
1/24

March 9, 2021

Reproducing the Microsoft Exchange Proxylogon Exploit
Chain

praetorian.com/blog/reproducing-proxylogon-exploit/

Introduction

In recent weeks, Microsoft has detected multiple 0-day exploits being used to attack on-
premises versions of Microsoft Exchange Server in a ubiquitous global attack. ProxyLogon is
the name given to CVE-2021-26855, a vulnerability on Microsoft Exchange Server that
allows an attacker to bypass authentication and impersonate users. In the attacks observed,
threat actors used this vulnerability to access on-premises Exchange servers, which enabled
access to email accounts, and install additional malware to facilitate long-term access to
victim environments.

The Praetorian Labs team has reverse engineered the initial security advisory and
subsequent patch and successfully developed a fully functioning end-to-end exploit. This
post outlines the methodology for doing so but with a deliberate decision to omit critical
proof-of-concept components to prevent non-sophisticated actors from weaponizing the
vulnerability. While we have elected to refrain from releasing the full exploit, we know a
complete exploit will be released by the security community shortly. Once the remaining

https://www.praetorian.com/blog/reproducing-proxylogon-exploit/

2/24

steps are public knowledge, we will more openly discuss our end-to-end solution. We believe
the hours/days in between will provide additional time for our customers, companies, and
countries alike to patch the critical vulnerability.

Microsoft has rapidly developed and published scripts, indicators, and emergency patches to
aid in the mitigation of these vulnerabilities. Microsoft Security Response Center has
published a blog post detailing these mitigation measures here. Of note, the URL rewrite
module successfully prevents exploitation without requiring emergency patching, and should
prove an effective rapid countermeasure to Proxylogon. However, as discussed elsewhere,
exploitation of Proxylogon has been so widespread that operators of externally facing
Exchange servers must turn to incident response and eviction.

Methodology

For the reverse engineering process we implemented the following steps to allow us to
perform both static and dynamic analysis of Exchange and its security patches:

Diff: review differences between vulnerable version and patched version
Test: deploy a full test environment of the vulnerable version
Observe: instrument deployment to gain knowledge of typical network communication
Investigate: iterate over each CVE, connect patch diff to network traffic, and fabricate
proof-of-concept exploits

Diff

By examining the differences (diffing) between a pre-patch binary and post-patch binary we
were able to identify exactly what changes were made. These changes were then reverse
engineered to assist in reproducing the original bug.

Microsoft’s update catalog was helpful when grabbing patches for diffing. A quick search for
the relevant software version returned a list of security patch roll-ups that we used to
compare the latest security patch against its predecessor. For example, by searching for
“Security Update For Exchange Server 2013 CU23” we identified patches for a specific
version of Exchange. Exchange 2013 was chosen here because it was the smallest set of
patches for a version of Exchange vulnerable to CVE-2021-26855 and therefore easiest to
diff.

https://msrc-blog.microsoft.com/2021/03/05/microsoft-exchange-server-vulnerabilities-mitigations-march-2021/
https://www.catalog.update.microsoft.com/
https://www.catalog.update.microsoft.com/Search.aspx?q=Security%20Update%20For%20Exchange%20Server%202013%20CU23

3/24

The Microsoft Update Catalog will helpfully sort by date, so the desired files are the top 2
entries

To begin, we downloaded the latest (3/2/2021) and the previous (12/2/2021) security update
rollup. By extracting the .msp file from the .cab file, and unpacking the .msp file using 7zip,
we were left with two folders of binaries to compare.

The .msp update contains a few hundred binaries - most of which are .NET applications

Because most of the binaries were .NET applications we used dnSpy to decompile each
binary to a series of source files. To speed up analysis we automated decompilation and
leveraged the comparison functionality of source control by uploading each version to a
GitHub repository as separate commits for comparison.

Diffing on GitHub can help important changes stand out at a glance

An alternative diffing option that we also found helpful was Telerik’s JustAssembly. It was a
little bit slower for observing the actual file differences, but was helpful in immediately
identifying where code had been added or removed.

https://github.com/dnSpy/dnSpy
https://www.telerik.com/justassembly

4/24

JustAssembly succinctly shows changes for an entire dll

With this preparation complete, we needed to spin-up a target Exchange server to test
against.

Test

To begin, we set up a standard domain controller using the ADDSDeployment module from
Microsoft. We then downloaded the relevant Exchange installer (ex:
https://www.microsoft.com/en-us/download/details.aspx?id=58392 for Exchange 2013 CU23)
and performed the standard installation process.

