DotNET Loaders

Threat Research | March 12, 2021

1/12

https://blog.reversinglabs.com/blog/dotnet-loaders
https://blog.reversinglabs.com/blog/tag/threat-research

Blog Author
Robert Simmons, Independent malware researcher and threat researcher at
ReversingLabs. Read More...

2/12

https://blog.reversinglabs.com/blog/author/robert-simmons

LN
200 OGO REO
e 0 I SO

Many families of remote access trojan (RAT) are NET executables. As was observed in the
blog post 1 from one year ago about RevengeRAT among others, much of this malware is
delivered in another .NET executable with the payload encoded as an embedded text string.
These RATs when they're encoded as text and posted to pastebin like sites are tracked by
Scumbots 2. An additional method of hunting for this type of dropper or loader is to leverage
the dotnet module in YARA. This module is a parser for .NET executables and presents the
parsed components that it finds as a dataset inside YARA that can then be leveraged in the
conditions section of a rule. In the following analysis, this parsed dataset and the user strings
3 entry in particular are used to identify .NET executables that have another PE executable
encoded as one of those user strings.

Making the Rule

The first step is to examine one of the .NET loaders in question . The examples here show a
sample that delivers RevengeRAT 2 according to Malpedia analysis of the payload contained
within it. This embedded and encoded PE file can be seen in the screenshot of the loader as
analyzed by dnSpy & shown in Figure 1.

3/12

a

File

Assembly Explorer

vvVvVvVvvVvvVvvVvwvvwy

bit, .NET,

Edit View Debug Window Help @

- v X cctor() : void

mscorlib (4.0.0.0) -~
System (4.0.0.0)

System.Core (4.0.0.0)
System.Xml (4

System.Xaml (4.0.0.0)
WindowsBase (4.0.0.0)
PresentationCore (4.0.0.0)
PresentationFramework (4.0.0.0)
dnlib.dll

dnSpy.exe

ToHexConverer (1.0.0.0)

PE

Type References
P 5B References
P Ml Resources
4 {} _

P Start S

HexBytes I =

"4D5A900003000000¢ 1000000F FFF0000B80000000000000040000000000000(
1B8014CCD21546869732070726F6772616D2063616E6E6F742062652072756E
A0PNAFANNA2A1ARA1E 300003 E00000002000000000000CESDO0BE0020000000
000020040850000100000100000000010000010020000000000100000000000¢
00C00000000000000000000000000RR00VVVORRVNV0EEEEEEEELLRY
800000000V RPRB2ET4657874000000D43D000OO200000003EQLOOL
0000000000000000000CLAVAB4000004200000000000000000000000000(
000B05D0000000000004800000002000500D83D0CRA9C1FO0000100000007004
000000000000000000101010101012C00000100000000000000LVOE0000Y
00POAB0100000B473060000068011000004730900000A801200000472130000
2167D030000040202FEQ6@F000006730A00000A17730B0000OAT7DO4000004024

600000402177D0700000402167D08000004027225000070724F000070151 1
0040272710000707D0CCRRA402167D0D00000402167DOEBOOCB42A001330044
800000114141417280F00000A26027B050000046F 1000000A00027B06000004(
A8014000004027B0100000416FE010B072C30281200000A007E170000042C07
ABD281600000ADEO00O20B8880000281700000A007E1800000A0A0000000000(
B0700000416FEQ10A062COEQ27C08000004250B074A17D654000017281700004
2AB000O 902167D0700000402

Yo Yo Voot e} oo Ve oY Ra Lo L N Yoo Yo o Vo) o

Figure 1: PE File Encoded as Text and Embedded in .NET Code

This encoded string is also visible in the debug data returned by YARA on the command line.
The "-D" command line switch shows all the data that any loaded modules have available ~.
This is an extremely powerful feature for building rules because one can essentially see what
YARA sees in a file and use that to build conditions for your new rules. The output from this
command line switch when applied to the .NET sample above is shown in Figure 2. The
string with the encoded payload is highlighted.

