Ploutus is back, targeting Itautec ATMs in Latin America

@ metabaseq.com/recursos/ploutus-is-back-targeting-itautec-atms-in-latin-america

Ploutus, one of the most sophisticated ATM malware families worldwide, is back with a new
variant focused on Latin America. Discovered for the first time in 2013, Ploutus enables

criminals to empty ATMs by taking advantage of ATM XFS middleware vulnerabilities via an
externally connected device. Since its first discovery, Ploutus has evolved to target various
XFS middleware types, focusing on banks across Mexico and Latin America. Previously,
researchers have discovered the following variants and associated target middleware:

1/27

https://www.metabaseq.com/recursos/ploutus-is-back-targeting-itautec-atms-in-latin-america
https://www.securityweek.com/new-malware-found-infecting-atms-mexico

Year VVariant name Attacked Middleware
2013 Ploutus NCR APTRA

2014 Ploutus SMS NCR APTRA

2017 Ploutus-D KAL multivendor

2018 Ploutus-D USA (Piolin) Diebold Agilis

Table 1. Affected XFS Middleware

Metabase Q, Inc. All Rights Reserved

Ocelot, the Offensive Security research team of Metabase Q, identified a new variant of
Ploutus in Latin America. This variant, dubbed Ploutus-I, controls ATMs from the Brazilian
vendor Itautec. ltautec has been connected to other major ATM players over the years. In
2013, the Japanese manufacturer, OKI, partnered with Itautec to enter the Brazilian market;
subsequently, NCR acquired OKIl's IT services and selected software in Brazil in 2019.

Throughout this blog, we will describe the details of this new variant. We will cover the

infection methodology, AV bypass technique, obfuscation layers, malware interaction with the

crooks, and the XFS control to dispense the money on demand.

Ploutus-l heist operation overview

Mule opens soft zone
to extract Hard Disk

Figure 1. Heist overview
© Metabase Q, Inc. All Rights Reserved

Ploutus-1I is installed
in a whitelisted folder

And added to the
registry run key

>

© Mule enters

O Ploutus-I combination
Validates activation code
entered with the keyboard of F keys

to start
dispensing

© Hard Disk infected 5

is connected back

© Mule connects external keyboard

disguised as a webcam
=

0O Ploutus-I
spawn GG.exe which
controls XFS Middleware

2/27

https://www.ncr.com/news/newsroom/news-releases/company/ncr-and-oki-announce-definitive-acquisition-agreement-for-key-assets-in-brazil

Ploutus-l Installation

At the beginning of the heist, the mule extracts the hard disk from the ATM. The binaries and

artifacts (seen below) are copied to the path C:\itautec. Because this path is whitelisted by
the Antivirus, the binaries and artifacts can bypass detection.

Rout

Description

IDS

C:\itautec\exe\ltautec.exe

Variante de Ploutus-I

AODEE20DD90B557BF411DF318740DDC2

C:\itautec\exe\log.dll

Utilidad para Logging

CAEO07EF56306F7A8F07FF6678C15837

C:\itautec\exe\GG.exe

Controla el XFS Middleware

33E849EF4604B89BDD905CEAACI9CAEQE

C:\itautec\exe\XFSGG.dI|

Controla el XFS Middleware

EAB939B1F5E310400A7DE60F62622B04

C:\itautec\exe\msxfs.dll

XFS APIs

3BDA1500AF49F91045D4BB93272F7352

Table 2. Ploutus-I Installation

Persistence is gained by adding the malware path to the Userinit registry key (see Figure 2),

© Metabase Q, Inc. All Rights Reserved

which lists the programs run by Winlogon when a user logs in to the system.

This path is found here:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\

- VIV -. e
. WinStationsDisabled
scremoveoption

o Pl A

~ |4 Metadata

" Mame: Userinit
Type: REG_SZ

Value

C:\Windows\system32\userinit.exe,C: \itautec\exe\ltautec.exe,

Figure 2. Registry key used for persistence
The Ploutus-| executable is shown as "ltautec Protection Agent," with a compilation time of

April 17, 2020.

3/27

C:\itautec\exe\Itautec.exe:
Verified: Unsigned
Link date: 11:88 AM 4/17/20626
Publisher: n/a
Company: n/a

Description: Itautec Protection Agent
Product: Itautec Protection Agent
Prod version: ©.6.0.1

File version: ©.0.0.1
MachineType: 32-bit

Figure 3. Fake description of Ploutus-I

Deobfuscating Ploutus-I

Every new variant of Ploutus is harder to deobfuscate, and this last version is not the
exception. This section is highly technical but essential to share for researchers to improve
awareness and ATM security in the future. If you are not interested in the technical details,
please skip to the next section.

Ploutus-l has always been written in .NET Framework as a method of further obfuscation to
avoid signature-based detection and to make the reverse engineering task very challenging.

Before getting into the deobfuscation details, it is imperative to understand how the execution
of .NET managed code(C#, F#, etc.) occurs in memory. For a more detailed explanation, we
recommend reading Phrack. For this blog, a minimalistic flow is shown in Figure 4.

