
1/12

DotNET Loaders
blog.reversinglabs.com/blog/dotnet-loaders

Threat Research | March 12, 2021

https://blog.reversinglabs.com/blog/dotnet-loaders
https://blog.reversinglabs.com/blog/tag/threat-research

2/12

Blog Author
Robert Simmons, Independent malware researcher and threat researcher at
ReversingLabs. Read More...

https://blog.reversinglabs.com/blog/author/robert-simmons

3/12

Many families of remote access trojan (RAT) are .NET executables. As was observed in the
blog post from one year ago about RevengeRAT among others, much of this malware is
delivered in another .NET executable with the payload encoded as an embedded text string.
These RATs when they're encoded as text and posted to pastebin like sites are tracked by
Scumbots . An additional method of hunting for this type of dropper or loader is to leverage
the dotnet module in YARA. This module is a parser for .NET executables and presents the
parsed components that it finds as a dataset inside YARA that can then be leveraged in the
conditions section of a rule. In the following analysis, this parsed dataset and the user strings
 entry in particular are used to identify .NET executables that have another PE executable

encoded as one of those user strings.

Making the Rule

The first step is to examine one of the .NET loaders in question . The examples here show a
sample that delivers RevengeRAT according to Malpedia analysis of the payload contained
within it. This embedded and encoded PE file can be seen in the screenshot of the loader as
analyzed by dnSpy shown in Figure 1.

1

2

3

4

5

6

4/12

Figure 1: PE File Encoded as Text and Embedded in .NET Code

This encoded string is also visible in the debug data returned by YARA on the command line.
The "-D" command line switch shows all the data that any loaded modules have available .
This is an extremely powerful feature for building rules because one can essentially see what
YARA sees in a file and use that to build conditions for your new rules. The output from this
command line switch when applied to the .NET sample above is shown in Figure 2. The
string with the encoded payload is highlighted.

Figure 2: Debugging Output from YARA's Dotnet Module

As can be seen in the debugging output, the string is interspersed with null bytes, therefore
these must be included when building the regular expression. Therefore, the characters to be
used in the regular expression are the following.

7

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig1_embedded_rat.jpg
https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig2_yara_debug.jpg

5/12

Using these characters, the base of the regular expression is the following.

 /4\x00D\x005\x00A\x00/

In addition to the above, two constraints can be included to reduce false positives. First, the
carrot metacharacter "^" is added as the first character in the regex to make sure that only
matches at the beginning of the string are possible. Second, a dot wildcard that matches any
character with a repetition of 186 or more times is added to the end of the regular
expression. The number chosen here for the repetition is based on research done on the
smallest possible PE file with that size being 97 bytes . This number is doubled because of
the interspersed null bytes and the four characters of the PE magic number along with its
accompanying null bytes are subtracted from the total.

 186 = (2 * 97) - 8

Putting these parts together, the regular expression is the following.

 /^4\x00D\x005\x00A\x00.{186,}/

Next we need to account for capitalization. Some of the samples use an all lowercase
alphabet to encode the embedded PE file. To account for that, two small character sets must
be used in place of the "D" and "A" characters in the regular expression. After making this
change, the regular expression is the following.

 /^4\x00[dD]\x005\x00[aA]\x00.{186,}/

Finally, this regular expression needs to be applied to each of the user strings that YARA's
dotnet module parses out of a file. With the release of YARA 4.0, the syntax for iterating over
this type of structure is really simple and easy to use . Since the user strings are a zero-
based array, one can iterate over them directly. The condition that iterates over each entry in
this array and applies the regular expression to each entry in the array is the following.

 for any str in dotnet.user_strings : (
 str matches /^4\x00[dD]\x005\x00[aA]\x00.{186,}/

)

Putting this all together yields the YARA rule shown in Figure 3. This rule is provided at the
end of the blog.

8

9

6/12

Figure 3: YARA Rule to Match Files with an Embedded PE Executable

If one is using an older version of YARA, the following syntax achieves the same results.

 for any i in (0..dotnet.number_of_user_strings-1) : (
 dotnet.user_strings[i] matches

 /^4\x00[dD]\x005\x00[aA]\x00.{186,}/
)

Running this rule as a retro hunt in the Titanium Platform results in thousands of files that are
detected as malicious or suspicious with very few files that are undetected. The hunting
results are shown in Figure 4.

Figure 4: YARA Retro Hunting Results

One question to ask when presented with good results like this is whether this technique is
used in legitimate software. According to a question of how to include a windows DLL in a
.NET project posted on StackOverflow, this data should be packaged as a resource . The
technique analyzed in these samples is definitely non-standard.

10

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig3_yara_rule.jpg
https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig4_hunting_results.jpg

7/12

Static Extraction

The next step is to extract all the embedded payloads from all these files and see what is
there. To do this, a fascinating feature of the yara-python package is used: the
modules_callback parameter of a YARA rule match object . The beauty of this parameter is
that it allows a function with whatever code one wants to run to be executed if a rule
matches. Inside that function, the data returned from a YARA module is made available to
the function in the form of a data dictionary. The specific callback function used to extract
many of the payloads from the hunting results dataset is shown in Figure 5.