number_of_field_offsets = YR_UNDEFINED
field_offsets
number_of_constants = YR_UNDEFINED
constants
typelib = "@4e43d4c—9caB-4babk-b3e2-326b17877a6"
number_of_user_strings = 13
user_strings
[0] = "L\x@00\x00a\x00d\xe0"
[1] E\x@0n\x0@08t\x80r\x80y\x00P\x800\x801i\x00Bn\x00t\x00"
[2] N\x@00\x@08t\x80h\x801i\x88n\x80g\x00"
[3] I\x@en\xeev\x000\x00k\x00e\x08"
[4] 6\x04~\x82\x8206\x04~\x82J1\xafe\x820\xd4k\x810\xT4~QOKQDO~\x82\x920\x880uBNIML\x1d\x8dDOQOFBTE\x820J1DBDB<\x8d"

[51 \xf6\x8b\x910\xf6\xBb\x14\6\x04\x900d0\x09TFO\xafeadMa<\x8d>T\x7feDOo0\xf6\x8bJ1\xd4kF\x8c_1Hef@o0\xf6\x8b\xb7_\x90@\x910J0"

[6] = "~@/\x04<\x8d\xd4k\x868>THO{OuBdO~B\x886F\x8cDOH1~\x82\xb7_QBF@\x8c0_0\x7f0~\x82f8\x7f0\x820C1~\x82F\x8cJ1"
[7] = "\x910KQ/\x8410\x7F\x89\xf6\x8b\x1d\x8d\x888\x860\x7T0\x900\x980\xf6\x8b>T\x7fOuBIe<\x8dKQ_0T8\x880D0\x910\xd4k\xd4kKB\x7f@\xdbk\xes6T
~\x82_06\x84\xf6\x8bal\x1d\x8d\x810KQ\x7T\x8900\x880FB\x920Q0\xb7_\x8c0\x920<\x8d\x89Ta@ad\x89TI1~\x82\x810FBKQMO\x14\\x820F\x8c00de\x@9T~8\x91ede\x7f\x89\
x920\x880{0D\x04\x880KE\x7f\x89C1_1Q0~06\x04"

[8] = "\x920\x7f\x89a0_0D0/\x04fOHO\xd4k\x820\xf6\x8b<\x8d~\x82M1~\x82_@N100C1\x14\\x910Q0\xb7_\xf4~{0~0~\x82C1~\x82"

[9] = "de\xfé6\xBb\xafe\xf6\x8b_0F\x8cKQd@D\x@4<\x8d\x918N1IM1u@\x91008\x920\x14\FO\x8bB0B_0\xebT\x818\xafe\x810\x880~\x82J1"

[18] = "\xafeMB\x9806\x046\x04\x7f0/\x04D0\x1d\x8dF\x8cD@\x7f8\x988\xb7_F08/\xB400\x14\F\x8cKQ\x8b0\x810\x926~\x82\x14\M1\x8cB~\x826\xB4~\x8
on

[11] = "4\x00D\x005\x00A\x0089\ 800\x000\x000\x000\x003\x080\x000\x800\x000\x0008\x000\x000\x004\x000\x000\x000\x000\x000\x800\x00F\x00F\x00F
\x@8F\x000\x00€ v22alvanal vaoRl vaael vaaalvaaal ppo\x000\x000\x000\x000\x000\x000\x0008\x000\x000\x000\x000\x004\x000\Xx000\x000\x000\x000\x000\x000\x0002\x000
\x000\x000\x800\x000\x000\x000\x000\x000\x0002\x000\x000\x000\x000\x000\x000\x000\x000\x02020\x000\x000\x000\x000\x000\x000\x000\x000\x000\x000\x000\x000\x000

Figure 2: Debugging Output from YARA's Dotnet Module

As can be seen in the debugging output, the string is interspersed with null bytes, therefore
these must be included when building the regular expression. Therefore, the characters to be
used in the regular expression are the following.