MSIL

Managed Code

Figure 4. Overview of .NET process execution © Metabase Q, Inc. All Rights Reserved

In a glimpse, what Ploutus-I obfuscator (Reactor) does is obfuscate the MSIL Managed Code
so that the source code cannot be displayed by DnSpy Debugger & Decompiler tool. At
runtime, the malicious code is deobfuscated by the malware and then passed to the Just-In-
Time (JIT) Compiler to create the native code that ends up been executed by the CPU. How
can we recover the source code and understand the inner workings of the malware? Keep
reading.

4027

http://www.phrack.org/papers/dotnet_instrumentation.html
https://github.com/dnSpy/dnSpy

By opening the assembly file ltautec.exe (see Figure 5), we can immediately see the
structure of the old variant Ploutus-D. Later in our discovery, we realized that the criminals
behind Ploutus-D just added support to control ltautec/OKI XFS Middleware.

E| fiﬂ Diebold {0.0.0.1)
Lije :_:|_|||J B

= PE

P =B Type References

P =B References

b M Resources

b {} -

P {} Al00zsidtusovdulke

P {} GQazqrta795LeasM25
P {} hOFXMEursW\oymestE
P {} iMqwooFeWEEQHIEKFL
P {} Launcher

P {} Launcher.Properties

P {} newage

Figure 5. The same template of the previous variant used

5/27

Diebald {0.0.0.1)
L Diebold.exe
b2 PE
P =B Type References
P =B References
P M Resources
P} -
B {} aloozsidiusovdulke
4 {} GQazqrta79sleasMzs
r ﬁh wilgSOmE< JECAGw36 @O02000020
P M Ease Type and Interfaces
> i Derived Types
| E ccbar| '| o @0G00021E
AlaSOmEXDEDAGwWSE() | @Os000249
' @06000278
,int) : void @06000289
' ':Il_'l||r::r f‘-“ll.'ldl:::I .

L B

nt, ushork, wint, id @OA000221
@OE00026D
d @O600024F
) @O0s0002485
re[] @0&000226
@O&000Z23
] LSS
@OE000ZE0

@OB000266
t @0B000Z6F

@Oa000222

(object, of]I; DOAO00Z295
(] @0e000242
(N k) L @Oa00026E
2() Type @OS00028C

Figure 6. All Fuctions and Class names generated with random names

Kevboard >
7 System;
r System.Runtime.CompilerServices;
: System.Windows.Forms;
g GQa2qrta7oSLleasM2s;

Launcher

MethodImpl{MethodImplOptions.
) (int Data)

MethodImpl(MethodImplOptions.

ethodImplOptions. 3]

(1 KeyData)

MethodImpl({MethodImplOptions.]|
i i (obj KeyData)

Methodl I|I:
i |l"_'i: F.

MethodImpl{MethodImplOptions.

MethodImpl (MethodImplOptions.

ethodImplOptions.

>

Figure 7. No code available inside the functions

Deobfuscation strategy

Before digging into the deobfuscation strategy, it is crucial to understand how Reactor
obfuscator hides the malicious code in memory. We can explain this obfuscation by looking at
Figure 8, where:

When a specific MSIL Code Function (let's say the Ploutus-l Keyboard one) is called,
JIT is going to call getJIT to get the address of the compileMethod to compile it into
Native Code

However, Ploutus-| already installed a hook in memory redirecting that address to its
own malicious one. It then deobfuscates the function and finally calls the original
compileMethod to proceed with normal execution.

It is worth mentioning that this process is performed at the memory and only for the function
been called at that moment, explaining why there is no visibility of functions in DnSpy.

Compile Get compileMethod() Real
for me address address

Obfuscated MISIL get]IT() compilelMethod()

code Function

Hook to
redirect call

Deobfuscated
MSIL code
Function

Ploutus-I

Method

Figure 8. Process of hooking compileMethod function Metabase Q, Inc. All Rights Reserved

With this context, our strategy is to set a breakpoint in the original compileMethod in memory,
to pivot from there into identifying the function of Ploutus-I controlling the deobfuscation
process.

For this, we need to switch to a more advanced tool, the Windbg debugger, with its SOS.dII
extension to deal with .NET Managed code.

You can see in Figure 9 that we set a breakpoint at function getJit() (exported by clrjit.dll)
because it returns a VTable (array of pointers) where the first value is the address of the
compileMethod!

8/27

Command - Chjitautechexe’Itautec.exe - WinDbg:10.0.17763.132 X86

b=235cE9 bE9836266s nov eax,offset clrjit!ICILIitBuff (6=263698) -
6=235che cP059836266efcald2bbe mov dvord ptr [clrjit!CILJitBuff (6m263698)).o0ffset clrjit!CILJit:: vitable® (6e25alf
62235298 2320342662 now dword ptr [clrjit!Il]itter (6e2263420)].eax

62235c9d <=3 ret

622359 90 nop

0:000r bp A=235c9d

0:000> g

##% [Inable to resolve unqualified symbol in Bp expression ‘main' from module 'CsVindows system32~O0LEAUT32 d411°'.
ModLoad: 76%e0000 76a72000 C:\Windows\system32“OLEAUT32 d11

