition to host enumeration that gathers CPU type, OS type, and username, the
malware also connects out to a benign URL, like aws.amazon[.]com, which it then collects
and stores the web server response in the typical IcedID headers (__gads, _gat, etc), then
sends them on to the C2 in the HTTP cookie header when it requests the fake gzip payload
(as seen in figure 2.1)

Fig 2.1, Shows the get request and resulting gzip-masquerading payload (with \x1f\x8B
header)

4/11

While the gziploader payloads appear to be valid gzip files, uncompressing them fails, as the
data following the header is actually the encrypted IcedID payload, which will be decrypted
and loaded by the gziploader stage one decryption algorithm.

Gziploader Algorithm

The algorithm used by gziploader to decrypt the IcedID payload is actually fairly simple, at
least compared to the past photoloader algorithm that was used in the last version of IcedID.
To summarize the algorithm in plain English, the malware first copies the 10-byte gziploader
header into memory, which it checks and discards. It then reads the .msi string (e.g.
“update_3059128432.msi” into memory, stopping at \x00. It saves the length of this string,
and then reads the rest of the data starting from the end of the .msi string into memory. This
is the encrypted data, which is decrypted using a custom algorithm and a 16-byte key stored
toward the end of the buffer of data. The exact offset of the key depends on a hardcoded
integer along with the length of the .msi string.

However, as this buffer is fairly large, and the hardcoded integer seems to change, Binary
Defense’s analysts have developed a rapid bruteforce method to find the 16-byte key used to
decrypt the IcedID payload. This method has been used in the released software tool.

Gziploader Payload Layout

Once decrypted, the malware reads the first 0xA9 bytes of the decrypted buffer into memory,
which contains the license.dat file size, the IcedID loader file size, the license.dat
%appdata% directory path, the IcedID payload execution parameters, the license.dat file
data, and the IcedID loader file data (a standard DLL, dropped to the %localappdata%
directory). As seen in figure 2.2, the config format is as follows:

https://binarydefense.com/threat-watch/

5/11

Struct gziploader_payload_config {
Byte Flag;
Dword sizeOfDatfile;
Dword sizeOfDllFile;
Cstr DatFileDir;
Buffer[0x14] Reserved;
Cstr DatFileName;
Buffer[0x13] Reserved;
Cstr DllFileName;
Buffer[0x12] Reserved;
Cstr DllExecutionStr;
Buffer[0x1F] Reserved;
}

Fig 2.2, Gziploader decrypted payload config
With all necessary payload config data acquired, the malware then drops the license.dat file
into the current user’s Appdata\Roaming\<directory in DatFileDir>\ folder, drops the IcedID
main loader into Appdata\Local\, and then launches it with the specified DllExecutionStr,
replacing the final “%s” with the path to the license.dat file. It then terminates the gziploader
process, passing the loading responsibility on to the newly executed IcedID main loader.

Detection Opportunity: Watch for file write events where the file name is license.dat,
the folder is in a subfolder under AppData\Roaming, and then followed by a process
start event for rundll32 with a command line argument including license.dat

IcedID Stage 2: The Main Loader

IcedID’s main loader is a fairly massive binary, coming in at 5.1MB. Despite the large size,
the functionality of the main loader is very simple and essentially just locates the
“license.dat”, containing the main IcedID bot, decrypts the file, and then loads the partial PE
memory segments into memory, similar to the prior version IcedID photoloader memory
loading.

Included in the software tool release, the bulk IcedID decryption script will automatically
identify .dat files and attempt to decrypt using the same custom encryption algorithm used by
the gziploader portion. However, the 16-byte key is stored as the last 16 bytes of the
license.dat file, unlike with the gziploader portion. After decrypting, the segments are
assembled by the script into a DLL that can at least be opened in a disassembler like IDA
Pro or Ghidra.