4/12

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig1_embedded_rat.jpg
https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig2_yara_debug.jpg

4 \x00 D \x00 5 \x00 A \x00

Using these characters, the base of the regular expression is the following.
/4\x00D\x005\x00A\x00/

In addition to the above, two constraints can be included to reduce false positives. First, the
carrot metacharacter "A" is added as the first character in the regex to make sure that only
matches at the beginning of the string are possible. Second, a dot wildcard that matches any
character with a repetition of 186 or more times is added to the end of the regular
expression. The number chosen here for the repetition is based on research done on the
smallest possible PE file with that size being 97 bytes &. This number is doubled because of
the interspersed null bytes and the four characters of the PE magic number along with its
accompanying null bytes are subtracted from the total.

186=(2*97)-8
Putting these parts together, the regular expression is the following.
/*4\x00D\x005\x00A\x00.{186,}/

Next we need to account for capitalization. Some of the samples use an all lowercase
alphabet to encode the embedded PE file. To account for that, two small character sets must
be used in place of the "D" and "A" characters in the regular expression. After making this
change, the regular expression is the following.

/"4\x00[dD]\x005\x00[aA]\x00.{186,}/

Finally, this regular expression needs to be applied to each of the user strings that YARA's
dotnet module parses out of a file. With the release of YARA 4.0, the syntax for iterating over
this type of structure is really simple and easy to use 2. Since the user strings are a zero-
based array, one can iterate over them directly. The condition that iterates over each entry in
this array and applies the regular expression to each entry in the array is the following.

for any str in dotnet.user_strings : (
str matches /*4\x00[dD]\x005\x00[aA]\x00.{186,}/

)

Putting this all together yields the YARA rule shown in Figure 3. This rule is provided at the
end of the blog.

5/12

import "dotnet"

rule DotNet_EmbeddedPE
{
meta:
author = "Malware Utkonos"
date = "2021-91-18"
description = "This detects a PE embedded in a .NET executable."
condition:
for any str in dotnet.user_strings : (str matches /~4\x00[dD]\x005\x00[aA]\x00.{186,}/)

Figure 3: YARA Rule to Match Files with an Embedded PE Executable
If one is using an older version of YARA, the following syntax achieves the same results.

for any i in (0..dotnet.number_of user_strings-1) : (
dotnet.user_strings[i] matches
/*4\x00[dD]\x005\x00[aA]\x00.{186,}/
)
Running this rule as a retro hunt in the Titanium Platform results in thousands of files that are
detected as malicious or suspicious with very few files that are undetected. The hunting
results are shown in Figure 4.

& DotNet_EmbeddedPE rocaL Y croun [RreTro ﬁ ® 1.58K 97 e5 e0 =
Allrules w
File size File type
I 1 <1MB I | Unknown
. [r— I PE/Net Exe
amples
1 6 84/1 6 84 g I <100)5 I S PE/ Nt Dl
/ ’ I <G50 r—————T

] >=650MB I other formats...
Filtered by: @& shored private local @R local cloud cloud-retro

L 2N Match Time Threat Name Rule Format Files Size
B o 20200 ; -
10:23UTC yteCode-MSIL.Trojan.l... ¢51d97e76b0183918504533ffdc05b06bae420...DotNet_EmbeddedPE PE/.Net DIl 1 11MB =
8 o S 3b5...DotNet_EmbeddedPE PE/NetDl 1 501KB =
8 OLIED8 Win32 Malware Generic ... DotNet_EmbeddedPE PE/NetBxe 6 2105KB =
20210208 : =
B o L% ByteCode-MSIL Trojan.V... eabl21c2(f6540/949a7560bdd0dbIc 789524... DotNet_EmbeddedPE PE/NetExe 2 4825KB =
E 2021-02-08 i —
[] 09:49 UTC ByteCode-MSIL. Trojan.V...e9d9ac3900995ff64ed2385fbcf3c7615832e... DotNet_EmbeddedPE PE/NetExe 3 482.5KB =
E 2021-02-08 —_
[] 03.09 UTC ByteCode-MSIL.Backdo... fa70a435283c6e52fe2babB38267616fb7285...DotNet_EmbeddedPE PE/NetExe 17 648KB =
B e 028 byteCode-MSIL Trojan... 3272857¢763ec6e5d568a87d4ael4118a5ba... DotNet_EmbeddedPE PE/NetBxe 14 19MB =

Figure 4: YARA Retro Hunting Results

One question to ask when presented with good results like this is whether this technique is
used in legitimate software. According to a question of how to include a windows DLL in a

NET project posted on StackOverflow, this data should be packaged as a resourcel?. The
technique analyzed in these samples is definitely non-standard.