Breakpoint 1 hit

2ax=62263698 eb=x=00000000 ec==6=235c80 =dx=6el=0000 e=i=702374a4 =di=6f=235c80

eip=6e235c9d esp=001ledfel ebp=001e=05c iopl=0 nv up i pl zr na pe nc
cs=001b ==s=0023 ds=0023 es=0023 {==003b gs=0000 sf1=00000246
clrjitlgetJit+0xld:

62235c9d c3 ret

0:000> reax

eax=62263698

0:000r dd poi{eax) L3

b=25a3fc beled700 6elellal b=2ladbl 622031f0

te2badlc bBelical 62240860 6e22031f0 6ele2q430

0:000> u poi(poi(eax))

clrjit ICILIit: :compileethod [f: “dd-ndphelrsrengiti2hee 11 dll . cpp @ 151]:
55 push ebp

ele Sbec now ebp.esp

62l=3703 33=4f8 and esp, OFFFFFFF&h

6=le3706 83eclc sub esp, 1Ch

62123709 B3 push ebx

teled?0a 8b5d410 nowv ebx.dvord ptr [=sbp+l0h]

62123704 33c9 HOT ecx, ecx

bele370f Gb push esi

hd

| | »
|U:DDO)"

Figure 9. Identifying compileMethod address

Once we set a breakpoint at compileMethod(at 0x6e1e3700) and let the malware run, we can
see in Figure 10 when the breakpoint hits. We then use the |CLRStack command to see the
stack trace of managed code, and voila! We found the malicious method that redirects the
execution when compileMethod is called:

GQa2qrta795LeasM25.vlIigs0mEXIJEDAGwW36.GyQV7V7HyQ()

EMl Command - C:\itautechexe\Itautec.exe - WinDbg:10.0.17763.132 X86

cs=001b =s=0023 ds=0023 es=0023 {s=003b g=s=0000 efl=00000282 -
clrjit!|CILIit: (compileMethod:
beleld?00 &5 push ebp

0:000> !ClRStack

Ho emxport ClEStaclk found

0:000> ICILRStack

05 Thread Id: 0x3déc (0)

Child SP IF Call Site

00leeSel 6ele3700 [PrestubMethodFrame: 001eeSe8] . cctor()

00lee?cc belel3?00 [GCFrame: 00lese?oc]

001lef3ad 62123700 [DebuggerClassInitHarkFrame: 001leflad]

0:000: g

Breakpoint 2 hit

eax=62263698 ebx=80000004 ecx=6ele3?00 edx=80805d10 esi=6elSalfc edi=00l=df%ed

eip=6elel?00 esp=001ed820 ebp=001ed8?8 iopl=0 ny up i ng nz na po nc
i = = == = = — =

lr3it!ICILIit: -compilelethod:
hele3700 55 push ebp
0:000> ICLRStack
DS Thread Id: 0x346c (0)
hild SP IF Call Site
N01lede90 621e3700 [PrestubMethodFrame: 001ede90] GQaZgrta?95LleasH25 v1IgEOnEX1JEDAGw36 . .coctor()
101e=s078 6e2le3?00 [GCFrame: 001e=078]
N0lesbel 62l1e3700 [PrestubMethodFrame: 00leebel] GQaZgrta?95LleasH25 vlIgbOmEXLJEDAGw36 GyQV7VIHQ()
N0lee650 D0280859 w*®* WARNING: Unable to verify checksum for Disbold.exe
#%# ERROR: Module load completed but symbols could not be losded for Disbold. exe
[nable to resolve ungqualified symbol in Bp expression ‘main'.
ctori)
Ti==rcc BIorrleE |CCPrane. OTli==rco]
001lef3ad 6fafiltt [DebuggerClassInitHarkFrame: 001ef3ad]

| | »
[5-000> |

Figure 10. Identifying the malicious method that hooks compileMethod

It is essential to mention that each class's static constructor (.cctor) in the malware code uses
this function. This function usage makes sense because, as previously mentioned, every
method is going to be deobfuscated in memory before getting compile into native code for
execution.

9/27

Unfortunately, we are not there yet. In previous versions of Ploutus, the above function would
contain the deobfuscation code for us to dump. However, when looking at the function (see
Figure 11) in DnSpy, we realized we entered a vast obfuscated function with hundreds of
switch cases, spaghetti code, death code, and other tricks, which make it impossible to
debug.

fild kjie@CHPCaliALAgUW;

Figure 11. Obfuscated function GyQV7V7HyQ()

We keep digging into the new function. Based on previous versions of Ploutus, we expected
some keylogging to be running in the background. Based on prior discoveries, we pressed
some F keys and eventually got a new hit at compileMethod (see Figure 12). When we
looked at the stack trace, we identified the function that contained the deobfuscated MSIL
Code that was about to call compileMethod to get executed!

