
1/30

March 10, 2021

Monitoring the Software Supply Chain with Azure
Sentinel

techcommunity.microsoft.com/t5/azure-sentinel/monitoring-the-software-supply-chain-with-azure-sentinel/ba-
p/2176463

 Mar 10 2021 08:30 AM

The recent NOBELIUM incident has brought the issue of supply chain security into sharp
focus, particularly that of the software supply chain. In this blog we will look at why it is
important for organizations to monitor their software development, build, and release process
to help secure their own internal software supply chains as well as the those of wider
industry.

Whilst this blog looks specifically at the NOBELIUM related activity as one example, it goes
far beyond this activity to look at other monitoring opportunities in Continuous
Integration/Continuous Deployment (CI/CD) solutions.

This blog uses Microsoft’s security monitoring solution Azure Sentinel, and Microsoft’s cloud
CI/CD solution Azure DevOps as the focus point, however the monitoring principles and
approaches could also be applied to other technology stacks.

Covered in this blog:

Recent history of Software Supply Chain Attacks

https://techcommunity.microsoft.com/t5/azure-sentinel/monitoring-the-software-supply-chain-with-azure-sentinel/ba-p/2176463
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://aka.ms/solorigate

2/30

Importance of Monitoring and Data Collection requirements
How to Monitor via Azure Sentinel for NOBELIUM Activity and Beyond

The Recent History of Software Supply Chain Attacks

Whilst the NOBELIUM incident was the latest high profile software supply chain attack, it is
far from the first such attack; NotPetya and CCleaner attacks were both high profile software
supply chain attack examples. These supply chain attacks have seen threat actors target a
different part of the software development and release process, for different outcomes.

For the NOBELIUM incident, we know from the report from CrowdStrike that attackers
used sophisticated malware to silently inject malicious code into files before building
them, and then covering its tracks.
In the case of NotPetya, it is suspected that attackers compromised a vulnerable server
used to distribute the software and replaced the legitimate code with their compromised
version.
With CCleaner, the exact compromise process is not known but the reporting provided
by Avast shows that attackers compromised several machines including a build server.
Microsoft has previously detected threat actors compromising software packages used
by other software developers to insert malicious code into the final software packages.

The range of attacks here shows that it is important that all organizations conducting
software development invest time and effort into securing their build and release processes.

The Importance of Monitoring

Monitoring and response are critical elements of any security program. When it comes to
software development, build, and release processes monitoring is especially important.

The list of previous attacks targeting these processes show that many processes include
opportunities for attackers, and the fast-paced, collaborative, and innovative nature of
software development can mean that maintaining comprehensive preventative controls is
infeasible. Thankfully for defenders, the data provided by most software development, build,
and release processes presents multiple threat detection opportunities, and organizations
should ensure that effective monitoring is conducted for as many of these opportunities as
possible in order to detect and respond to threats that might target the process.

How to Monitor with Azure Sentinel

Microsoft Azure Sentinel is Microsoft’s scalable, cloud-native, security information event
management (SIEM) and security orchestration automated response (SOAR) solution. Azure
Sentinel allows organizations to easily collect data at cloud scale across all users, devices,

https://www.microsoft.com/security/blog/2017/06/27/new-ransomware-old-techniques-petya-adds-worm-capabilities/?cn=cmV0d2VldA%3D%3D?source=mmpc
https://blog.avast.com/update-to-the-ccleaner-5.33.6162-security-incident
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/?s=09
https://blog.avast.com/new-investigations-in-ccleaner-incident-point-to-a-possible-third-stage-that-had-keylogger-capacities
https://www.microsoft.com/security/blog/2018/07/26/attack-inception-compromised-supply-chain-within-a-supply-chain-poses-new-risks/#:~:text=A%20new%20software%20supply%20chain%20attack%20unearthed%20by,installer%20the%20unsuspecting%20carrier%20of%20a%20malicious%20payload.

3/30

services and locations. This makes it an ideal platform for collecting auditing data from a
wide range of software development, build, and release processes whether it be on-premises
build agents or a cloud hosted CI/CD solution.

Once data is collected into Azure Sentinel it's possible to conduct advanced investigations
into the data, as well as set up proactive detections for future activity. By leveraging this
capability organizations can identify threats targeting their software development, build, and
release process as well as act proactively to identify future threats, allowing them to secure
their internal software supply chains as well as protect consumers further down the supply
chain.

In the following sections we will look first at the monitoring opportunities available for the
specific threat of NOBELIUM before then moving to look at other monitoring opportunities in
CI/CD solutions, focusing on Azure DevOps. Each section will address how to collect the
required data, and how to hunt for activity and establish proactive monitoring for future
threats.

Monitoring Opportunities for NOBELIUM Activity

Due to the reporting of several parties involved in the response to the NOBELIUM attack
including FireEye, CrowdStrike, and SolarWinds we have insight into how the attackers
operated, including at the software build compromise level. Details of the SolarWinds
software compromise SUNSPOT malware can be found in the CrowdStrike report but a
summary of the actions taken by the actor include:

1. Deploy malware on build server, set mutexes and log files locally.
2. Monitor for the build process to start and, when run, check the command line

arguments passed to it indicate the building of targeted software packages.
3. If targeted software is being built, create a backup of the legitimate code files on disk

and replace the target code files with malicious code files.
4. Once build is complete, replace malicious code files with legitimate code from the

backups created.

These details allow for the identification of two key monitoring opportunities:

1. Detect the initial deployment of malware onto build servers.
2. Modification of source code files during build process execution.

Data collection with Microsoft Defender for Endpoint

Before defining precise monitoring logic, you must collect relevant data on which to apply
logic to.

https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/?s=09

4/30

One way of getting the data required to enable both opportunities is to deploy Microsoft
Defender for Endpoint (MDE) to build servers. Not only will this provide in build detections for
the known SUNSPOT malware it will also provide telemetry to Azure Sentinel that can be
used to hunt for malware artifacts as well as the modification of source code files.

For more information on how to connect MDE to Azure Sentinel, see the Azure Sentinel
documentation.

Data collection with Windows Event Logs

For organizations without MDE, it's still possible to enable the second of our two detection
opportunities using Windows Event Logs.