For an Azure-based Exchange environment, we followed the steps outlined here, swapping
the installer downloaded in step 8 of `Install Exchange` with the correct Exchange installer
found in the above link. Additionally, we modified the PowerShell snippet in the server
provisioning script to spin up a 2012-R2 Datacenter server instead of the 2019 Server
version.

 $vm=Set-AZVMSourceImage -VM $vm -PublisherName MicrosoftWindowsServer

-Offer `WindowsServer -Skus 2012-R2-Datacenter -Version "latest"

This allowed for a quick deployment of a standalone Domain Controller and Exchange
server, with a network security group in place to prevent unwanted Internet-based
exploitation attempts.

Observe

https://docs.microsoft.com/en-us/powershell/module/addsdeployment/?view=win10-ps
https://www.microsoft.com/en-us/download/details.aspx?id=58392
https://docs.microsoft.com/en-us/exchange/plan-and-deploy/deploy-new-installations/create-azure-test-environments?view=exchserver-2019

5/24

Microsoft Exchange is composed of several backend components which communicate with
one another during normal operation of the server. From the user perspective, a request to
the frontend Exchange server will flow through IIS to the Exchange HTTP Proxy, which
evaluates mailbox routing logic and forwards the request on to the appropriate backend
server. This is shown in the diagram below.

Microsoft Exchange 2016 Client Access Protocol Architecture diagram
(https://docs.microsoft.com/en-us/exchange/architecture/architecture#client-access-protocol-
architecture)

We were interested in observing all traffic sent from the HTTP Proxy to the Exchange Back
End as this should include many example requests from real services to help us better
understand the source code and from requests in our exploit. Exchange is deployed on IIS,

6/24

so we made a simple change to the Exchange Back End binding to update the port from 444
to 4444. Next, we deployed a proxy on port 444 to forward packets to the new bind address.

The Exchange HTTP Proxy validates the TLS certificate of the Exchange Back End, so for
our proxy to be useful, we wanted to dump the “Microsoft Exchange” certificate from our test
machine’s local certificate store. Since this certificate’s private key is marked as non-
exportable during the Exchange installation process, we extracted the key and certificate
using mimikatz:

 mimikatz# privilege::debugmimikatz# crypto::certificates /export

/systemstore:LOCAL_MACHINE

7/24

Using mimikatz to extract the Exchange certificate and key from our test machine.

With the certificate and key in hand, we used a tool similar to socat, a multi-purpose network
relaying tool, to listen on port 444 using the Exchange certificate and relay connections to
port 4444 (the actual Exchange Back End). The socat command might look like:

 # export the certificate and private key (password mimikatz)openssl

pkcs12 -in 'CERT_SYSTEM_STORE_LOCAL_MACHINE_My_1_Microsoft Exchange.pfx' -nokeys -out
exchange.pemopenssl pkcs12 -in 'CERT_SYSTEM_STORE_LOCAL_MACHINE_My_1_Microsoft
Exchange.pfx' -nocerts -out exchange.pem# launch socat, listening on port 444,
forwarding to port 4444socat -x -v openssl-
listen:4444,cert=exchange.pem,key=exchange-key.pem,verify=0,reuseaddr,fork openssl-
connect:127.0.0.1:444,verify=0

With our proxy configured, we began using Exchange as normal to generate HTTP requests
and learn more about these internal connections. Additionally, several backend server
processes sent requests to port 444, allowing us to observe periodic health checks,
Powershell remoting requests, etc.

Investigate

While each CVE is different, our general methodology for triaging a particular CVE was
composed of five phases:

1. Reviewing indicators
2. Reviewing patch diff

8/24

3. Connecting the indicators to the diff
4. Connecting these code paths to proxied traffic
5. Crafting requests to trigger these code paths
6. Repeat

Warming up with CVE-2021-26857

“CVE-2021-26857 is an insecure deserialization vulnerability in the Unified Messaging
service. Insecure deserialization is where untrusted user-controllable data is deserialized by
a program. Exploiting this vulnerability gave HAFNIUM the ability to run code as SYSTEM on
the Exchange server.” – via Microsoft’s bulletin about the HAFNIUM exploits

While this particular vulnerability was ultimately unnecessary to obtain remote code
execution on the Exchange server, it provided a straightforward example of how patch diffing
can reveal the details of a bug. The advisory above also explicitly identified the Unified
Messaging service as a potential target – which significantly helped to narrow the initial
search space.