10/27

GQa2qgrta795LeasM25.vlIgs0MEXIJEDAGwW36.NvQ34uZt895nxEhi2FIr()

B Command - C:\jtautec'exe’ Itautec.exe - WinDbg:10.0.17763.132 X86

clriit |ICILJit: compileMethod: -
62123700 55 push ebp

*#xx TARNING: Unable to wverify checksum for C “Windows“assembly-Hativelmnages v4.0.30319_ 32 Systen.Vindows. Forms-59978
*#%x% ERROR: Module load completed but symbols could not be loaded for C:“Windows“assenbly-Nativelmnages w4 0.30319_32~
0:005> ICLRStack

05 Thread Id: 0=c30 (5)

Child SP IP Call Site

03b%=7a0 6e2le3?00 [InlinedCallFramne: 03b%=7al]

0L 8o T8 L Oe 8l DomodweBound TTCtubClone TT S TR Dlwocleo Tx b Dty Todb Db Lot Dt AREE R ARECE S “ﬁ
Iggtgs?aa 00288299 GQalqrta?95least2s v1IgSOnEXLIEDAGw3E Nv(Q34uZtB895nxEhi2FIr(IntPtr, IntPtr, IntPtr, Ulnt32, ImkPtr.
" S i dm 2 st 3 e a a i e e e verTe Rl —rr —rr —rr —rr —rr T
03b%efc 0022d0ba [PrestubMethodFrame: 03b9%sefc] Launcher DIEBOLDF . HookCallbackKEeyboard{(Int32. IntPtr. IntPtr)
03b9£080 0022d0bs [InlinedCallFrames: 03L3£080]

03b9f07c £d4cdd4f?0 DomainBoundILStubClass, IL_STUE Plnvoke(MSG ByRef, System. Runtime. IntercopServices HandleRef, Int32,
03b9€080 £4c832f6 [InlinedCallFramne: 03b9f080] System. Vindows Forms. UnsafelativeMethods PeekMesssage(MSG ByRef. Syste
03b9f0cd 64ch832f6 System. Windows. Forms.Application+Componentianager . System. Vindows Forms. Unsafelativelethods. INsoCom
03b9f0c8 £4cB82f38d [InlinedCallFrame: 03b9%f0c8]

03b9f150 £4c82f3d System. Windows. Forms. ipplication+ThreadContext RunMessagelooplnner(Int32, System . Windows. Forms. App
03b9flal £4ci2de3 System. Vindows. Forms. Application+ThreadContext RunMessageloop{Inti2, System Windows. Forms. Applicat
03b9% lce 64cfbi3d System Windows Forms Application. Run(System. Vindows Forms. Form)

03b9fle0 01243518 Launcher DIEBOLDP . LYHGSXFhjMalj7FHi4(System. Object)

03b9f1e8 01242390 Launcher DIEBOLDE.FormStart()

03b9f1f8 62962201 System.Threading. ThreadHelper ThreadStart_Context(System.Object)

03b9f204 62988604 System.Threading. ExecutionContext Runlnternal (Systen. Threading.ExecutionContext, Systen.Threading.
03b9£270 62988537 System. Threading ExecutionContext Run(Svsten. Threading ExecutionContext. Systen. Threading ContextC
03b9£f284 £=9884f4 System.Threading. EzecutionContezt Run{Systen.Threading EzecutionContext, Systen.Threading ContextC
03b9f29c Be962d5b System.Threading . ThreadHelper ThreadStart()

03b9f480 pfaffl6t [GCFrame: 03b9f480]

03b9f5cd 6faffl6é [DebuggerlU2MCatchHandlerFrame: 03b9£5c4]

-
| | L

[3:0055 |

o] I

Figure 12. Identifying the function that contains the deobfuscated MSIL Code

By accessing that function, as shown in Figure 13, the deobfuscated MSIL code is passed to
the original compileMethod function (line 35). This process is described further in the Phrack
article (referenced above). As a result, we receive the second parameter, the
CORINFO_METHOD _INFO structure, where we can get the address where the MSIL Code
is located and its size (highlighted in yellow):

struct CORINFO METHOD INFO

{
CORINFO METHOD HANDLE ftn;

AAAAAANNN

CORINFO MODULE HANDLE scope;
BYTE * ILCode;

unsigned ILCodeSize;
unsigned maxStack;
unsigned EHcount;
CorInfoOptions options;
CorInfoRegionKind regionKind;

CORINFO SIG INFO args;
CORINFO SIG INFO locals;

11/27

With this information, we can either dump the MSIL Code from memory via DnSpy or directly
in Windbg, and we are all set! An excellent tool written by @s4tan deobfuscating a previous
variant of Ploutus.

\udoze, \uoeze, \u@d20, [MarshalAs(Unmanag

num;

(\u0e2e,

[nJm:;

(\uwoe2e, \ude20, \ued20, \ut@20, \ud2e, r=T \udd20);

(\wee20, \ueo20, \udd20, \uee20e, \udoze, \u@2e) ;

Figure 13. Call to the original compileMethod function
Now, let’'s compare the results by looking at the function Launcher.KeyBoard::RealStart()
before deobfuscation. We can see it is empty in Figure 14.

Figure 14. Functions before been deobfuscated
And then, after the magic happens, we can see in Figure 15, the deobfuscated MSIL Code
ready to be analyzed!