For this opportunity, you must collect events from:

Build servers relating to process creation, to detect when a build process is started
File modification events, to detect when code files are modified

In Windows Event Logs, these are represented by:

Event ID 4688: A new process has been created
Event ID 4663 An attempt was made to access an object

Enabling 4688 Event Collection

To enable the Audit Process Creation policy to generate 4688 events, edit the following
group policy:

Computer Configuration > Policies > Windows Settings > Security Settings >
Advanced Audit Configuration > Detailed Tracking > Audit Process Creation

https://docs.microsoft.com/en-us/azure/sentinel/connect-microsoft-defender-advanced-threat-protection
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4688
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4663

5/30

Enabling 4663 Event Collection

To enable Audit Object Access policy to generate 4663 events, edit the following group
policy:

Computer Configuration > Policies > Windows Settings > Security Settings > Local
Policies > Audit Policy > Audit object access

Setting security access control lists on collection objects

6/30

Once enabled, it is also necessary to set a security access control list (SACL) on the specific
objects to collect these events.

Due to the volume of events generated by this policy, we recommend that these SACLs only
be applied to a very limited subset of folders. SACLs specifically applied to files are removed
when the file is deleted, so we recommend that:

These SACLs be applied at the lowest level of folder that isn’t going to be regularly
modified as part of the build process
Inheritance be set to ensure SACLs are applied to all files created under these
folders[i]

For this build compromise scenario, SACLs should ideally be enabled for folders that contain
source files being built. Security teams will need to work with development teams to identify
where these files are stored on build servers.

Once identified, auditing of them can be enabled by selecting the relevant folder properties,
selecting the Security tab, and clicking Advanced.

In the window that opens:

1. Select the Auditing tab, and add an audit policy.
2. Select Principal and set this to Everyone, and then select the Full control permission

box.
3. Finally ensure that Applies to is set to the appropriate scope for the code files being

monitored[ii].

https://docs.microsoft.com/en-us/windows/win32/secauthz/access-control-lists?redirectedfrom=MSDN

7/30

 In addition to generating the events on build servers, you must also ensure that the events
are being collected by Azure Sentinel to allow for querying and detection of them.

Detections

Once the required data has been collected organizations can establish detections to detect
future (or historical) activity like the NOBELIUM build process compromise.

The Microsoft Threat Intelligence Center (MSTIC) has created a detection query for Azure
Sentinel to look for the pattern of code files being modified when a build process is run within
the Windows Event Logs discussed above. This detection logic was chosen to allow for the
potential detection of other threat actors attempting to perform any similar attack, rather than
just a detection of the specific SUNSPOT malware.

The query below contains several customizable elements to help defenders reduce false
positive rates, these have been configured by default for a generic environment where
C++/C# development is being conducted. The customizable elements are as follows:

timeframe – how often (and far back) to run the detection.
time_window – how close together should build process creation and code file
modification occur for a detection to be raised.
build_processes – a list of process names associated with build processes.
allow_list - a list of processes that are known to modify code files and should be
excluded for detections.

https://docs.microsoft.com/en-us/azure/sentinel/connect-windows-security-events

8/30

You can also edit the types of source code files to look for. By default, the query is configured
for .cp and .ccp files.

To proactively identify future threats, we recommend that organizations run the following
query against historical datasets, as well as enable it in Azure Sentinel as an Analytics rule:

// How far back to look for events from
let timeframe = 1d;
// How close together build events and file modifications should occur to alert (make
this smaller to reduce FPs)
let time_window = 5m;
// Edit this to include build processes used
let build_processes = dynamic(["MSBuild.exe", "dontnet.exe", "VBCSCompiler.exe"]);
// Include any processes that you want to allow to edit files during/around the build
process
let allow_list = dynamic([""]);
SecurityEvent
| where TimeGenerated > ago(timeframe)
// Look for build process starts
| where EventID == 4688
| where Process has_any (build_processes)
| summarize by BuildParentProcess=ParentProcessName, BuildProcess=Process,
BuildAccount = Account, Computer, BuildCommand=CommandLine, timekey=
bin(TimeGenerated, time_window), BuildProcessTime=TimeGenerated
| join kind=inner(
SecurityEvent
| where TimeGenerated > ago(timeframe)
// Look for file modifications to code file
| where EventID == 4663
| where Process !in (allow_list)
// Look for code files, edit this to include file extensions used in build.
| where ObjectName endswith ".cs" or ObjectName endswith ".cpp"
// 0x6 and 0x4 for file append, 0x100 for file replacements
| where AccessMask == "0x6" or AccessMask == "0x4" or AccessMask == "0X100"
| summarize by FileEditParentProcess=ParentProcessName, FileEditAccount = Account,
Computer, FileEdited=ObjectName, FileEditProcess=ProcessName, timekey=
bin(TimeGenerated, time_window), FileEditTime=TimeGenerated)
// join where build processes and file modifications seen at same time on same host
on timekey, Computer
// Limit to only where the file edit happens after the build process starts
| where BuildProcessTime <= FileEditTime
| summarize make_set(FileEdited), make_set(FileEditProcess),
make_set(FileEditAccount) by timekey, Computer, BuildParentProcess, BuildProcess

If you have Microsoft Defender for Endpoint (MDE) in your build servers you can also use the
following Azure Sentinel query that uses MDE telemetry in place of Windows Event logs:

9/30

// How far back to look for events from
let timeframe = 1d;
// How close together build events and file modifications should occur to alert (make
this smaller to reduce FPs)
let time_window = 5m;
// Edit this to include build processes used
let build_processes = dynamic(["MSBuild.exe", "dontnet.exe", "VBCSCompiler.exe"]);
// Include any processes that you want to allow to edit files during/around the build
process
let allow_list = dynamic([]);
DeviceProcessEvents
| where TimeGenerated > ago(timeframe)
// Look for build process starts
| where FileName has_any (build_processes)
| summarize by BuildParentProcess=InitiatingProcessFileName, BuildProcess=FileName,
BuildAccount = AccountName, DeviceName, BuildCommand=ProcessCommandLine, timekey=
bin(TimeGenerated, time_window), BuildProcessTime=TimeGenerated
| join kind=inner(
DeviceFileEvents
| where TimeGenerated > ago(timeframe)
| where InitiatingProcessFileName !in (allow_list)
| where ActionType == "FileCreated" or ActionType == "FileModified"
// Look for code files, edit this to include file extensions used in build.
| where FileName endswith ".cs" or FileName endswith ".cpp"
| summarize by FileEditParentProcess=InitiatingProcessParentFileName, FileEditAccount
= InitiatingProcessAccountName, DeviceName, FileEdited=FileName,
FileEditProcess=InitiatingProcessFileName, timekey= bin(TimeGenerated, time_window),
FileEditTime=TimeGenerated)
// join where build processes and file modifications seen at same time on same host
on timekey, DeviceName
// Limit to only where the file edit happens after the build process starts
| where BuildProcessTime <= FileEditTime
| summarize make_set(FileEdited), make_set(FileEditProcess),
make_set(FileEditAccount) by timekey, DeviceName, BuildParentProcess, BuildProcess

