
1/18

Joakim Kennedy, Avigayil Mechtinger March 10, 2021

New Linux Backdoor RedXOR Likely Operated by
Chinese Nation-State Actor

intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/

Get Free Account

Join Now

We discovered a new sophisticated backdoor targeting Linux endpoints and
servers

Based on Tactics, Techniques, and Procedures (TTPs) the backdoor is believed
to be developed by Chinese nation-state actors

The backdoor masquerades itself as polkit daemon. We named it RedXOR for its
network data encoding scheme based on XOR. The malware was compiled on
Red Hat Enterprise Linux

We provide recommendations for detecting and responding to this threat below

Monitor your cloud environments for RedXOR and other Linux malware. Protect 10 servers
for free with the Intezer Protect community edition.

https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/
https://analyze.intezer.com/
https://protect.intezer.com/signup

2/18

Intro

2020 set a record for new Linux malware families. New malware families targeting Linux
systems are being discovered on a regular basis. Backdoors attributed to advanced threat
actors are disclosed less frequently. We have discovered an undocumented backdoor
targeting Linux systems, masqueraded as polkit daemon. We named it RedXOR for its
network data encoding scheme based on XOR. Based on victimology, as well as similar
components and Tactics, Techniques, and Procedures (TTPs), we believe RedXOR was
developed by high profile Chinese threat actors. The samples, which have low detection
rates in VirusTotal, were uploaded from Indonesia and Taiwan, countries known to be
targeted by Chinese threat actors. The samples are compiled with a legacy GCC compiler on
an old release of Red Hat Enterprise Linux, hinting that RedXOR is used in targeted attacks
against legacy Linux systems. During our investigation we experienced an “on and off”
availability of the Command and Control (C2) server indicating that the operation is still
active.

Connections to Chinese Threat Actors

We uncovered key similarities between RedXOR and previously reported malware
associated with Winnti umbrella threat group. These malware are PWNLNX backdoor and
XOR.DDOS and Groundhog, two botnets attributed to Winnti by BlackBerry. The below
samples can be used for reference: Similarities between the samples:

1. Use of old open-source kernel rootkits: RedXOR uses an open-source LKM rootkit
called “Adore-ng” to hide its process. Based on a FireEye report Winnti used this rootkit
in their “ADORE.XSE” Linux backdoor. Embedding open-source LKM rootkits is a
common Winnti technique. The group has been documented using Azazel and
Suterusu.

1. The CheckLKM function name used by RedXOR has also been used in PWNLNX and
XOR.DDOS.

1. Provides the operator with a pseudo-terminal: RedXOR uses Python pty shell by
importing the python pty library. PWNLNX implements the pty shell function in c.

https://www.intezer.com/blog/cloud-security/2020-set-record-for-new-linux-malware-families/
https://linux.die.net/man/8/polkitd
https://www.blackberry.com/us/en/pdfviewer?file=/content/dam/blackberry-com/asset/enterprise/pdf/direct/report-bb-decade-of-the-rats.pdf
https://github.com/yaoyumeng/adore-ng
https://content.fireeye.com/apt-41/rpt-apt41/
https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
https://www.blackberry.com/us/en/pdfviewer?file=/content/dam/blackberry-com/asset/enterprise/pdf/direct/report-bb-decade-of-the-rats.pdf#MKTG%2020-0089%20Decade_the_RAT%27s_Report.indd%3A.176091%3A522
https://docs.python.org/3/library/pty.html

3/18

Figure 1: Python pty shell used in RedXOR
1.

1. Encoding network with XOR: The backdoor encodes its network data with a
scheme based on XOR. Encoding network data with XOR has been used in
previous Winnti malware including PWNLNX.

1. Persistence service name: As part of its persistence methods, RedXOR attempts to
create a service under rc.d. The developer added “S99” before the name of the service
to lower its priority and make it run last on system initiation. This technique was used in
XOR.DDOS and Groundhog samples where the malware developer added “S90” to the
service name.

4/18

1. Main functions flow: PWNLX and RedXOR have a main function which is in charge of
initialization. In both backdoors, the main function calls another function which is in
charge of the main logic. The main logic function names are main_process in RedXOR
and MainThread in PWLNX. Both main functions daemonize the process to detach
from the terminal and run in the background.

1. XML for file listing: RedXOR’s directory function and PWNLNX’s getfiles function are
both in charge of directory listing. Their code flow implementation is different, however,
as both malware send the directory listing as an XML file to the C2 server. Figure 2
shows the XML structure used in PWNLNX and RedXOR. The file’s data used in both
functions are: path, name, type, user, permission, size, time.

Figure 2: The XML structure used by PWNLNX’s getfiles function and RedXOR’s directory
function

1. Legacy Red Hat compilers: RedXOR and PWNLNX were both compiled with a Red
Hat 4.4.7 compiler. This compiler is the default GCC compiler on RHEL6.