The Exchange binary packages were named fairly clearly – proxying functionality lived in
Microsoft.Exchange.HttpProxy.*, log uploading lived in Microsoft.Exchange.LogUploader,
and Unified Messaging code lived in Microsoft.Exchange.UM.*. When diffing files we don’t
always have clear indicators in the file names, but there was no reason not to use this during
our investigation.

The JustAssembly diff of these dlls indicates the root cause fairly clearly

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://docs.microsoft.com/en-us/exchange/unified-messaging-exchange-2013-help

9/24

The diffed classes here showed that a Base64Deserialize function had been removed
and a contactInfoDeserializationAllowList property had been added. .NET
historically has struggled with deserialization issues, so seeing these kinds of changes
strongly suggested the removal of vulnerable code and the addition of protections against
.NET deserialization exploitation. Examining Base64Deserialize confirms this:

The removed function passes the output of a base64 string to a BinaryFormatter’s
Deserialize

Before the patch, this unsafe method was invoked from
Microsoft.Exchange.UM.UMCore.PipelineContext.FromHeaderFile as we observed

by examining the diff:

The ContactInfo property of a serialized PipelineContext can be used to trigger the
vulnerability

The updated version of this function included much more code for properly verifying types
before deserializing them.
Essentially, this patch removed functionality that is vulnerable to a .NET deserialization
attack which can be exploited using tools like ysoserial.net. While the attack path here is
fairly straightforward, Unified Messaging is not always enabled on servers and as a result our
proof of concept exploit relied on CVE-2021-27065, discussed below.

https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://github.com/pwntester/ysoserial.net

10/24

Server-Side Request Forgery (CVE-2021-26855)

Since all of the remote code execution vulnerabilities require an authentication bypass, we
turned our attention to the Server-Side Request Forgery (SSRF). Microsoft published the
following Powershell command to search for indicators related to this vulnerability:

 Import-Csv -Path (Get-ChildItem -Recurse -Path

"$env:PROGRAMFILES\Microsoft\Exchange Server\V15\Logging\HttpProxy" -Filter
'*.log').FullName `| Where-Object { $_.AuthenticatedUser -eq '' -and
$_.AnchorMailbox -like 'ServerInfo~*/*' } | select DateTime, AnchorMailbox

Additionally, Volexity published the following URLs related to SSRF exploitation:

/owa/auth/Current/themes/resources/logon.css/owa/auth/Current/themes/resources/.../ecp
char>.js

Using these indicators, we searched the patch diff for related terms (including strings like
host, hostname, fqdn, etc.) and discovered interesting changes in
Microsoft.Exchange.FrontEndHttpProxy.HttpProxy namespace. This led us to also

discover a relevant diff in the BackEndServer class used by
BEResourceRequestHandler .

Patch diff related to ServerInfo / authentication / host / fqdn.

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855

11/24

Patch diff of the BackEndServer class used by BEResourceRequestHandler.

Next, we traced calls to BEResourceRequestHandler and found this relevant path from the
SelectHandlerForUnauthenticatedRequest method in ProxyModule .

Minified code showing path to hit BEResourceRequestHandler.

Lastly, we evaluated the CanHandle method of BEResourceRequestHandler and found
that it required a URL with the ECP “protocol” (e.g. /ecp/), a X-BEResource cookie, and a
URL that ended with a static file type extension (e.g. js, css, flt, etc.). Since this code was
implemented in the HttpProxy, the URL did not need to be valid, which explained the fact
that some indicators simply used /ecp/y.js , a non-existent file.
The X-BEResource cookie was parsed in BackEndServer.FromString , which effectively
split the string on "~" and assigned the first element to an “fqdn” for the backend and
parsed the second as an integer version.

We then traced the usage of this BackEndServer object and discovered it was used in the
ProxyRequestHandler to determine which Host to send the proxied request to. The URI

was constructed in GetTargetBackEndServerUrl via a UriBuilder , which is a native

12/24

.NET class.

Minified code showing relevant methods from ProxyRequestHandler.

At this point, we could theoretically control the Host used for these backend connections by
setting a specific header and sending requests to a “static” file in /ecp. However, simply
controlling the Host is not enough to call arbitrary endpoints on the Exchange Back End. For
this, we looked inside the .NET source code itself to see how UriBuilder is implemented.

13/24

ToString method from the UriBuilder reference source code.