You can also use MDE telemetry to look for specific IOCs related to the SUNSPOT malware
with the following Azure Sentinel queries:

let SUNSPOT_Hashes =
dynamic(["c45c9bda8db1d470f1fd0dcc346dc449839eb5ce9a948c70369230af0b3ef168",
"0819db19be479122c1d48743e644070a8dc9a1c852df9a8c0dc2343e904da389"]);
union isfuzzy=true(
DeviceEvents
| where InitiatingProcessSHA256 in (SUNSPOT_Hashes)),
(DeviceImageLoadEvents
| where InitiatingProcessSHA256 in (SUNSPOT_Hashes))

union isfuzzy=true
(DeviceFileEvents
| where FolderPath endswith "vmware-vmdmp.log"),
(SecurityEvent
| where EventID == 4663
| where ObjectName endswith "vmware-vmdmp.log")

10/30

Other Monitoring Opportunities for Build Process Threats

In the last section we explored the monitoring opportunities related to the NOBELIUM build
process compromise. However, as detailed in the opening of this blog, NOBELIUM is not the
only attack targeting software development, build, and release processes.

As such, organizations need to have monitoring in place for a broader scope of activity than
just that represented by NOBELIUM. In this section we focus on other monitoring
opportunities that exist in CI/CD solutions, using Azure DevOps as an example and again
using Azure Sentinel as the monitoring solution.

The same monitoring opportunities can be applied to other CI/CD solutions and implemented
using other monitoring technologies. By sharing details via this blog, Microsoft hopes to help
the largest number of organizations possible, whether they are Azure Sentinel customers or
not.

Azure DevOps

Azure DevOps and specifically Azure Pipelines provide software development, build, and
deployment services in the cloud. An attacker looking to compromise a build process of an
organization who use these services is going to have to interact with the service. Due to
Azure DevOps auditing capabilities any such interaction is going to provide defenders with
opportunities to monitor for and detect any suspicious behavior.

As with nearly all cloud services, identity is the primary security boundary for Azure DevOps
services. MSTIC has provided multiple detections and hunting queries for cloud identity
activity. Defenders should leverage these to identify suspicious identity events relating to
these services. Additionally, Azure DevOps provides granular logging related to user activity
which should be collected and monitored.

Collecting Azure DevOps Audit Logs with Azure Sentinel

Azure DevOps audit logs are accessible via the Azure DevOps portal by logging in, selecting
Organization settings > Auditing[iii].

https://azure.microsoft.com/en-us/solutions/devops/#products
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://github.com/Azure/Azure-Sentinel/tree/master/Detections/SigninLogs
https://github.com/Azure/Azure-Sentinel/tree/master/Hunting%20Queries/SigninLogs

11/30

Security teams using Azure Sentinel should also ingest these logs into Azure Sentinel so that
the logs can be correlated with other data, and so that Azure Sentinel’s security analytics
capabilities can be applied to the logs. You can ingest these logs into Azure Sentinel via an
audit stream.

Go to Azure Dev Ops > Organization Settings > Auditing > Streams > New stream >
Azure Monitor Logs

12/30

You will then be prompted to provide a Workspace ID, and Shared Key. These should be
the Workspace ID and Access Key of your Azure Sentinel Instance.

These can be found by going to Azure Sentinel > Settings > Workplace settings > Agents
Management.

Once configured, Azure DevOps audit logs will appear in your Azure Sentinel Workspace
under the AzureDevOpsAuditing table.

More details on configuring Azure DevOps Auditing streams can be found in the Azure
DevOps documentation.

Monitoring and Hunting in Azure DevOps Audit Logs

https://docs.microsoft.com/en-us/azure/devops/organizations/audit/auditing-streaming?view=azure-devops

13/30

The Azure DevOps Audit Log is a rich data source that provides significant details about
most[iv] actions users can take. Below are details of some of the key fields to understand
when threat hunting in this data.

Field Name Description

ActorUPN The UPN of the user performing the action (or Object Id if a Service
Principal).

ActorDisplayName The friendly display name of the user performing the action.

Authentication
Mechanism

How the user authenticated to Azure DevOps – commonly seen
are SessionToken, Oauth, and PAT (Personal Access Token). This
can be useful for hunting for administrative actions conducted via
an authentication method not commonly seen.

ScopeDisplayName The scope an operation was applied to. This shows the name of
the object scoped, and the type of object. E.g. ‘name (type)’

ProjectName The name of the Azure DevOps project the action was applied to.

IpAddress Client IP of the user performing the action.

UserAgent The UserAgent string of the user performing the action.

Area The high level type of action performed, these generally correlate
to the core features of Azure DevOps.

OperationName The specific Operation carried out. Format is
AreaName.ActionName. e.g. Policy.PolicyConfigModified

Details String description of the Operations details.

Data Dynamic data object containing specific details of the operation,
the structure depends on the Operation.

https://docs.microsoft.com/en-us/azure/devops/organizations/audit/azure-devops-auditing?view=azure-devops&tabs=preview-page
https://docs.microsoft.com/en-us/azure/devops/user-guide/plan-your-azure-devops-org-structure?bc=%2Fazure%2Fdevops%2Fget-started%2Fbreadcrumb%2Ftoc.json&toc=%2Fazure%2Fdevops%2Fget-started%2Ftoc.json&view=azure-devops#what-is-a-project

14/30

Category High level category of the Operations, e.g. Modify, Create, Delete

This data source provides a wide range of monitoring opportunities and MSTIC has
collaborated with teams across Azure to develop Azure Sentinel detections and hunting
queries using this data, for potential software build compromise activity.

Unlike with the NOBELIUM monitoring opportunities, where each opportunity was an
element in a single attack, the following queries each represent a separate, individual
monitoring opportunity that defenders can leverage to detect potentially malicious activity.

An attack may be detected at one or more of these opportunities depending on its nature.
For each opportunity we present a short summary of each opportunity, its significance for
defenders and its position in an attack based on Mitre ATT&CK.

Detections

These queries are designed to be more accurate indicators of malicious activity than Hunting
Queries. Whilst False Positives (FPs) are possible, the rates should be significantly smaller
than with Hunting Queries and therefore the output of these can be considered more reliable
indicators of malicious attacker activity.

Detection Name Description

New PA, PCA, or
PCAS added to Azure
DevOps

Detects new privileged users being added to Azure DevOps.