6/12

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig3_yara_rule.jpg
https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig4_hunting_results.jpg

Static Extraction

The next step is to extract all the embedded payloads from all these files and see what is
there. To do this, a fascinating feature of the yara-python package is used: the
modules_callback parameter of a YARA rule match object 11. The beauty of this parameter is
that it allows a function with whatever code one wants to run to be executed if a rule
matches. Inside that function, the data returned from a YARA module is made available to
the function in the form of a data dictionary. The specific callback function used to extract
many of the payloads from the hunting results dataset is shown in Figure 5.

(data):
user_string in datal'user_strings']:
" re.match(b'4\x00[dD]\x005\x00 [aA]\x00', user_string):

binary . fromhex(user_string[::2].decode
ValueError:

sha256 ib.sha2
(working. joinpath(sha256),
fh.write(binary)
yara. CALLBACK_CONTINUE

return yara.CALLBACK_CONTINUE

Figure 5: Callback Function to Extract Payloads

This callback function extracts the very most basic form of encoding encountered in these
files. There are additional obfuscation techniques observed in the dataset where additional
character replacements are required to recover the payload in its original form. These
additional techniques will be examined in a future blog post, but many of the resulting
extractions from these techniques are included in the IOC data provided below.

Correcting the Record

After as many files as can be extracted with the python callback function as possible have
been analyzed along with their parent loaders, the resulting analysis dataset is loaded into
an Elasticsearch instance for easier analysis. Sorting the parent loaders by the threat level
reveals a few files with a zero score. The example shown in Figure 6 is a really old file, so
the detection may be stale.

7/12

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig5_callback_func.jpg

Time

Jul 3, 2011 @ 09:04:00.000

Malware Type

Loader

= Expanded document

Table

t

JSON

Cluster ID

Compile Timestamp
Corrupted
Exiftool.ExifToolVersion
Exiftool.FileType
Exiftool.FileTypeExtension
Exiftool.MIMEType

File Size

File Type

Filename

Cluster ID

ReversingLabs.Threat Name

12a471e9-5acf-46082-a521-381b75589201 -

12a471e9-5acf-4602-a521-381b75509201
Aug 4, 2808 @ 22:208:22.800

false

12.16

Win32 EXE

exe

application/octet-stream

215,552

Win32 EXE

b669280fe2496b5aaa72e6de2fae2191b212¢237f14e40852236ec2aeBeddbfba

First Seen

Jul 3, 2011 @ 99:84:00.000

Import Hash
Imports.mscoree.dll
MD5

MIME Type

Magic

Malware Type

Reversinglabs.Classification Reason

ReversinglLabs.Report Link

f34d5f2d4577ed6d9ceec516c1f5a744

1

7b5d8agc36bdfedeaceec88956267fb2

application/x-dosexec

PE32 executable (GUI) Intel 88386 Mono/.Net assembly, for MS Windows
Loader

Cloud

https://a100@.reversinglabs.com/639bcc9b9ec6a9c480f9531aead93430f7c7122¢

ReversinglLabs.Threat Level

2]

Reversinglabs.Threat Name
Reversinglabs.Threat Status

ReversinglLabs.Trust Factor

Known

Figure 6: Zero Threat Level on Very Old File

ReversingLabs.Threat Level

a

Running this file in a sandbox shows that it is some type of hacking tool and definitely
something that one would consider at least suspicious if not malicious. A screenshot of this
sandbox session is shown in Figure 7.