12/27

http://antonioparata.blogspot.com/2018/02/analyzing-nasty-net-protection-of.html

[.method private hidebysig static void RealStart{object KeyData) cil managed noinlining

// Code size 2174 (0x87e)
-maxstack 58
IL_B088: br.s IL_o8e7
IL_B882: call [ERROR: INUALID TOKEN Bx48121C03]
IL_B80887: ldc.is Bx43
IL_B8Bc: stloc ue
IL_B8818: br IL_ae15
IL_@015: 1ldloc u_B
IL_B819: switch
IL_#6d1,
IL_e528,
IL_#758,
IL_#78a,
IL_0432,
IL_#1c7?,
IL_08248,
IL_67eb,
IL_#3a2,
IL_B812e: by IL_86d1
IL_A#133: call void Launcher.Launch::LaunchClientTest()
IL_@138: 1ldc.ih Bx30
IL_813d: br IL_8619
IL_@142: 1ldarg.9
IL_8143: call valuetype [System.Windows.Forms]System.Windows.Forms.Keys Launcher .Keyboard: :KTsHkpgSWYncEH3cfUa(object)
IL_8148: 1ldc.is.s 49
IL_A14a: beq IL_@68c
IL_814F: 1ldc.ih Bx3e
IL_8154: by IL_8619
IL_@159: call void Launcher.Launch::LaunchDieboldDiagnostic()
IL_@15e: 1ldc.ih 27
IL_8163: br IL_0619
IL_A168: ecall void Launcher .Heyboard::gDWZpCgUBsqgGOhWRB]()
IL_@16d: ldc.is Bx2a
IL_B172: eall bool Launcher.Keyboard::ITEtgdgtiWFZFB03uGd()
IL_B8177: brtrue IL_8619
IL_B817c: pop
IL_817d: by IL_8815
IL_#182: 1ldarg.8
IL_#183: call valuetype [System.Windows.Forms]System.Windows.Forms.Keys Launcher .Heyboard: :KTsHkpgSWYncEH3cfUa(object)
IL_A188: 1dc.is.s 128
IL_A18a: beq IL_868c
IL_B818F: 1dc.id 0x28
IL_8194: by IL_0619
IL_@8199: 1ldarg.@
IL_#19a: call valuetype [System.Windows.Forms]System.Windows.Forms.Keys Launcher .Heyboard: :KTsHkpgSWYncEH3cfUa(object)

Figure 15. Function after been deobfuscated

Understanding Ploutus-l Inner workings

With the MSIL Code in our hands, we can understand what is going on with this new variant.
The primary function we focused on is Launcher.KeyBoard::RealStart() since it triggers all the
actions executed by the malware. It implements a keylogger (already seen before) to
intercept all keys and numbers entered by the mule via an external keyboard. It is essential to
mention that this variant was successfully executed in the Windows 7 and Windows 10
versions.

Ploutus-I encrypts all its strings. When needing one of them, the malware will call the
instruction ldc.14.s passing an offset as an argument that will be the pointer into a Unicode
byte array decrypted from the resources section at runtime pointing to the plaintext value. For
example, in Figure 16, the instruction "ldc.14.s 0x9f0", goes to the offset 0x9f0 and returns
the string "F8F1F1". You can see all the strings extracted in the Appendix A section at the
end.

13/27

IL_0741: ldarg.o

callvict

1 0742;

[rrZo7a7: 1dc.ic.s

J.J.._L..qb. Jix) U=)
IL 074e: l1dc.id
IL 075%3: br

77oranch if not equal--»> IL 03a2
Oxlb ffcase 27 --> 1L 0473
IL 001% swktich

instance void class [mscorlib]system.Collections.Ganaric.Dicticnary 2<int32 , int32xiadd (10,11
118 //F8 key |
TT 053

IL_0473: J1dsfid chizct Newlge.MemoryData: iCommand //Load the pressed ksys

IL_047g: ldc.id 0x5£0 /7 this i1s an index Lor string--»> "TETLTL"

IL UdVd: rcall chlzcl Launcher.FReyboard: i0TBeZygRoLULITIAIeR (1nL32)

IL_0482: call vold [mscorlib] System. Threading.Monitor::EBxibiobiject) s/Releases an exclusive lock on the specified object.
IL_0447: brialse IL_07ce

IL_048c: ldc.id 0xl //caze 1 —->IL_DEZO

IL_04%1: call clazs Launcher.Xevboard Launcher,Fevhoard: 1olfmghgybeDwdpvEXZX () 7/ ret kevobiect

IL_04%6: brfalse IL_001%_swtich

TL_04%k: pop

IL_043c: br

11_0015

Figure 16. Malware validating F keys entered
Following this process, we were able to identify the combinations to trigger specific actions to
Ploutus-I, as shown in Figure 17.

0x000003SFO
0x00000AO0D
0x00000A10
0x00000AZ0
0x00000A3S
0x00000R48
0x00000A58
0x00000AGSE
0x00000A7S8
0x00000ASS
0x00000ASS
0x00000ARC
0x00000ACO
0x00000AD4

"FRF1FL™ -—-> PrintsScreen.windows ()
"F8F2F2Z™ --> Launch.LaunchAgilis{);
"FEF3F3T —-=> Launch.LaunchXFs{);
"FBF1FZF3F4" --> Launch.LaunchClient ()
"FBFA4FS5™ -->» Launch.LaunchClientTest {);
"Far4r4n -—=> Launch.Reboot () ;
"F8F5F5" -—> Launch.LaunchCMD{} ;
"FBFGEFG" -->» Launch.LaunchDriver () ;
"FGFIFT" --> Launch.LaunchSysAPP () ;
"FEBFOFS™ -->» Launch.LaunchKill{):
"FSF11F11"™ -=2> Launch.LaunchDelete () ;

"F8F1Z2F12"
"F8F5FeFT"
|1[}11

Figure 17: Sequence of keys to execute specific actions
Some functions are from the previous version of Ploutus, but still work in this variant. As an
example, PrintScreen.Windows() that once the correct combination is received, the screen at

Figure 18 is displayed.