Build Agents Added of
new OS Type or New
User

Detects anomalous types of build agents being added to a pool.

ADO Agent Pool
Created and Deleted

Looks for a new Agent Pool being created and then deleted
within 7 days of creation

External Upstream
Source Added to
Azure DevOps Feed

Detects new external package sources being added to Azure
DevOps

Build Pipeline Created
and Deleted in One
Day

Detects an Azure Pipeline being created and then deleted
within the same day.

https://attack.mitre.org/
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/NewPAPCAPCASaddedtoADO.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/NewAgentAddedToPoolbyNewUserorofNewOS.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADOAgentPoolCreatedDeleted.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ExternalUpstreamSourceAddedtoAzureDevOpsFeed.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/AzDOPipelineCreatedDeletedOneDay.yaml

15/30

Audit Stream Disabled Detects the Azure DevOps Audit Log connection to Azure
Sentinel being disabled.

Pipeline Modified by
User who hasn’t
modified it before

Detects an Azure Pipeline being modified by a user account
that hasn’t previous modified that pipeline.

Variable Group
Modified by New User

Detects a Variable Group in Azure DevOps being modified by a
user who has not previously modified variable groups.

New Extension Added Detects new extensions being added to Azure DevOps where
they are not from an allowed list of publishers.

Pipeline Retention
Settings Reduced to
Zero.

Detects a key retention setting on a pipeline element (runs and
artifacts) being reduced to zero.

PAT used with
browser

Detects Azure DevOps activity that authenticates with a
Personal Access Token (PAT) but has a UserAgent that
indicates and interactive browser session.

New PA, PCA, or PCAS added to Azure DevOps

ATT&CK Technique: T1078.004

Description: In order for an attacker to be able to interact with any CI/CD solution they will
need to gain elevated permissions. In Azure DevOps these permissions take the form of a
small number of key administrative permissions. If the principle of least privilege is applied
the number of users granted these permissions should be small. Note that permissions can
also be granted via

This query gets details of accounts added to these roles and joins it with a summary of the
operations conducted by that user immediately after being granted these permissions in
order to provide analysts with context.

Query:

Spoiler

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADOAuditStreamDisabled.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADOPipelineModifiedbyNewUser.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADOVariableModifiedByNewUser.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADONewExtensionAdded.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADORetentionReducedto0.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/AzureDevOpsAuditing/ADOPATUsedWithBrowser.yaml
https://attack.mitre.org/techniques/T1078/004/

16/30

AzureDevOpsAuditing
| where OperationName =~ "Group.UpdateGroupMembership.Add"
| where Details has_any ("Project Administrators", "Project Collection
Administrators", "Project Collection Service Accounts", "Build Administrator")
| project-reorder TimeGenerated, Details, ActorUPN, IpAddress, UserAgent,
AuthenticationMechanism, ScopeDisplayName
| extend timekey = bin(TimeGenerated, 1h)
| extend ActorUserId = tostring(Data.MemberId)
| project timekey, ActorUserId, AddingUser=ActorUPN, TimeAdded=TimeGenerated,
PermissionGrantDetails = Details
| join (AzureDevOpsAuditing
| extend timekey = bin(TimeGenerated, 1h)) on timekey, ActorUserId
| summarize ActionsWhenAdded = make_set(OperationName) by ActorUPN, AddingUser,
TimeAdded, PermissionGrantDetails

Build Agents Added of new OS Type or New User

ATT&CK Technique: T1053

Description: As seen with threata actors such as NOBELIUM, attackers can look to subvert
a build process by controlling build servers. Azure DevOps uses agent pools to execute
pipeline tasks. An attacker could insert compromised agents that they control into the pools
in order to execute malicious code. This query looks for users adding agents to pools they
have not added agents to in the last 30 days or adding agents to a pool of an OS that has
not been added to that pool in the last 30 days. This detection has potential for false
positives so has a configurable allow list to allow for certain users to be excluded from the
logic.

Query:

Spoiler

https://attack.mitre.org/techniques/T1053/

17/30

let lookback = 14d;
let timeframe = 1d;
// exclude allowed users from query such as the ADO service
let allowed_users = dynamic(["Azure DevOps Service"]);
union
// Look for agents being added to a pool of a OS type not seen with that pool before
(AzureDevOpsAuditing
| where TimeGenerated > ago(lookback) and TimeGenerated < ago(timeframe)
| where OperationName =~ "Library.AgentAdded"
| where ActorUPN !in (allowed_users)
| extend AgentPoolName = tostring(Data.AgentPoolName)
| extend OsDescription = tostring(Data.OsDescription)
| where isnotempty(OsDescription)
| extend OsDescription = tostring(split(OsDescription, "#", 0)[0])
| project AgentPoolName, OsDescription
| join kind=rightanti (AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName == "Library.AgentAdded"
| extend AgentPoolName = tostring(Data.AgentPoolName)
| extend OsDescription = tostring(Data.OsDescription)
| where isnotempty(OsDescription)
| extend OsDescription = tostring(split(OsDescription, "#", 0)[0])) on AgentPoolName,
OsDescription),
// Look for users addeing agents to a pool that they have not added agents to before.
(AzureDevOpsAuditing
| where TimeGenerated > ago(lookback) and TimeGenerated < ago(timeframe)
| extend AgentPoolName = tostring(Data.AgentPoolName)
| where ActorUPN !in (allowed_users)
| project AgentPoolName, ActorUPN
| join kind=rightanti (AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName == "Library.AgentAdded"
| where ActorUPN !in (allowed_users)
| extend AgentPoolName = tostring(Data.AgentPoolName)
) on AgentPoolName, ActorUPN)
| extend AgentName = tostring(Data.AgentName)
| extend OsDescription = tostring(Data.OsDescription)
| extend SystemDetails = Data.SystemCapabilities
| project-reorder TimeGenerated, OperationName, ScopeDisplayName, AgentPoolName,
AgentName, ActorUPN, IpAddress, UserAgent, OsDescription, SystemDetails, Data

ADO Agent Pool Created and Deleted.

ATT&CK Technique: T1578

Description: As well as adding build agents to an existing pool to execute malicious activity
within a pipeline an attacker could create a completely new agent pool and use this for
execution. Azure DevOps allows for the creation of agent pools with Azure hosted
infrastructure or self-hosted infrastructure. Given the additional customizability of self-hosted
agents this detection focuses on the creation of new self-hosted pools. To further reduce

https://attack.mitre.org/techniques/T1578/

18/30

false positive rates the detection looks for pools created and deleted quickly (within 7 days
by default), as an attacker is likely to remove a malicious pool once used to reduce/remove
evidence of their activity.