8/12

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig6_no_detection.jpg

< sA Exploiter wl.beta by sasquatch - waww.securestate.com

— X
General Binary Paploads Blind SOL Fuzzlist Generator Proxy About _

Injection Info

Actually Exploit{JRL Required

Figure 7: Hacking Tool User Interface in Sandbox

Therefore, the Titanium Platform provides a way to correct the record and freshen an old
analysis result such as this. To do this, open the file in the A1000, and click the "Reanalyze"
button. This button is shown in Figure 8. As can be seen also in Figure 8, the threat level is
now shown to be 2 rather than zero.

9/12

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig7_hacking_tool.jpg

AEVERSING | A1000
LABS

Dashboard

Submissions

Search

Alerts Yara Tags Feeds Helpv &

Summary of Analysis

Preview Sample

B 639bcc9b9ec6a9c480f9531ae...

Size: 210.5KB

Type: PE/ Net Exe

Format: --

Threat: @ Win32.Malware.Generic
First seen (cloud): 2011-07-0313:04 UTC
Last seen (local): 2021-03-09 18:33 UTC
User uploads: 1

File Analysis Detail

E Summary

* ReversinglLabs Analysis
* Integrations Analysis

* Malware Description

* MITREATT&CK

* Timeline

e

Static Analysis
AL TitaniumCore

Info

Application (PE)
Indicators

ATT&CK
Classification
Security
Interesting Strings
Strings

Tags

Extracted Files (10)
Preview Sample
File Visualization

VoV

L N)

B
1

«SUSPICIOUS

639bcc3b9ec6adcAB0f531aeads34307cTI22c

9

FILETYPE: PE/ Net
Exe

FORMAT: -

° SIZE: 2105 KB

THREAT

TYPE

Malware

SEVERITY 2/5

REASON

INTELLIGENCE

CLASSIFICATION

Cloud Reputation

® Q@

@ CLOUD THREAT

CREATE PDF ACTIONS

THREAT NAM

MULTI-SCANNER
COUNT

MITRE ATT&CK
FRAMEWORK

Collection al

Defense Evasion a

See Full Details> 2

MD5 7b5dBadc36bdf6deaceec889I56267fb2
SHAL 639bcc9Ib9ec6adcd80£9531aead93430£7c7122¢
SHA256

v Show More Hashes

b669280fe2496b5aaa72eb6de2fae2191b212c237£f14e4052236ec2aeled06fba

¥ ReversinglLabs Analysis

ANALYSIS METHOD

lE) Static Analysis

) Cloud Threat Intelligence
PREVIEW

AL Cloud Sandbox

Figure 8: Reanalyze Sample

General Analysis

ANALYSIS RESULT

Suspicious

Suspicious

® Malicious
Does not impact final classification

OVERRIDE

ACTION

REANALYZE

LAST ANALYSIS TIME
2021-03-0918:33 UTC

2021-02-08 21:24 UTC

2021-03-0918:40 UTC

As mentioned above, there are a few files that use more complex obfuscation techniques in
addition to the embedding analyzed here. Even with these files excluded, a group of 1,641
loaders and their corresponding payloads are identified. A few files from this dataset along
with the timeframe of the results from 2011 to now is shown in Figure 9.

Count

Time

1,841 hits

G Reset search

Jul1, 2011 @ 00:00:00.000 - Feb 8, 2021 @ 19:26:53.268 Auto i

SHA1 SHA256

FirstSeen per 30 days

Feb 8, 2621 @ 15:29:08,000 2!