—-—-> Launch.
--> Launch.
--> Enter digits

LaunchPE() ;
LaunchDelete () ;

14/27

this WVBA = thalf vno can reset ik affer

Figure 18. Window displayed by Ploutus-I
Once the combination "F8F1F2F3F4" is entered by the criminals, the
Launcher.Launch::LaunchClient() is called as seen at Figure 19.

TI _OC A7 1-dcF1 - I-\-': o Wor T o TPt . I R S B mand
IL 054c: ldc.id Oxaz0 /7 offzet "FSFIFZFZF4’
TL 0951 call OO JECL LoUnCler. heyboard: tolBeZygBotULiJFJATI.E (Iint32) //returns string
IL 0556: call bool Launcher.Keyboard::bWosoPgdB] TWxSPEUKg monitor exit{object,object)
IL 055b: brfalse IL 02d5
IL 0560: 1dc.i4 0x4 // case 4 --> IL_ 0437
IL_0565: call bool Launcher.Reyboard::ITELgdgtXWFZE003usd_cmp_null ()
IL O56a: brtrue IL 001% swtich
IL 056f: pop
IL 0570: br IL 0015
I IL 0432: call wvold Launcher.Launch::Launchclient() //launch client I
IL_0437: 1dc.i4d Oxld //case 29 ——> IL_02d5
IL 043c: br IL 0013 swtich

Figure 19. Call to LaunchClient function

Then inside Launch.LaunchClient() function, we can see the offset 0x218 is used to decrypt a
string which ended up being “GG.exe” that eventually is able to control the XFS middleware
in the ATM (see Figure 20).

IL 0%4a: 1ldc.id 0x218 //GG.exe index string

IL 0%4f: call object Launcher.Launch::YLAIRBrUOTIUhUR1Bn (int32) //get GG.exe
IL 0554: call cbject Launcher.Launch: :dGaucqtdTNspO0GEZITEZY (object)

IL 0%53: stloc.s vV 15

IL 0S85b: 1dc.id 0x0

IL 05%60: call class Launcher.Launch Launcher.Launch::S1PKTARALIMTXAIS6GY ()

IL 0565: Dhrfalse IL 0974

IL 056a: pop

IL 0%6b: br IL 0970

15/27

Figure 20. “GG.exe” string is decrypted
Finally the binary gets executed but fails in our system since no DLLs are present. See
Figure 21.

p \ The program can't start because cswnapi.dll is missing from your
" computer, Try reinstalling the program to fix this problem.

license, time remaining, re-arm count (all except Windows XP):
r /dlv

Figure 21. GG.exe gets executed

Controlling XFS to dispense the money

The binary GG.exe and XFSGG.dIl are used to interface with Itautec/OKI XFS Middleware.
When examining the properties of GG.exe, it is described as "JIG NMD" as seen in Figure
22. This resembles a legitimate Itautec tool used to test the functionality of the Dispenser.
While it is not novel that criminals utilize ATM maintenance tools for malicious purposes, it is
interesting that the criminals behind Ploutus did not follow the same methodology to control
the XFS middleware directly. This suggests that the group behind Ploutus-I may not be the
same group that created prior variants.

D:\NGG.exe:
Uerified: Unsigned
Link date: 6:09 AM 168/17/2911
Publisher: Itautec

Description: JIG NMD
Product: JIG NMD
Uersion: 3.1.7
File version: 3.1.7

Figure 22. Itautec Maintenance tool
Additionally of note, the tool is written in Portuguese. In Figure 23, some extracts of the
strings in the binary are visible.

16/27

K7 rej. falha shutter indo para empilhamento
K7 rej. falha fechando o K7

K7 rej. falha shutter indo pf rej. simples

K7 rej. falha shutter indo p/ rej. pacote

K7 rej. erro de check sum nos dados do K7
Mota entre sensor rejeicao e NoteQualifier
Mota no sensor de rejeicao

Mota enviada a rej. simples no empilhador
Falha de comunicacao com K7 de rejeicao
Mao implementado

Sem K7

Intervencao necessaria no K7

Mivel baixo no K7

K7 vazio (K7 baixo nao detectado)

K7 vazio

K7 vazio-Alimentacao continua em outro canal
K7 marcado como vazio

O feeder nao consegue alimentar as notas
Aliment. interrompida-MNota entre feeder @ NQ
Falha de sensor { NF ou NFC)

Aliment. interrompida-Rejeicao simples cheia
Rej., pacote,abortado nova alimentacao notas
Impossivel abrir ou fechar o K7

Falha de alimentacao com canal

Impossivel comunicacao interna com canal
Tarefa note feeder nao pode ser iniciada

Mao implementado

Falha nos pulsos de clock

Velocidade motor principal nao alcancada
Velocidade motor principal abaixo tolerancia
Velocidade motor principal acima tolerancia
Impossivel acesso a tarefa de transporte
Tarefa transporte nao pode ser iniciada

Mao implementado

Figure 23. Tool written in Portuguese

GG.exe opens a session with the Dispenser by using its logical name as
‘“NDC_CASH_DISPENSER?” in order to request information via code number 310 and action
“WFS_INF_CDM_CONF” as shown in Figure 24.