Query:

Spoiler

let lookback = 14d;
let timewindow = 7d;
AzureDevOpsAuditing
| where TimeGenerated > ago(lookback)
| where OperationName =~ "Library.AgentPoolCreated"
| extend AgentCloudId = tostring(Data.AgentCloudId)
| extend PoolType = iif(isnotempty(AgentCloudId), "Azure VMs", "Self Hosted")
// Comment this line out to include cloud pools as well
| where PoolType =~ "Self Hosted"
| extend AgentPoolName = tostring(Data.AgentPoolName)
| extend AgentPoolId = tostring(Data.AgentPoolId)
| extend IsHosted = tostring(Data.IsHosted)
| extend IsLegacy = tostring(Data.IsLegacy)
| extend timekey = bin(TimeGenerated, timewindow)
// Join only with pools deleted in the same window
| join (AzureDevOpsAuditing
| where TimeGenerated > ago(lookback)
| where OperationName =~ "Library.AgentPoolDeleted"
| extend AgentPoolName = tostring(Data.AgentPoolName)
| extend AgentPoolId = tostring(Data.AgentPoolId)
| extend timekey = bin(TimeGenerated, timewindow)) on AgentPoolId, timekey
| project-reorder TimeGenerated, ActorUPN, UserAgent, IpAddress,
AuthenticationMechanism, OperationName, AgentPoolName, IsHosted, IsLegacy, Data

External Upstream Source Added to Azure DevOps Feed

ATT&CK Technique: T1199

Description: Build pipelines often take dependencies from other pipelines or other feeds as
part of the process. An attacker could compromise the build process by introducing a
compromised upstream item. The detection looks for new external sources added to an
Azure DevOps feed that may detect the addition of a malicious source. An allow list can be
customized to explicitly allow known good sources.

Reference: https://www.microsoft.com/security/blog/2018/07/26/attack-inception-
compromised-supply-chain-within-....

Query:

Spoiler

https://attack.mitre.org/techniques/T1199/
https://www.microsoft.com/security/blog/2018/07/26/attack-inception-compromised-supply-chain-within-a-supply-chain-poses-new-risks/#:~:text=A%20new%20software%20supply%20chain%20attack%20unearthed%20by,installer%20the%20unsuspecting%20carrier%20of%20a%20malicious%20payload

19/30

// Add any known allowed sources and source locations to the filter below (the NuGet
Gallery has been added here as an example).
let allowed_sources = dynamic(["NuGet Gallery"]);
let allowed_locations = dynamic(["https://api.nuget.org/v3/index.json"]);
AzureDevOpsAuditing

// Look for feeds created or modified at either the organization or project
level

| where OperationName matches regex "Artifacts.Feed.(Org|Project).Modify"
| where Details has "UpstreamSources, added"
| extend FeedName = tostring(Data.FeedName)
| extend FeedId = tostring(Data.FeedId)
| extend UpstreamsAdded = Data.UpstreamsAdded
// As multiple feeds may be added expand these out
| mv-expand UpstreamsAdded
// Only focus on external feeds
| where UpstreamsAdded.UpstreamSourceType !~ "internal"
| extend SourceLocation = tostring(UpstreamsAdded.Location)
| extend SourceName = tostring(UpstreamsAdded.Name)
// Exclude sources and locations in the allow list
| where SourceLocation !in (allowed_locations) and SourceName !in

(allowed_sources)
| extend SourceProtocol = tostring(UpstreamsAdded.Protocol)
| extend SourceStatus = tostring(UpstreamsAdded.Status)

 | project-reorder TimeGenerated, OperationName, ScopeDisplayName,
ProjectName, FeedName, SourceName, SourceLocation, SourceProtocol, ActorUPN,
UserAgent, IpAddress

Build Pipeline Created and Deleted in One Day

ATT&CK Technique: T1072

Description: An attacker with access to a CI/CD solution could create a pipeline to inject
artifacts used by other pipelines, or to create a malicious software build that looks legitimate
by using a pipeline that incorporates legitimate elements. An attacker would also likely want
to cover their tracks once conducting such activity. This query looks for Azure DevOps
Pipelines created and deleted within the same day; this is unlikely to be legitimate user
activity in most cases.

Query:

Spoiler

https://attack.mitre.org/techniques/T1072/

20/30

let timeframe = 14d;
// Get Release Pipeline Creation Events and group by day
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Release.ReleasePipelineCreated"
// Group by day
| extend timekey = bin(TimeGenerated, 1d)
| extend PipelineId = tostring(Data.PipelineId)
| extend PipelineName = tostring(Data.PipelineName)
// Rename some columns to make output clearer
| project-rename TimeCreated = TimeGenerated, CreatingUser = ActorUPN,
CreatingUserAgent = UserAgent, CreatingIP = IpAddress
// Join with Release Pipeline Deletions where Pipeline ID is the same and deletion
occurred on same day as creation
| join (AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Release.ReleasePipelineDeleted"
// Group by day
| extend timekey = bin(TimeGenerated, 1d)
| extend PipelineId = tostring(Data.PipelineId)
| extend PipelineName = tostring(Data.PipelineName)
// Rename some things to make the output clearer
| project-rename TimeDeleted = TimeGenerated, DeletingUser = ActorUPN,
DeletingUserAgent = UserAgent, DeletingIP = IpAddress) on PipelineId, timekey
| project TimeCreated, TimeDeleted, PipelineName, PipelineId, CreatingUser,
CreatingIP, CreatingUserAgent, DeletingUser, DeletingIP, DeletingUserAgent,
ScopeDisplayName, ProjectName, Data, OperationName, OperationName1

Audit Stream Disabled

ATT&CK Technique: T1562.008

Description: Azure DevOps allows for audit logs to be streamed to external storage
solutions such as SIEM solutions. An attacker looking to hide malicious Azure DevOps
activity from defenders may look to disable data streams before conducting activity and then
re-enabling the data stream after (so as not to raise data threshold-based alarms). Looking
for disabled audit streams can identify this activity, and due to the nature of the action it is
unlikely to have a high false positive rate.

Query:

Spoiler

AzureDevOpsAuditing
| where OperationName =~ "AuditLog.StreamDisabledByUser"
| extend StreamType = tostring(Data.ConsumerType)
| project-reorder TimeGenerated, Details, ActorUPN, IpAddress, UserAgent, StreamType

Pipeline Modified by User who hasn’t modified it before.