As shown in the snippet above, the ToString method of UriBuilder (which is used to construct
URIs) performs simple string concatenation with our inputs. Therefore, if we set Host to be
"example.org/api/endpoint/#" , we effectively gain full control over the target URL.

 With this information, we had enough to demonstrate the SSRF with the following HTTP
request…

Failed SSRF attempt to example.org due to Kerberos host mismatch.

Alas! Our SSRF attempt “failed” due to a NegotiateSecurityContext error

14/24

communicating with example.org. As it turned out, this error was key to our understanding of
the SSRF, as it demonstrated the fact that the HTTP Proxy was attempting to authenticate
via Kerberos to the backend server. By setting the hostname to the Exchange server
machine name, the Kerberos authentication succeeds and we can access endpoints as NT
AUTHORITY\SYTEM . With this information, we had enough to demonstrate SSRF with the
following HTTP request…

Failed SSRF attempt due to backend authentication check.

Alas! Again! The backend server rejected our request for some reason. Tracing this error, we
eventually discovered the EcpProxyRequestHandler.AddDownLevelProxyHeaders
method, which is only called if ProxyToDownLevel is set to true in the
GetTargetBackEndServerUrl method. This method checked that the user was

authenticated and returned an HTTP 401 error if they were not.
Thankfully, we can prevent GetTargetBackEndServerUrl from setting this value by
modifying the server version in our cookie. If the version was greater than
Server.E15MinVersion , ProxyToDownLevel remained false. With this change in place,

we successfully authenticated to a backend service (the autodiscover service).

15/24

Successful SSRF to the autodiscover endpoint.

While reviewing the code paths above, we discovered an additional SSRF in the OWA proxy
handler. These requests were sent without Kerberos authentication and therefore could be
targeted to arbitrary servers as shown below.

16/24

Successful SSRF attempt to example.org via X-AnonResource cookie.

At this point, we had enough information to forge requests to some backend services. We
are not publishing information on how to properly authenticate to more sensitive services
(e.g. /ecp) as this information is not publicly available.

Arbitrary File Write (CVE-2021-27065)

With SSRF in hand, we turned our attention to remote code execution. Before we began
patch diffing, our first clue on this vulnerability came from the indicators published by
Microsoft and Volexity. Namely, this Powershell command to search the ECP logs for
indicators of compromise:

 Select-String -Path

"$env:PROGRAMFILES\Microsoft\ExchangeServer\V15\Logging\ECP\Server*.log" `-Pattern
'Set-.+VirtualDirectory'

Additionally, the Volexity blog post described requests to
/ecp/DDI/DDIService.svc/SetObject as related to exploitation. With these two facts in

hand, we searched our diff for anything related to file I/O in the ECP or DDI classes. This
quickly came back with a result for the WriteFileActivity class in
Microsoft.Exchange.Management.ControlPanel.DIService . The “control panel” is the

user-facing name for ECP and DDIService is directly in the indicator URL. As shown in the
diff below, the old functionality wrote a file with a user-controlled name directly to disk. In the
new functionality, the code appends a “.txt” file extension if not already present. Knowing that
the general exploit involved writing an ASPX webshell to the server, the
WriteFileActivity seemed like a prime candidate for exploitation.

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065

17/24

Patch diff of WriteFileActivity.cs

If we search the Exchange installation directory for WriteFileActivity, we see it used in several
XAML files within Exchange Server\V15\ClientAccess\ecp\DDI.

Code snippet from ResetOABVirtualDirectory.xaml

After examining the XAML files and reviewing the ECP functionality in the Exchange web UI,
we determined that the SetObjectWorkflow above described a series of steps to be executed
server-side (including Powershell cmdlet execution) to perform a specific operation.

18/24

ECP user interface showing the configuration options for ResetVirtualDirectory.

By submitting a sample ResetVirtualDirectory request, we observed that the Exchange
server wrote a pretty-printed configuration of the VirtualDirectory to the specified path,
removed the VirtualDirectory, and recreated it. This configuration file contained several
properties from the directory and could be written to any directory on the system with an
arbitrary extension. A screenshot of the request and resulting file are shown below.
Example HTTP request to the DDIService to reset the OAB VirtualDirectory:

 POST /ecp/DDI/DDIService.svc/SetObject?

schema=ResetOABVirtualDirectory&msExchEcpCanary={csrf} HTTP/1.1Host: localhostCookie:
msExchEcpCanary={csrf};Content-Type: application/json{"identity": {"__type":
"Identity:ECP","DisplayName": "OAB (Default Web Site)","RawIdentity": "cf64594f-d739-
44a4-aa70-3fbd158625e2"},"properties": {"Parameters": {"__type":
"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel","FilePathName":
"C:\\VirtualDirectory.aspx"}}}

19/24

File exported by the DDIService showing all properties of the VirtualDirectory.