IcedID Payload Structure Layout

6/11

While the new decrypted IcedID license.dat payload is loaded into memory the same way as
old IcedID, the payload structure has changed a bit. Now, 0x81 garbage bytes of data are
prepended to the decrypted buffer, which gets discarded by the malware. The structure of
the payload “config” is as follows:

Struct payload_segment_config {
Qword ImageBase;
Dword ImageVirtualSize;
Dword ImageEntryPoint;
Dword Import Table Offset;
Dword Import table Virtual Offset;
Dword Import Table Size;
}

Additionally, the structure layout for each individual segment is unchanged from the older
versions of IcedID.

IcedID Stage 3: The Main Bot

Loaded into the memory space of rundll32.exe by the main loader, the assembled DLL
stored inside of the dropped license.dat serves as the main bot for the IcedID infection. This
DLL is in charge of credential theft, along with host enumeration and DLL injection (for
browser hooking). While the addition of gziploader was a new change, the main bot is fairly
unchanged from the IcedID version analyzed by Group-IB. We highly recommend reading
Group-IB’s analysis to understand the alive/hooker/bc modules and their interactions;
however, some new commands have been added for post-exploitation activity.

Main Bot Commands: Exec/ExecAdmin

While the Exec/ExecAdmin commands are not new by any sense, they have received some
updates that flesh out their functionality a bit. Exec and ExecAdmin are two commands used
by IcedID to execute more malware/tools during post-infection. As the names would indicate,
Exec executes files using the user’s current permissions level. ExecAdmin, however, will
escalate privileges using either the fodhelper or eventvwr bypass (whichever is successful),
and execute files as a local administrator.

Exec and ExecAdmin are divided into five different “subcommands” (each with optional
output saving), which allow IcedID to:

1. Execute .exe files without a command line

Uses a pipe to read from stdout if output saving is specified

2. Execute .exe files with a command line

Exe is temporarily saved to %temp%; however, if that does not exist, C:\ProgramData\
is used

https://www.group-ib.com/blog/IcedID

7/11

Filename is a random alphanumeric string ending with .exe
Exe is deleted following execution

Detection Opportunity: Watch for a file write of an exe file to a temporary directory, followed
soon after by a process creation event executing that file, and then by a file delete event of
the same file.

3. Execute .DLL files using “regsvr32.exe /s”

DLL must have DllRegisterServer as an export
DLL is saved to same temp path as exe, and is deleted on execution

Detection Opportunity: Watch for file writes to a temporary directory, followed soon after by a
regsvr32 process referencing the same filename as a command line argument, and then by
a file delete event of the same file.

4. Execute PowerShell script

PowerShell script is temporarily saved to %temp% or ProgramData as a .txt file
Script is then executed with “powershell -windowstyle hidden -c “$a=
[IO.File]::ReadAllText(“””%s”””); iex $a; exit;”

Detection Opportunity: Watch for PowerShell processes with the command line argument
containing “ReadAllText(“*”);iex”, where * is a text file in the %temp% directory.

5. Execute shellcode in memory

Spawns cmd.exe from C:\Windows\SysWOW64\, with no command line.
Injects into cmd.exe using the NtVirtualAllocate -> ZwWriteVirtualMemory ->
NtProtectVirtualMemroy -> CreateRemoteThread chain.

Detection Opportunity: Watch for CreateRemoteThread targeting cmd.exe processes

Main Bot Commands: Steal Credentials

One of IcedID’s key functions is the ability to steal user credentials stored on the victim’s
system. This functionality is triggered by a command and seeks to steal creds/account info
from:

Cred vault, using CredEnumerateW
Outlook Profiles, using the WindowsMessagingSubsystem\Profiles or Outlook\Profiles
to do so
Internet Explorer browser history and saved passwords
Internet Explorer password from CredVault
Email Credentials from CredVault

8/11

Chrome autofill
This includes passwords, phone numbers, card information and more

Firefox Autofill
Downloads sqlite3.dll to manipulate both chrome and firefox data

Main Bot Commands: Steal Cookies

Another important functionality for IcedID is its ability to steal cookies for some of the popular
browsers, like Chrome, Firefox, and Edge, each with their own IOCc[KJ1] .

IE/Edge Theft:

Stolen cookies are saved to a file called IE/%u.txt and EDGE/%u.txt (where %u is
replaced by an unsigned integer)
Locates the cookie storage, extracting to the files above.