ATT&CK Technique: T1584.006, T1578

https://attack.mitre.org/techniques/T1562/008/
https://attack.mitre.org/techniques/T1584/006/
https://attack.mitre.org/techniques/T1578/

21/30

Description: There are several potential pipeline steps that could be modified by an attacker
to inject malicious code into the build cycle. A likely attacker path is the modification to an
existing pipeline that they have access to. This detection looks for users modifying a pipeline
when they have not previously been observed modifying or creating that pipeline before. This
query also joins events with data to Azure AD Identity Protection (AAD IdP) in order to show
if the user conducting the action has any associated AAD IdP alerts, you can also choose to
filter this detection to only alert when the user also has AAD IdP alerts associated with them.

Query:

Spoiler

// Set the lookback to determine if user has created pipelines before
let timeback = 14d;
// Set the period for detections
let timeframe = 1d;
// Get a list of previous Release Pipeline creators to exclude
let releaseusers = AzureDevOpsAuditing
| where TimeGenerated > ago(timeback) and TimeGenerated < ago(timeframe)
| where OperationName in ("Release.ReleasePipelineCreated",
"Release.ReleasePipelineModified")
// We want to look for users performing actions in specic projects so we creat this
userscope object to match on
| extend UserScope = strcat(ActorUserId, "-", ProjectName)
| summarize by UserScope;
// Get Release Pipeline creations by new users
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Release.ReleasePipelineModified"
| extend UserScope = strcat(ActorUserId, "-", ProjectName)
| where UserScope !in (releaseusers)
| extend ActorUPN = tolower(ActorUPN)
| project-away Id, ActivityId, ActorCUID, ScopeId, ProjectId, TenantId, SourceSystem,
UserScope
// See if any of these users have Azure AD alerts associated with them in the same
timeframe
| join kind = leftouter (
SecurityAlert
| where TimeGenerated > ago(timeframe)
| where ProviderName == "IPC"
| extend AadUserId = tostring(parse_json(Entities)[0].AadUserId)
| summarize Alerts=count() by AadUserId) on $left.ActorUserId == $right.AadUserId
| extend Alerts = iif(isnotempty(Alerts), Alerts, 0)
// Uncomment the line below to only show results where the user as AADIdP alerts
//| where Alerts > 0

Variable Group Modified by New User.

ATT&CK Technique: T1578

https://docs.microsoft.com/azure/active-directory/identity-protection/overview-identity-protection
https://attack.mitre.org/techniques/T1578/

22/30

Description: Variables can be configured and used at any stage of the build process in
Azure DevOps to inject values. An attacker with the required permissions could modify or
add to these variables to conduct malicious activity such as changing paths or remote
endpoints called during the build. As variables are often changed by users just detecting
these changes would have a high false positive rate. This detection looks for modifications to
variable groups where that user has not been observed modifying them before.

Query:

Spoiler

let lookback = 14d;
let timeframe = 1d;
let historical_data =
AzureDevOpsAuditing
| where TimeGenerated > ago(lookback) and TimeGenerated < ago(timeframe)
| where OperationName =~ "Library.VariableGroupModified"
| extend variables = Data.Variables
| extend VariableGroupName = tostring(Data.VariableGroupName)
| extend VariableGroupId = tostring(Data.VariableGroupId)
| extend UserKey = strcat(VariableGroupId, "-", ActorUserId)
| project UserKey;
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Library.VariableGroupModified"
| extend variables = Data.Variables
| extend VariableGroupName = tostring(Data.VariableGroupName)
| extend VariableGroupId = tostring(Data.VariableGroupId)
| extend UserKey = strcat(VariableGroupId, "-", ActorUserId)
| where UserKey !in (historical_data)
| project-away UserKey
| project-reorder TimeGenerated, VariableGroupName, ActorUPN, IpAddress, UserAgent

New Extension Added.

ATT&CK Technique: T1505

Description: Extensions added additional features to Azure DevOps. An attacker could use
a malicious extension to conduct malicious activity. This query looks for new extensions that
are not from a configurable list of approved publishers.

Query:

Spoiler

https://attack.mitre.org/techniques/T1505/

23/30

let allowed_publishers = dynamic([]);
AzureDevOpsAuditing
| where OperationName =~ "Extension.Installed"
| extend ExtensionName = tostring(Data.ExtensionName)
| extend PublisherName = tostring(Data.PublisherName)
| where PublisherName !in (allowed_publishers)
| project-reorder TimeGenerated, OperationName, ExtensionName, PublisherName,
ActorUPN, IpAddress, UserAgent, ScopeDisplayName, ScopeType, Data

Pipeline Retention Settings Reduced to Zero.

ATT&CK Technique: T1564

Description: AzureDevOps retains items such as run records and produced artifacts for a
configurable amount of time. An attacker looking to reduce the footprint left by their malicious
activity may look to reduce the retention time for artifacts and runs to 0.

Query:

Spoiler

AzureDevOpsAuditing
| where OperationName =~ "Pipelines.PipelineRetentionSettingChanged"
| where Data.SettingName in ("PurgeArtifacts", "PurgeRuns")
| where Data.NewValue == 0
| project-reorder TimeGenerated, OperationName, ActorUPN, IpAddress, UserAgent, Data

PAT used with browser.

ATT&CK Technique: T1564

Description: Personal Access Tokens (PATs) are used as an alternate password to
authenticate into Azure DevOps. PATs are intended for programmatic access for use in code
or applications. Given this they can be prone to attacker theft if not adequately secured. This
query looks for the use of a PAT in authentication which is from a User Agent containing a
rendering engine, indicating a browser. This should not be normal activity and could be an
indicator of an attacker using a stolen PAT.

Query:

Spoiler

AzureDevOpsAuditing
| where AuthenticationMechanism startswith "PAT"
// Look for useragents that include a rendering engine
| where UserAgent has_any ("Gecko", "WebKit", "Presto", "Trident", "EdgeHTML",
"Blink")

Hunting Queries

https://attack.mitre.org/techniques/T1564/
https://attack.mitre.org/techniques/T1564/

24/30

These are queries that are designed to look for abnormal activity that may not necessarily be
malicious but could be an indicator of attacker activity and therefore deserves further
investigation. These queries could have a significant (FP) rate and should be used as a
starting point for further analysis and hunting.

Hunting Query
Name

Description

Release Pipeline
Created in Project
by New User

Hunts for users creating a pipeline who has not created one before.

New Package Feed
Created

Hunts for the creation of new package feeds of any kind.