20/24

ECP web UI showing editable parameters for a VirtualDirectory.

The following parameters were exposed in the UI for editing a VirtualDirectory. Notably, the
Internal URL and External URL were exposed in the UI, described in the XAML as
parameters, and written to the file at our arbitrary path. This combination of factors allowed
an attacker controlled input to reach an arbitrary path, which is the necessary primitive to
enable a webshell.
After some experimentation, we determined that the Internal/External URL fields was
partially validated by the server. Namely, the server validated the URI scheme, hostname,
and imposed a maximum length of 256 bytes. Additionally, the server “percent encoded” any
percent signs in the payload (e.g. “%” become “%25”). As a result, a classic ASPX code
block like <% code %> was transformed into <%25 code %25> which is invalid. However,
other metacharacters (e.g. < and >) were not encoded, allowing injection of a URL like the
following:

 http://o/#<script language="JScript" runat="server">function

Page_Load(){eval(Request["mlwqloai"],"unsafe");}</script>

After resetting the VirtualDirectory, this URL was embedded in the export and saved to the

21/24

path of our choosing, granting remote code execution on the Exchange server.

Using webshell to execute commands on compromised Exchange server.

Leaking the Backend + Domain

The complete exploit chain requires the Exchange server backend and domain. In
Crowdstrike’s blog post about the attack they posted a full log of the attack being sprayed
across the Internet. In this log, the first call was to an /rpc/ endpoint:

The initial request hits the /rpc/ exposed by Exchange

This initial request must be unauthenticated, and is likely utilizing RPC over HTTP which
essentially exposes NTLM authentication through the endpoint. RPC over HTTP is itself a
fairly complicated protocol which is thoroughly detailed via Microsoft’s open specification
initiative.
As attackers, we were interested in parsing the NTLM Challenge message that is returned to
us after sending an NTLM Negotiation message. This challenge message contains a number
of AV_PAIR structures that contain the information we are interested in – specifically

https://www.crowdstrike.com/blog/falcon-complete-stops-microsoft-exchange-server-zero-day-exploits/
https://docs.microsoft.com/en-us/previous-versions/tn-archive/aa996225(v=exchg.65)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rpch/d49bfc93-1e8c-4741-ba49-56067e56314b
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/801a4681-8809-4be9-ab0d-61dcfe762786
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b34032e5-3aae-4bc6-84c3-c6d80eadf7f2
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/83f5e789-660d-4781-8491-5f8c6641f75e

22/24

MsvAvDnsComputerName (the backend server name) and MsvAvDnsTreeName (the domain
name).
Impacket’s http.py already contains code to perform this negotiation to generate a
negotiation message and then parse the challenge response into AV_PAIR structures. The
request and response ends up looking like:

 RPC_IN_DATA /rpc/rpcproxy.dll HTTP/1.1Host:
frontend.exchange.contoso.comUser-Agent: MSRPCAccept: application/rpcAccept-Encoding:
gzip, deflateAuthorization: NTLM TlRMTVNTUAABAAAABQKIoAAAAAAAAAAAAAAAAAAAAAA=Content-
Length: 0Connection: close

 HTTP/1.1 401 UnauthorizedServer: Microsoft-IIS/8.5request-id:
72dce261-682e-4204-a15a-8055c0fd93d9Set-Cookie: ClientId=IRIFSCHPJ0YLFULO9MA;
expires=Tue, 08-Mar-2022 22:48:47 GMT; path=/; HttpOnlyWWW-Authenticate: NTLM
TlRMTVNTUAACAAAACAAIADgAAAAFAomiVN9+140SRjMAAAAAAAAAAJ4AngBAAAAABgOAJQAAAA9DAE8AUgBQAA
Authenticate: NegotiateWWW-Authenticate: Basic
realm="frontend.exchange.contoso.com"X-Powered-By: ASP.NETX-FEServer: frontendDate:
Mon, 08 Mar 2021 22:48:47 GMTConnection: closeContent-Length: 0

The base64 encoded hash can be parsed using Impacket to show the leaked domain
information.