27571

Feb 8, 2021 & 15:28:55.800 508

2265f1899c 2bbS7 Ff12beb786

Feb 8, 2621 @ 15:28:57.000 cB65

Feb 8, 2621 & 15:28:54.800 df6061bb5c74

37b377e811

17b657818b3748330

ClusterID

881baep3-c9a9-450b-8982-echfd1dBI96T

41052520~ 1b88-4d5f-bIca-ddaz fboched3

Malware Type RoversingLabs.Threat Name

Payload ByteCode-MSIL. Trojan.DarkLoader

Payload ByteCode-MSIL. Trojan .Generic

7d8bfdbh27a030df3

a9c81583

Tebeded6o T 4

Feb 8, 2621 @ 15:28:52.800 ddebd37b11b1b81

1b417267

=

-

143

adbar

3bcobbe3-3Ffb-4630-Obbe-0ad5111a21b8

£-93bd-F7dcb679613f Payload ByteCode-MSIL. Trojan.DarkLoader

Payload ByteCode-MSIL.Trojan.DarkLoader

919577

111c783chbe 13

g

Payload ByteCode-MSIL.Trojan.AgentTesla

Feb 8, 2021 & 15:28:47.080

6c45b967119 ‘f5a7eb30b

Figure 9: Extraction Results

Payload D0S. Backdoor Bladabhindi

10/12

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig8_reanalyze.jpg
https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig9_extraction_results.jpg

The cluster IDs shown above are assigned per unique payload to the payload and each of
the unique parent files that have the same embedded payload. These cluster IDs are
randomly generated UUIDs per payload. The full dataset including the cluster data and threat
names is provided at the end of the blog. The breakdown of the embedded files by file type
according to libmagic is shown in Figure 10 with the files fairly evenly split between DLLs and
EXEs.

DLL

Figure 10: Libmagic Analysis of Embedded Payloads

Conclusion

The technique of encoding an executable as a text string using various encoding techniques
is widely used by the adversaries who post the resulting strings on pastebin-like sites. It is
interesting that some of the same string encoding techniques used by these adversaries to
hide payloads on download sites across the internet are also found inside the delivery
binaries. This obfuscation can definitely provide some cover from detection. To identify
binaries that leverage this technique, YARA's dotnet module provides the best methods
available. What was shown above is just the most simple and basic encoding technique.
Further research into other encodings such as Base64 will be the topic of future blog posts.

YARA Rule

import "dotnet"

11/12

rule DotNet_EmbeddedPE
{
meta:
author = "Malware Utkonos"
date = "2021-01-18"
description = "This detects a PE embedded in a .NET executable."
condition:
for any str in dotnet.user_strings : (str matches
/*4\x00[dD]\x005\x00[aA]\x00.{186.,}/)

eferences:

. https://blog.reversinglabs.com/blog/rats-in-the-library,

. https://twitter.com/ScumBots

. https://yara.readthedocs.io/en/stable/modules/dotnet.html#c.user_strings

. 0efe600018208dd66107727362dd8f7498813755ce14f76fa19f0964c654e14a

. https://malpedia.caad.fkie.fraunhofer.de/details/win.revenge_rat

. https://github.com/dnSpy/dnSpy.

. https://yara.readthedocs.io/en/stable/commandline.html#cmdoption-yara-d

. https://webserver2.tecgraf.puc-rio.br/~ismael/Cursos/YC++/apostilas/win32_xcoff _pe/tyne-
example/Tiny%20PE.htm

9. https://yara.readthedocs.io/en/stable/writingrules.html#iterators

10. https://stackoverflow.com/questions/72264/how-can-a-c-windows-dll-be-merged-into-a-c-
sharp-application-exe

11. https://yara.readthedocs.io/en/stable/yarapython.html#yara.Rules

O NOoO O WOWDN -~ T

MORE BLOG ARTICLES

12/12

https://blog.reversinglabs.com/blog/rats-in-the-library
https://twitter.com/ScumBots
https://yara.readthedocs.io/en/stable/modules/dotnet.html#c.user_strings
https://malpedia.caad.fkie.fraunhofer.de/details/win.revenge_rat
https://github.com/dnSpy/dnSpy
https://yara.readthedocs.io/en/stable/commandline.html#cmdoption-yara-d
https://webserver2.tecgraf.puc-rio.br/~ismael/Cursos/YC++/apostilas/win32_xcoff_pe/tyne-example/Tiny%20PE.htm
https://yara.readthedocs.io/en/stable/writingrules.html#iterators
https://stackoverflow.com/questions/72264/how-can-a-c-windows-dll-be-merged-into-a-c-sharp-application-exe
https://yara.readthedocs.io/en/stable/yarapython.html#yara.Rules