Build Check
Removed

Hunts for users removing a build check from within a pipeline.

New Release
Approver

Hunts for users approving a release when they have not previously
approved any releases.

New Agent Pool
Created

Hunts for the creation of new Agent Pools of any kind.

PAT used with new
operation

Hunts for a Personal Access Token (PAT) being used for
authentication with an Azure DevOps operation where a PAT has
not being used to authenticate before.

Build Deleted After
Pipeline
Modification

Hunts for a Build in Azure DevOps being deleted shortly after a
pipeline associated with the build has been modified.

Variable Added
and Removed

Hunts for a build variable being created and then deleted within a
short space of time.

Release Pipeline Created in Project by New User

ATT&CK Technique: T1053

Description: An attacker could look to create a new poisoned pipeline in a CI/CD solution
and attach a build process to it. This hunting query looks for new Azure DevOps pipelines
being created in projects where the creating user has not been seen creating a pipeline

https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADOReleasePipelineCreated.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADONewPackageFeedCreated.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADOBuildCheckDeleted.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADONewReleaseApprover.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADONewAgentPoolCreated.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADONewPATOperation.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADOBuildDeletedAfterPipelineMod.yaml
https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/AzureDevOpsAuditing/ADOVariableCreatedDeleted.yaml
https://attack.mitre.org/techniques/T1053/

25/30

before. This query could have a significant false positive rate and records should be triaged
to determine if a user creating a pipeline is authorized and expected.

Query:

Spoiler

// Set the lookback to determine if user has created pipelines before
let timeback = 30d;
// Set the period for detections
let timeframe = 1d;
// Get a list of previous Release Pipeline creators to exclude
let releaseusers = AzureDevOpsAuditing
| where TimeGenerated > ago(timeback) and TimeGenerated < ago(timeframe)
| where OperationName =~ "Release.ReleasePipelineCreated"
// We want to look for users performing actions in specific organizations so we creat
this userscope object to match on
| extend UserScope = strcat(ActorUPN, "-", ProjectName)
| summarize by UserScope;
// Get Release Pipeline creations by new users
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Release.ReleasePipelineCreated"
| extend UserScope = strcat(ActorUPN, "-", ProjectName)
| where UserScope !in (releaseusers)
| extend ActorUPN = tolower(ActorUPN)
| project-away Id, ActivityId, ActorCUID, ScopeId, ProjectId, TenantId, SourceSystem,
UserScope
// See if any of these users have Azure AD alerts associated with them in the same
timeframe
| join kind = leftouter (
SecurityAlert
| where TimeGenerated > ago(timeframe)
| where ProviderName == "IPC"
| extend AadUserId = tostring(parse_json(Entities)[0].AadUserId)
| summarize Alerts=count() by AadUserId) on $left.ActorUserId == $right.AadUserId
| project-reorder TimeGenerated, ProjectName, Details, ActorUPN, IpAddress,
UserAgent, Alerts

New Package Feed Created.

ATT&CK Technique: T1195

Description: An attacker could look to introduce upstream compromised software packages
by creating a new package feed within Azure DevOps. This query looks for new Feeds and
includes details on any Azure AD Identity Protection alerts related to the user account
creating the feed to assist in triage.

Query:

Spoiler

https://attack.mitre.org/techniques/T1195/

26/30

let timeframe = 30d;
let alert_threshold = 0;
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName matches regex "Artifacts.Feed.(Org|Project).Create"
| extend FeedName = tostring(Data.FeedName)
| extend FeedId = tostring(Data.FeedId)
| join kind = leftouter (
SecurityAlert
| where TimeGenerated > ago(timeframe)
| where ProviderName == "IPC"
| extend AadUserId = tostring(parse_json(Entities)[0].AadUserId)
| summarize Alerts=count() by AadUserId) on $left.ActorUserId == $right.AadUserId
| extend Alerts = iif(isempty(Alerts), 0, Alerts)
| project-reorder TimeGenerated, Details, ActorUPN, IpAddress, UserAgent

Build Check Removed.

ATT&CK Technique: T1578

Description: Build checks can be built into a pipeline in order to control the release
process, these can include things such as the successful passing of certain steps, or an
explicit user approval. An attacker who has altered a build process may look to remove a
check in order to ensure a compromised build is released. This hunting query simply looks
for all check removal events, these should be relatively uncommon. In the output, Type
shows the type of Check that was deleted.

Query:

Spoiler

AzureDevOpsAuditing
| where OperationName =~ "CheckConfiguration.Deleted"
| extend ResourceName = tostring(Data.ResourceName)
| extend Type = tostring(Data.Type)
| project-reorder TimeGenerated, OperationName, ResourceName, Type, ActorUPN,
IpAddress, UserAgent

New Release Approver.

ATT&CK Technique: T1078

Description: Releases in Azure Pipelines often require a user authorization to perform the
release. An attacker that has compromised a build may look to self-approve a release using
a compromised account to avoid user focus on that release. This query looks for release
approvers in pipelines where they have not approved a release in the last 30 days. This
query can have a significant false positive rate so it is best suited as a hunting query rather
than a detection.

Query:

https://attack.mitre.org/techniques/T1578/
https://attack.mitre.org/techniques/T1078/

27/30

Spoiler

let lookback = 30d;
let timeframe = 1d;
AzureDevOpsAuditing
| where TimeGenerated > ago(lookback) and TimeGenerated < ago(timeframe)
| where OperationName in ("Release.ApprovalCompleted", "Release.ApprovalsCompleted")
| extend PipelineName = tostring(Data.PipelineName)
| extend ApprovalType = tostring(Data.ApprovalType)
| extend StageName = tostring(Data.StageName)
| extend ReleaseName = tostring(Data.ReleaseName)
| summarize by PipelineName, ActorUPN, ApprovalType
| join kind=rightanti (
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName in ("Release.ApprovalCompleted", "Release.ApprovalsCompleted")
| extend PipelineName = tostring(Data.PipelineName)
| extend ApprovalType = tostring(Data.ApprovalType)
| extend StageName = tostring(Data.StageName)
| extend ReleaseName = tostring(Data.ReleaseName)) on ActorUPN
| project-reorder TimeGenerated, PipelineName, ActorUPN, ApprovalType, StageName,
ReleaseName, IpAddress, UserAgent, AuthenticationMechanism

New Agent Pool Created.

ATT&CK Technique: T1578

Description: Agent Pools provide a valuable resource to build processes. Creating and
using a compromised agent pool in a pipeline could allow an attacker to compromise a build
process. The creation of an agent pool on its own is not malicious, it is an event that is likely
to occur rarely which makes it effective for manual hunting through manual validation of
creation events.