17/27

=UD_SL0ULO
offset aWfsgetinfoWfsI ;]| "WFSGetInfo(WFS_INF_CDM_CONF)"
offset unk_469AAC

j_strcpy

esp, 8

eax, [ebp+var_140]
eax

@Csh

310
cx, word_ 469978
ecx

j_WFSGetInfo

- L

Figure 24. GG.exe asking for Dispenser Status

Once the session opens, GG.exe reads data from the Dispenser via
"WFS_CMD_CDM_READ_DATA" action, typically to get the total number of notes (bills)
available and denomination. See Figure 25.

auu ::P_, o

push offset aWfsexecuteWfsC ;|”u=S§xecute[M=S_CRD_CDH_READ_DAT;}”
lea edx, [ebp+var_9D54]
push edx

call j_strcpy

add esp, 8

push offset dword_469B9C
push 27106h

mov eax, dword_46A794
push eax

push I 329

mov cx, word_469978
push ecx

call j WFSExecute

Figure 25: Gathering information from the Dispenser

In the next step, Ploutus-I requests an activation code, similar to a software license. This
code enables criminals to limit the number of times the mules can use Ploutus-I to once a
day. If the code is correct, it's "show me the money" time! In this stage, the XFS command
"WFS_CMD_CDM_PRESENT" instructs the Dispenser to present the requested bills to the
mule (see Figure 26).

18/27

o UWUIu_=oR/2%, 0
push offset aWfsexecuteWfsC_8 1 "WFSExec
push offset unk_469AAC
call j_strcpy

L

m
e’
I
M
=
t
m
n
Pl
~
(]
Cl
|}
|
m
iy
™m
_{

add esp, 8

push offset dword_469B9C
push 3E8h

mov eax, dword_46A794
push eax

mov cx, word_ 469978

push X
call rﬁwaSExecute

Figure 26. “Show me the money”time!

As expected, the criminals know the exact ATM version they are targeting and its physical
capabilities. As a result, in every round of attacks, the malware requested the maximum
amount of bills to retrieve. In this case, the maximum number is 70, starting from the cassette
with the highest denomination, to equal $35,000 MXN (~$1677 USD) per round. All the
dispensing activity is stored in the log in: C:\itautec\exe\LibraryLog.txt. See Figure 27.

Activacion Correcta Codigo:

WESExecute Result([-351] Data Leng [l] Cassete 1: 0 Cassete 2: 0 Cassete 3: 0 Cassete 4: 70 Cassete 5: 0
WES_CMD_CDM_PRESENT |Result[0]

WEFSExecute Result[-351] Data Leng [l] Cassete 1l: 0 Cassete Z2: 0 Cassete 3: 0 Cassete 4: 70 Cassete 5: 0
WES_CMD_CDM_PRESENT Result([0]

Figure 27. Malware cashing out

Also, Ploutus creates a SQLite Database at
c:\Users\%USERNAME%\AppData\Roaming\NewLog, showing the dispensing related
activities. See Figure 28.

19/27

Id

Figure 28. Dispensing Activity Logging

Recommendations

Periodic check of AV whitelist folders to make sure they are up to date and do not have
malicious paths added

Automatic updates for all the software running in the ATM if possible
Up-to-date AV signatures

A proper implementation of hard disk encryption, but it is critical to do it correctly. An
incomplete implementation can allow an attack to sniff the Volume keys from TPM to
CPU over SPI/I2C bus, among other flaws.

Next-generation centrally managed end-to-end encrypted cameras with tampering
detection, motion alerts and facial detection

Periodic ATM Penetration Testing to identify vulnerabilities and countermeasures at
Hardware, Middleware, Firmware and Software level

Make sure your provider generates of Indicators of Attack(IOA) and Indicators of
Compromise (IOCs) during this exercise to improve the detection and monitoring of
these attacks

20/27

Set alerts on specific events inside the Journal, AV, EventLog or XFS log to detect and
respond to these attacks in a timely manner

Make sure your provider understands the format of the Journal of your ATM and can
recommend what type of events to monitor.

Who we are

Ocelot, by Metabase Q, is the leading Offensive Security team in Latin America. This elite
team of researchers represents the best of the best, partnered together to transform
cybersecurity in the region. Ocelot threat intelligence, research, and offensive skills power
Metabase Q's cybersecurity managed solutions.

Our Advanced ATM Penetration testing covers logic and physical attacks. We test ATMs with
customized malware like Ploutus and others, as well as perform multiple physical attacks in
the Dispenser, including Endoscope, TPM sniffing, DMA Attacks, TRF, CMOS Shock, etc., to
provide a real assessment experience.