1. Chown similarity: Both PWNLNX and RedXOR change the file’s user and group
owner to a large ID. The same technique has been used by the XOR.DDoS malware
as referenced in the analysis by MalwareMustDie.

Figure 3: Similarity between PWNLNX and RedXOR of the UID and GID used with
“lchown” function call

1. Overall flow and functionalities: The overall code flow, behavior, and capabilities of
RedXOR are very similar to PWNLNX. Both have file uploading and downloading
functionalities together with a running shell. The network tunneling functionality in both
families is called “PortMap”.

1. Unstripped ELF binaries: Malware developers will often tamper with a file’s symbols
and/or sections, making it harder for researchers to analyze them. However, RedXOR
and various Winnti malware, including PWNLNX and XOR.DDOS, are unstripped.

Technical Analysis

https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html

5/18

The samples are both unstripped 64-bit ELF files called po1kitd-update-k. Uploaded to
VirusTotal from Taiwan and Indonesia, they are low detected at the time of this writing.

Figure 4: 2bd6e2f8c1a97347b1e499e29a1d9b7c in VirusTotal

Malware Installation

Upon execution RedXOR forks off a child process allowing the parent process to exit. The
purpose is to detach the process from the shell. The new child determines if it has been
executed as the root user or as another user on the system. It does this to create a hidden
folder, called “.po1kitd.thumb”, inside the user’s home folder which is used to store files
related to the malware. The malware creates a hidden file called “.po1kitd-2a4D53” inside
the folder. The file is locked to the current running process, seen in Figure 5, essentially
creating a mutex. If another instance of the malware is executed, it also tries to obtain the
lock but ultimately fails. Upon this failure the process exits.

https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/
https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/ELF%20files%20called%20%3Cem%3E%3Cstrong%3Epo1kitd-update-k.%3C/strong%3E%3C/em%3E%C2%A0Uploaded%20to%20VirusTotal%20from%20Taiwan%20and%20Indonesia,%20they%20are%20low%20detected%20at%20the%20time%20of%20this%20writing.%0A%0A%3Ccenter%20style=
https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/ELF%20files%20called%20%3Cem%3E%3Cstrong%3Epo1kitd-update-k.%3C/strong%3E%3C/em%3E%C2%A0Uploaded%20to%20VirusTotal%20from%20Taiwan%20and%20Indonesia,%20they%20are%20low%20detected%20at%20the%20time%20of%20this%20writing.%0A%0A%3Ccenter%20style=

6/18

Figure 5: The malware creates a “mutex” file locking it to the process ID After the malware
creates the mutex, it installs itself on the infected machine. As shown in Figure 6, the
malware looks up its current path and moves the binary to the created folder. It hides the file
by naming it “.po1kitd-update-k”.

https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/ELF%20files%20called%20%3Cem%3E%3Cstrong%3Epo1kitd-update-k.%3C/strong%3E%3C/em%3E%C2%A0Uploaded%20to%20VirusTotal%20from%20Taiwan%20and%20Indonesia,%20they%20are%20low%20detected%20at%20the%20time%20of%20this%20writing.%0A%0A%3Ccenter%20style=

7/18

Figure 6: Malware moves the binary to the hidden folder “po1kitd.thumb” created earlier. It
first tries to use the “rename” function provided by libc. If this fails, it executes an “mv” shell
command via the “system” function After installing the binary to the hidden folder, the
malware sets up persistence via “init” scripts. The following files are created after
executing the malware on boot:

/usr/syno/etc/rc.d/S99po1kitd-update.sh
/etc/init.d/po1kitd-update
/etc/rc2.d/S99po1kitd-update

The malware checks if the rootkit is active by creating a file and removing it. Then, the
malware compares the “saved set-user-ID” of the process to the user ID. If they don’t match,
the rootkit is enabled. If they match, it looks to see if the user ID is “10”. If this is the case, the
rootkit is enabled. This logic is shown in Figure 7.

https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/ELF%20files%20called%20%3Cem%3E%3Cstrong%3Epo1kitd-update-k.%3C/strong%3E%3C/em%3E%C2%A0Uploaded%20to%20VirusTotal%20from%20Taiwan%20and%20Indonesia,%20they%20are%20low%20detected%20at%20the%20time%20of%20this%20writing.%0A%0A%3Ccenter%20style=