Query:

Spoiler

AzureDevOpsAuditing
| where OperationName =~ "Library.AgentPoolCreated"
| extend AgentPoolName = tostring(Data.AgentPoolName)
| extend AgentPoolId = tostring(Data.AgentPoolId)
| extend IsHosted = tostring(Data.IsHosted)
| extend IsLegacy = tostring(Data.IsLegacy)
| project-reorder TimeGenerated, ActorUPN, UserAgent, IpAddress,
AuthenticationMechanism, OperationName

PAT used with new operation.

ATT&CK Technique: T1578

https://attack.mitre.org/techniques/T1578/
https://attack.mitre.org/techniques/T1578/

28/30

Description: PATs are typically used for repeated, programmatic tasks. This query looks for
PATs based authentication being used with an Operation not previously associated with PAT
based authentication. This could indicate an attacker using a stolen PAT to perform malicious
actions.

Query:

Spoiler

let lookback = 30d;
let timeframe = 3d;
let PAT_Actions = AzureDevOpsAuditing
| where TimeGenerated > ago(lookback) and TimeGenerated < ago(timeframe)
| where AuthenticationMechanism startswith "PAT"
| summarize by OperationName;
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where AuthenticationMechanism startswith "PAT"
| where OperationName !in (PAT_Actions)

Build Deleted After Pipeline Modification.

ATT&CK Technique: T1053

Description: An attacker altering pipelines may look to delete builds to reduce the footprint
they leave on a system. This query looks for a build pipeline being deleted within 1 hour of a
pipeline being modified. This event may produce false positives but should not be so
common that it can’t be effectively used as part of hunting.

Query:

Spoiler

AzureDevOpsAuditing
| where OperationName =~ "Release.ReleaseDeleted"
| extend PipelineId = tostring(Data.PipelineId)
| extend PipelineName = tostring(Data.PipelineName)
| extend timekey = bin(TimeGenerated, 1h)
| join (AzureDevOpsAuditing
| where OperationName =~ 'Release.ReleasePipelineModified'
| extend PipelineId = tostring(Data.PipelineId)
| extend PipelineName = tostring(Data.PipelineName)
| extend timekey = bin(TimeGenerated, 1h)) on timekey, PipelineId, ActorUPN
| where TimeGenerated1 < TimeGenerated
| extend ReleaseName = tostring(Data.ReleaseName)
| project-rename TimeModified = TimeGenerated1, TimeDeleted = TimeGenerated,
ModifyOperation = OperationName1, ModifyUser=ActorUPN1, ModifyIP=IpAddress1,
ModifyUA= UserAgent1, DeleteOperation=OperationName, DeleteUser=ActorUPN,
DeleteIP=IpAddress, DeleteUA=UserAgent
| project-reorder TimeModified, ProjectName, PipelineName, ModifyUser, ModifyIP,
ModifyUA, TimeDeleted, DeleteOperation, DeleteUser, DeleteIP, DeleteUA,ReleaseName

https://attack.mitre.org/techniques/T1053/

29/30

Variable Added and Removed

ATT&CK Technique: T1564

Description: Variables can be used at various stages of a pipeline to inject static variables.
Depending on the build process these variables could be added by an attacker to get a build
process to conduct an unwanted action such as communicating with an attacker-controlled
endpoint or injecting values into code. This query looks for variables that are added and then
deleted in a short space of time. This is not normally expected behavior and could be an
indicator of attacker creating elements and then covering tracks. If this hunting query
produces only a small number of events in an environment it could be promoted to a
detection.

Query:

Spoiler

let timeframe = 7d;
AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Library.VariableGroupModified"
| extend variables = Data.Variables
| extend VariableGroupName = tostring(Data.VariableGroupName)
| join (AzureDevOpsAuditing
| where TimeGenerated > ago(timeframe)
| where OperationName =~ "Library.VariableGroupModified"
| extend variables = Data.Variables
| extend VariableGroupName = tostring(Data.VariableGroupName)) on VariableGroupName
| extend len = array_length(bag_keys(variables))
| extend len1 = array_length(bag_keys(variables1))
| where (TimeGenerated < TimeGenerated1 and len > len1) or (TimeGenerated1 >
TimeGenerated and len1 < len)
| project-away len, len1
| extend VariablesRemoved = set_difference(bag_keys(variables), bag_keys(variables1))
| project-rename TimeCreated=TimeGenerated, TimeDeleted = TimeGenerated1,
CreatingUser = ActorUPN, DeletingUser = ActorUPN1, CreatingIP = IpAddress, DeletingIP
= IpAddress1, CreatingUA = UserAgent, DeletingUA = UserAgent1
| project-reorder VariableGroupName, TimeCreated, TimeDeleted, VariablesRemoved,
CreatingUser, CreatingIP, CreatingUA, DeletingUser, DeletingIP, DeletingUA

These Hunting and Detection queries provide opportunities to monitor for potentially
malicious behavior related to build processes in Azure DevOps. In addition to monitoring for
suspicious activity it is important to ensure that preventative security measures are applied to
your build pipelines. Best practice for securing Azure DevOps can be found at
docs.microsoft.com

Summary

https://attack.mitre.org/techniques/T1564/
https://docs.microsoft.com/en-us/azure/devops/organizations/security/quick-reference-index-security?view=azure-devops

30/30

This blog has showcased how defenders can use monitoring to monitor their internal
software build process to protect their supply chain as well as protecting others further down
the supply chain. We have addressed how to monitor for NOBELIUM specific activity as well
as wider monitoring opportunities using Azure DevOps as an example. Whilst many
monitoring opportunities have been presented here there are other monitoring opportunities
in build systems that haven’t been addressed here including detecting attackers accessing
sensitive information.

The queries detailed in this blog as well as many others covering additional scenarios are
available on the Azure Sentinel GitHub site under Detections and Hunting Queries.

MSTIC would like to thank the Azure DevOps security team and the Azure Red Team for
their help and support in this work.

[i] Ensure ‘Applied To:’ is set to ‘This folder, subfolder and files’

[ii] Should you wish you can set the Type of collection to ‘All’ but this scenario only required
the collection of Success events.

[iii] Only Project Collection Administrators have access to the auditing feature.

[iv] But notably not all.

https://github.com/Azure/Azure-Sentinel/tree/master/Detections/AzureDevOpsAuditing
https://github.com/Azure/Azure-Sentinel/tree/master/Hunting%20Queries/AzureDevOpsAuditing