Figure 5: Callback Function to Extract Payloads

This callback function extracts the very most basic form of encoding encountered in these
files. There are additional obfuscation techniques observed in the dataset where additional
character replacements are required to recover the payload in its original form. These
additional techniques will be examined in a future blog post, but many of the resulting
extractions from these techniques are included in the IOC data provided below.

Correcting the Record

After as many files as can be extracted with the python callback function as possible have
been analyzed along with their parent loaders, the resulting analysis dataset is loaded into
an Elasticsearch instance for easier analysis. Sorting the parent loaders by the threat level
reveals a few files with a zero score. The example shown in Figure 6 is a really old file, so
the detection may be stale.

11

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig5_callback_func.jpg

8/12

Figure 6: Zero Threat Level on Very Old File

Running this file in a sandbox shows that it is some type of hacking tool and definitely
something that one would consider at least suspicious if not malicious. A screenshot of this
sandbox session is shown in Figure 7.

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig6_no_detection.jpg

9/12

Figure 7: Hacking Tool User Interface in Sandbox

Therefore, the Titanium Platform provides a way to correct the record and freshen an old
analysis result such as this. To do this, open the file in the A1000, and click the "Reanalyze"
button. This button is shown in Figure 8. As can be seen also in Figure 8, the threat level is
now shown to be 2 rather than zero.

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig7_hacking_tool.jpg

10/12

Figure 8: Reanalyze Sample

General Analysis

As mentioned above, there are a few files that use more complex obfuscation techniques in
addition to the embedding analyzed here. Even with these files excluded, a group of 1,641
loaders and their corresponding payloads are identified. A few files from this dataset along
with the timeframe of the results from 2011 to now is shown in Figure 9.

Figure 9: Extraction Results

https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig8_reanalyze.jpg
https://blog.reversinglabs.com/hubfs/Blog/DotNET_Loaders/fig9_extraction_results.jpg

11/12

The cluster IDs shown above are assigned per unique payload to the payload and each of
the unique parent files that have the same embedded payload. These cluster IDs are
randomly generated UUIDs per payload. The full dataset including the cluster data and threat
names is provided at the end of the blog. The breakdown of the embedded files by file type
according to libmagic is shown in Figure 10 with the files fairly evenly split between DLLs and
EXEs.

Figure 10: Libmagic Analysis of Embedded Payloads

Conclusion

The technique of encoding an executable as a text string using various encoding techniques
is widely used by the adversaries who post the resulting strings on pastebin-like sites. It is
interesting that some of the same string encoding techniques used by these adversaries to
hide payloads on download sites across the internet are also found inside the delivery
binaries. This obfuscation can definitely provide some cover from detection. To identify
binaries that leverage this technique, YARA's dotnet module provides the best methods
available. What was shown above is just the most simple and basic encoding technique.
Further research into other encodings such as Base64 will be the topic of future blog posts.

YARA Rule

import "dotnet"

12/12

rule DotNet_EmbeddedPE
{
 meta:
 author = "Malware Utkonos"
 date = "2021-01-18"
 description = "This detects a PE embedded in a .NET executable."
 condition:
 for any str in dotnet.user_strings : (str matches
/^4\x00[dD]\x005\x00[aA]\x00.{186,}/)

}
References:

1. https://blog.reversinglabs.com/blog/rats-in-the-library
2. https://twitter.com/ScumBots
3. https://yara.readthedocs.io/en/stable/modules/dotnet.html#c.user_strings
4. 0efe600018208dd66107727362dd8f7498813755ce14f76fa19f0964c654e14a
5. https://malpedia.caad.fkie.fraunhofer.de/details/win.revenge_rat
6. https://github.com/dnSpy/dnSpy
7. https://yara.readthedocs.io/en/stable/commandline.html#cmdoption-yara-d
8. https://webserver2.tecgraf.puc-rio.br/~ismael/Cursos/YC++/apostilas/win32_xcoff_pe/tyne-
example/Tiny%20PE.htm
9. https://yara.readthedocs.io/en/stable/writingrules.html#iterators
10. https://stackoverflow.com/questions/72264/how-can-a-c-windows-dll-be-merged-into-a-c-
sharp-application-exe
11. https://yara.readthedocs.io/en/stable/yarapython.html#yara.Rules

MORE BLOG ARTICLES

https://blog.reversinglabs.com/blog/rats-in-the-library
https://twitter.com/ScumBots
https://yara.readthedocs.io/en/stable/modules/dotnet.html#c.user_strings
https://malpedia.caad.fkie.fraunhofer.de/details/win.revenge_rat
https://github.com/dnSpy/dnSpy
https://yara.readthedocs.io/en/stable/commandline.html#cmdoption-yara-d
https://webserver2.tecgraf.puc-rio.br/~ismael/Cursos/YC++/apostilas/win32_xcoff_pe/tyne-example/Tiny%20PE.htm
https://yara.readthedocs.io/en/stable/writingrules.html#iterators
https://stackoverflow.com/questions/72264/how-can-a-c-windows-dll-be-merged-into-a-c-sharp-application-exe
https://yara.readthedocs.io/en/stable/yarapython.html#yara.Rules