Do you know how your systems would perform with ransomware or other advanced attacks?
Due to our reverse engineering capabilities, we track and dissect APTs to replicate their TTPs
in our customers' environment. As a result, we are able to simulate advanced attacks and
measure your security controls' effectiveness and investment

Do you have devices? IoT/ICS? We can assess them as well, from Hardware, Boot Loader,
Middleware, Firmware all the way to Application level

We wrote the first secure code guideline for BASE24 to find vulnerabilities at the Switch or
Bank BASE24/CONNEX to identify payment authorization bypass and PCI violations.

Please reach out at contact@metabaseq.com

Indicators of Compromise:

Paths:

C:\itautec\exe*
C:\itautec\exe\LibraryLog.txt
c:\Users\<user>\AppData\Roaming\NewLog

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\UserInit

21/27

https://www.metabaseq.com/https://www.metabaseq.com/en/solutions/research
http://10.10.0.46/mailto:contact@metabaseq.com

Appendix A

Decrypted strings

IEBOLDP6
C:\Diebold\EDC\edclocal.dat2
[Launcher Client] Request
[LauncherSysApp] Request
CMD.exe /C wmic os where Primary="TRUE'
reboot [Launcher]
TaskKill.exe /F /IM

GG.exe /[F)M
NDCPlus.exe /F /IM
winvnc.exe /F /IM
MSXFSEXE.exe /F /IM
CajaExpress.exe

GG.exe
C:\NDC+\Lib\MsXfsExe
C:\NDC+\Bin$

[Launcher Client] Admin /C
TaskKill /F /IM
XFSConsole.exe /C

START XFSConsole.exe /C
TaskKill /F /IM

NewAge.exe /C

START NewAge.exe P /C

"C:\Program Files\Diebold\AgilisStartup\AgilisShellStart.exe"

22/27

[Launcher] Start

AgilisT:\Program Files\NCR APTRA\SSS Runtime

Coren:\Program Files\NCR APTRA\SSS Runtime Core\ulSysApp.exe

[LauncherSysApp]
"C:\Probase\ProDevice\BIN\ProDeviceStart.bat"
C:\Probase\ProDevice\BINS /C

START Delete.bat & pause /C

CMD.exe

[Launcher] Start

CMD procexp.exe

C:\ProgramFiles\Diebold\AMI\Diagnostics\bin\Diebold.Ami.Diagnostics.Diagnostics.exe

C:\Program Files\Diebold\AMI\Diagnostics\bin$ /C
START Main.exe /F /IM

CMD.exe

[Launcher] Start

END /F /IM

Wscript.exe /F /IM script.exe /F /IM vpncli.exe
DIEBOLDJ[Launcher Client]

Inicio Directo BootH

[Launcher Client]

Inicio Directo EPP

LauncherStart

Loading Wait

Press[Esc] to Continue

Software\Microsoft\Windows NT\CurrentVersion\winlogon

23/27

/C net localgroup administrators /add
[Launcher]

UserPermision Done

Done

[LauncherConfig:]

Service: >[LauncherConfig:]
Launch Menu: <[LauncherConfig:]
Launch App: <[LauncherConfig:]
LaunchDate: 6[LauncherConfig:]
TimeOut: 8[LauncherConfig:]
ReadFile: B[LauncherConfig:]
ExternalDrive: 2[LauncherConfig:]
Patch:

Reset.txt

[Launcher] Windows 7 Detected
install /c

C:\Windows\Microsoft. NET\Framework\v2.0.50727\InstallUtil.exe: & net start DIEBOLDP &
pause

installonly

& pauseuninstall /c

C:\Windows\Microsoft. NET\Framework\v2.0.50727\InstallUtil.exe/u
test

[Launcher] Starting App Mode Detect Windows 7.B[Launcher]
Starting Service Mode.:[Launcher]

Starting App Mode.Launcher

24/27

43246******4354
5204167231340092
CopyData:

$Config

Read

Start

File Exist.

File Open.

Read End.

Error.

Config New File.
Agilis.log

Config New File
Close.

ConfigCopy:

N.bin

Ploutos

Log.txt

Diebold Event
LogTSYSTEM\CurrentControlSet\Services\DIEBOLDP
Typej
SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon

Userinit /C REG
ADD"HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVersion\Winlogon" /v
Userinit/t REG_SZ /d "" /f

cmd.exe

25/27

Abrir

Arial

Black

Cerrar

Reiniciar

\\.\DISPLAY1

TEST OK

DISPLAY2

END OK

Could not impersonate the elevated user.
LogonUser returned error code {0}.
Load

Ver archivo adjuntoButton Text

Sigue leyendo

Para descargar el archivo y seguir leyendo, por favor danos la siguiente informacion.
Al menos Nombre de pila y un apellido

Por favor utilice su e-mail de trabajo

Gracias, haga click abajo para ver el archivo.

Descargar
Algo salié mal, por favor intente de nuevo.

Keep reading

To download this file and keep reading, please fill out the following form.

At least First and Last Name
Please use your work e-mail

Thank you, click below to view the file.

26/27

DOwnload
Oops! Something went wrong while submitting the form. Please try again.

Related

Relacionado

27/27