Firefox Theft:

Saved to a Firefox/cookies-%u.txt

Chrome Theft:

Saved to cookies.txt

Main Bot Commands: SysInfo

A command that’s pretty typical for malware these days: IcedIDs sysinfo command
enumerates important information about the host, like installed AV or process list.
Additionally, IcedID runs the following commands and sends the output back to its C2 (as
seen in fig 3.1):

“cmd.exe /c chcp > &2”
Enumerates the bot’s code page

“net view /all”
“ipconfig /all”
“net group “Domain Admins” /domain”
“systeminfo”
“net view /all /domain”
“nltest /domain_trusts /all_trusts”
“nltest /domain_trusts”
“net config workstation”

Detection Opportunity: Determine which of the commands above are rare events in
your environment and look for any instance of those rare commands

9/11

Fig 3.1 Shows the commands executed by IcedID in Binary Defense’s Lab Domain
Environment

Main Bot’s Command Chain

During multiple IcedID infections, both in a debugger and as a live analysis, Binary Defense’s
analysts observed a fairly aggressive post-infection chain from IcedID.

Upon initial check-in with the main bot C2, the C2 first issued the “StealCreds” command,
instead of sysinfo like most malware campaigns. Next, the C2 issued the “StealCookies”
command in order to steal all browser cookies for the bot. After that, the C2 finally issued the
sysinfo command, followed by the proclist command. From there, the C2 then issued an
interesting command called “ListDesktopFiles”, which uses the IShellLinkW COM objects
and Windows API calls to get a list of all desktop files, and resolve any .lnk files. Finally, the
C2 issued the “Update_Config” command, which updated the bot’s in-memory C2 config,
and connected it to the C2.

10/11

This command chain appeared to be automatically executed immediately by the C2,
meaning most bots that properly connect to the C2 will most likely receive these commands,
in this order.

Review

In this analysis, we have covered the updates to IcedID’s loading mechanism, including the
new gziploader that replaces photoloader. Additionally, we are releasing a script with this
analysis that can be used to decrypt and assemble the license.dat, decrypt the gziploader
payloads, and also attempt to extract any C2 config information from the IcedID binaries.

IOCs/Appendix

XLS IOCs:

Look for DocuSign instructional XLS sheet templates, (the instructions for enabling
macros will be in the sheet)
Look for excel spawning either rundll32.exe with the command line containing
“DllRegisterServer” or excel spawning regsvr32.exe with the command line containing
“/s” or “-s”.

Gziploader IOCs:

Look for filewrites to Appdata\Roaming*\license.dat
Look for http traffic receiving large gzip payloads after making a request to the root dir
of a url.
Look for http traffic with the standard IcedID headers in cookies:

__gads
_gat
_ga
_u
__io
_gid

Look for rundll32.exe executing a newly dropped dll with “/i” in the command line

Main Bot IOCs:

11/11

Look for any of the commands executed by sysinfo
“cmd.exe /c chcp > &2”
“net view /all”
“ipconfig /all”
“net group “Domain Admins” /domain”
“systeminfo”
“net view /all /domain”
“nltest /domain_trusts /all_trusts”
“nltest /domain_trusts”
“net config workstation”

Look for modifications to “AppData\Roaming\Microsoft\Crypto\RSA” originating from
rundll32.exe

Look for createremotethread events originating from rundll32.exe targeting firefox.exe
and chrome.exe

Look for Registry Run key modifications containing “/i” in the command line.

ICEDID/Cobalt Strike related C2s:

fekiop3.space
berxion9.online
prolomstenn.fun
deregojikulo.uno
wellernaft.top
awerityubfer.club
31.14.41.212 – Cobalt Strike C2
update.webguardsecurity.xyz – Cobalt Strike C2

References:

https://www.group-ib.com/blog/icedid
blog.malwarebytes.com
IcedID Decryption Tool: https://github.com/BinaryDefense/IcedDecrypt

https://www.group-ib.com/blog/icedid
http://blog.malwarebytes.com/
https://github.com/BinaryDefense/IcedDecrypt