Leaked domain information embedded in the WWW-Authenticate NTLM Challenge

The recovered AV_PAIR data is encoded as Windows Unicode and maps a specific
AV_ID to a value. AV_IDs are constants that map to specific content, for example, we

want to grab the strings for 3 (the backend hostname) and 5 (the domain).

Mappings for the AV_PAIR structures to numbers in the calculated data

The information posted here resolves that the backend value is ex.corp.contoso.com and the

https://github.com/SecureAuthCorp/impacket
https://github.com/SecureAuthCorp/impacket/blob/master/impacket/http.py#L143
https://docs.microsoft.com/en-us/windows/win32/intl/unicode

23/24

domain is corp.contoso.com. These are the values needed to abuse the SSRF vulnerability
discussed earlier.

Homework

As described elsewhere, we have omitted certain exploit details to prevent ease of
exploitation. The mechanism through which the exploit authenticates to ECP endpoints as
arbitrary users is left as an exercise to the reader. We will release further details on this in a
follow-up blog post once sufficient time has elapsed.

Detection

Microsoft’s Threat Intel Center (MSTIC) has already provided excellent indicators and
detection scripts which anyone with an on premise Exchange server should use. To
determine if there is a compromise we recommend SOCs, MSSPs, and MDRs take the
following steps:

1. Ensure all endpoint protection products are updated and functioning. While the exploit
itself may not have a large quantity of IoCs published to detection engines yet, post
exploitation activity can be easily detected with modern tooling.

2. Run the “TestProxyLogon.ps1” script from Microsoft’s github linked above across all
Exchange servers. From our experience with the weaponization of the exploit the script
should detect any evidence of an exploited system.

3. Double check the configuration of the Servers in question, scheduled tasks, autoruns
etc, are all places that an attacker could be hiding after gaining initial access. Ensure
the Audit Process Creation audit policy and PowerShell logging are enabled for
Exchange servers and check for suspicious commands and scripts. Discrepancies
should be verified, reported, and remediated ASAP.

As we continue our exploration of these vulnerabilities, we intend to publish additional
material on detecting any evidence of this exploit in your environment.

Post-Exploitation

Previous work by Sean Metcalf and Trimarc Security details the high level of permissions
that often accompany on-premise Exchange installations. When configured in this way, an
attacker with control of an Exchange server can easily use this access for domain-wide
compromise with an ACL abuse. Affected environments can determine if site-wide
compromise should be suspected by examining the ACLs applied to the root domain object,
and observing whether or not vulnerable Exchange resources fall into these groups. We
have adapted the PowerShell snippet in the Trimarc post to more specifically filter on the
Exchange Windows Permissions and Exchange Trusted Subsystem groups. If your
environment has added Exchange resources to custom groups or groups outside of these,
you will need to adapt the script accordingly.

https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://github.com/microsoft/CSS-Exchange/tree/main/Security
https://adsecurity.org/?p=4119
https://www.trimarcsecurity.com/single-post/2019/02/12/Mitigating-Exchange-Permission-Paths-to-Domain-Admins-in-Active-Directory

24/24

 import-module ActiveDirectory$ADDomain = ''$DomainTopLevelObjectDN =
(Get-ADDomain $ADDomain).DistinguishedNameGet-ADObject -Identity
$DomainTopLevelObjectDN -Properties * | select -ExpandProperty nTSecurityDescriptor |
select -ExpandProperty Access | select
IdentityReference,ActiveDirectoryRights,AccessControlType,IsInherited | Where-Object
{($_.IdentityReference -like "*Exchange Windows Permissions*") -or
($_.IdentityReference -like "*Exchange Trusted Subsystem*")} | Where-Object
{($_.ActiveDirectoryRights -like "*GenericAll*") -or ($_.ActiveDirectoryRights -like
"*WriteDacl*")}

Acknowledgements

Reproduction of this bug did not happen in a vacuum -our development process relied on the
published works of the original researchers, incident responders, and other security
researchers who also worked to reproduce these bugs. Our thanks and appreciation go out
to:

DEVCORE-Who found the original bug
Volexity-Who identified the bug in the wild
@80vul-The first user seen to reproduce the exploit chain
Rich Warren (@buffaloverflow)-Who we actively worked with while investigating
Crowdstrike-Who published additional information about active exploitation in the wild
Microsoft-Who quickly published indicators and patches

https://devco.re/
http://volexity.com/
https://twitter.com/80vul/
http://twitter.com/buffaloverflow
https://www.crowdstrike.com/
https://www.microsoft.com/