8/18

Figure 7: Logic used by RedXOR to check if the rootkit is enabled The “CheckLKM” logic is
almost identical to the “adore_init” function in the “adore-ng” rootkit. Afore-ng is a Chinese
open-source LKM (Loadable Kernel Module) rootkit. This technique allows the malware to
stay under the radar by hiding its processes. The code for the init function is shown in Figure

https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/ELF%20files%20called%20%3Cem%3E%3Cstrong%3Epo1kitd-update-k.%3C/strong%3E%3C/em%3E%C2%A0Uploaded%20to%20VirusTotal%20from%20Taiwan%20and%20Indonesia,%20they%20are%20low%20detected%20at%20the%20time%20of%20this%20writing.%0A%0A%3Ccenter%20style=
https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/ELF%20files%20called%20%3Cem%3E%3Cstrong%3Epo1kitd-update-k.%3C/strong%3E%3C/em%3E%C2%A0Uploaded%20to%20VirusTotal%20from%20Taiwan%20and%20Indonesia,%20they%20are%20low%20detected%20at%20the%20time%20of%20this%20writing.%0A%0A%3Ccenter%20style=
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/libinvisible.c#L61

9/18

8. Figure 8:

Client authentication code for the adore-ng rootkit

Configuration

The malware stores the configuration encrypted within the binary. In addition to the
Command and control (C2) IP address and port it can also be configured to use a proxy. The
configuration includes a password, as can be seen in Figure 9. This password is used by the
malware to authenticate to the C2 server.

10/18

Figure 9: Configuration options for the malware The configuration values are decrypted by
the “doXor” function. A pseudo-code representation of the function is shown in Figure 10.
The decryption logic is a simple XOR against a byte key. The byte key is incremented by a
constant for each item in the buffer. The only configuration value that is not encrypted is the
server port. The port value is used to derive the key and the adder. The key is derived from
bit shifting the port value eight steps to the right. The constant uses the port value.

11/18

 Figure 10: Decryption logic of the configuration

data. The data is XORed against a key byte that is incremented by a constant for each entry
in the buffer

Communication with the C2

The malware communicates with the C2 server over a TCP socket. The traffic is made to
look like HTTP traffic. Figure 11 shows a pseudo-code representation of the function used by
the malware to prepare data that is to be sent to the C2 server. First, it fills the buffer with null
bytes. The request body is XORed against a key. The malware uses the buffer length as the
key. This value is also passed into the function as the “total_length” argument.

Figure 11: Function for preparing data to be sent to the C2 server The same logic is used to
decrypt the response body from the C2 server. From the response, the malware extracts
“JSESSIONID”, “Content-Length”, “Total-Length” and the response body. The data is added
to a struct with the following layout:
0x0 JSESSIONID as int

0x8 Content-Length as long

0x10 Total-Length as long

0x18 Response body

12/18

The content length is the length of the response body but also used as the key. The total
length value is used as a constant which is added to the key in each iteration. The
JSESSIONID value holds the command ID for the job the C2 wants the malware to perform.

Commands

The C2 server tells the malware to execute different commands via a command code that is
returned in the “JSESSIONID” cookie. The codes are encoded as decimal integers. A full list
of commands supported by the analyzed malware sample are shown in the table below.
They can be grouped into command types. Commands in the 2000 range provide
“filesystem” interaction, 3000 handle “shell” commands, and 4000 handle network tunneling.
Table 1: List of commands supported by the malware

Code Command

0000 System information

0008 Update

0009 Uninstall

1000 Ping

1010 Install LKM

2049 List folder

2054 Upload file

2055 Open file

2056 Execute with system

2058 Remove file

2060 Remove folder

2061 Rename

2062 Create new folder

2066 Write content to file

3000 Start shell

3058 Exec shell command

3999 Close tty

4001 Portmap (Proxy)

13/18

4002 Kill portmap

System Information

When the malware first contacts the C2 server it sends a password encoded in the request
body. The C2 server responds with the command code 0 to collect system information. The
data collected about the system by the malware is listed in the table below. The data is
serialized into a URL query-like string, encrypted and then sent as the request body. Table 2:
Data collected by the malware and sent back to the C2 server

URL key Description Comment

hostip IP Hardcoded to 127.0.0.1

softtype Hardcoded to “Linux”

pscaddr MAC address

hostname Machine name

hosttar Username Possibly “host target”

hostos Distribution Extracted from /etc/issue or /etc/redhat-release

hostcpu Clock speed /proc/cpuinfo

hostmem Amount of memory /proc/meminfo

hostpack Hardcoded to “Linux”

lkmtag Is rootkit enabled

kernel Kernel version Extracted from uname

Figure 12 shows the communication between RedXOR and the C2. The malware sends the
password “pd=admin” and C2 responds with “all right” (JSESSIONID=0000). Next, the
malware sends the system information and the C2 replies with the ping command
(JSESSIONID=1000).

14/18

Figure 12: RedXOR communication with C2

Update Functionality

The malware can be updated by the threat actor. This is performed by sending command
code 8 to the malware. When the malware receives this code the following actions are taken:

The malware opens the mutex file for writing.
It sends a request with the command code 8 and an empty request body to the C2
server.
The response body from the server is written to the mutex file. The response body is
not encrypted.
The lock is released on the mutex file.
The malware executes “chmod” to set the execution flag on the file via the libc system
function.
The malware sleeps and tries to obtain the lock on the file again when it wakes up. If it
fails, it assumes the update was successful, closes the connection to the C2 server and
exits.

15/18

Shell Functionality

The malware has the ability to provide its operator with a “tty” shell. If a shell is requested via
the command code 3000, the malware creates a new thread executing “/bin/sh”. In the new
spawned shell, the malware executes python -c “import pty;pty.spawn(‘/bin/sh’)” to get a
pseudo-terminal (pty) interface. Any shell commands sent to the malware with the command
code of 3058 are executed in the pty and the response is returned to the operator.

Network Tunneling

Network tunneling is enabled by sending the command code 4001 to the malware. As part of
the request, a “configuration” is sent as part of the response body. The configuration consists
of three items separated by a “#” character. The items are: a port to bind to, the IP to connect
to, and a port to connect to. The malware uses a modified version of the open-source project
Rinetd for the tunneling logic. Rinetd is designed to use a configuration file stored on the
machine. To get around this, the malware author has modified the function that parses the
configuration in order to directly take the required values normally found in the configuration
file.

Detection & Response

Detect if a Machine in Your Network Has Been Compromised

Use a Cloud Workload Protection Platform like Intezer Protect to gain full runtime visibility
over the code in your Linux-based systems and get alerted on any malicious or unauthorized
code or commands. Try our free community edition Figure 13 emphasizes an Intezer Protect
alert on a compromised machine. The alert provides additional context about the malicious
code including threat classification (RedXOR), binary’s path on the disk, process tree,
command, and hash.

https://www.intezer.com/intezer-protect
https://protect.intezer.com/signup

16/18

Figure 13: Intezer Protect alerts on RedXOR We also recommend using the IOCs section
below to ensure that the RedXOR process and the files it creates do not exist on your
system.
Intezer Protect defends all types of compute resources—including VMs, containers and
Kubernetes—against the latest Linux threats in runtime. Try our free community edition

Response

If you are a victim of this operation, take the following steps:
1. Kill the process and delete all files related to the malware.
2. Make sure your machine is clean and running only trusted code using a Cloud

Workload Protection Platform like Intezer Protect.

Wrap Up

Linux systems are under constant attack given that Linux runs on most of the public cloud
workload. A survey conducted by Sophos found that 70% of organizations using the public
cloud to host data or workloads experienced a security incident in the past year. Along with
botnets and cryptominers, the Linux threat landscape is also home to sophisticated threats
like RedXOR developed by nation-state actors. RedXOR samples are indexed in Intezer
Analyze so that you can detect any suspicious file that shares code with this malware.

https://149520725.v2.pressablecdn.com/wp-content/uploads/2021/03/pasted-image-0-9.png
https://protect.intezer.com/signup
https://secure2.sophos.com/en-us/content/state-of-cloud-security.aspx
https://www.intezer.com/blog/malware-analysis/looking-back-on-the-last-decade-of-linux-apt-attacks/
https://analyze.intezer.com/families/2eab395c-1d17-4119-b2cc-c92d01fdf285

17/18

Figure 14: RedXOR sample in Intezer Analyze

IoCs

RedXOR

0a76c55fa88d4c134012a5136c09fb938b4be88a382f88bf2804043253b0559f
0423258b94e8a9af58ad63ea493818618de2d8c60cf75ec7980edcaa34dcc919

Network

update[.]cloudjscdn[.]com 158[.]247[.]208[.]230 34[.]92[.]228[].216

Process name

po1kitd-update-k

File and directories created on disk

.po1kitd-update-k .po1kitd.thumb .po1kitd-2a4D53 .po1kitd-k3i86dfv .po1kitd-nrkSh7d6

.po1kitd-2sAq14 .2sAq14 .2a4D53 po1kitd.ko po1kitd-update.desktop S99po1kitd-update.sh

Joakim Kennedy
Dr. Joakim Kennedy is a Security Researcher analyzing malware and tracking threat actors
on a daily basis. For the last few years, Joakim has been researching malware written in Go.
To make the analysis easier he has written the Go Reverse Engineering Toolkit
(github.com/goretk), an open-source toolkit for analysis of Go binaries.

https://analyze.intezer.com/files/0a76c55fa88d4c134012a5136c09fb938b4be88a382f88bf2804043253b0559f

18/18

Avigayil Mechtinger
Avigayil is a product manager at Intezer, leading Intezer Analyze product lifecycle. Prior to
this role, Avigayil was part of Intezer's research team and specialized in malware analysis
and threat hunting. During her time at Intezer, she has uncovered and documented different
malware targeting both Linux and Windows platforms.

