
1/14

Malware in Images: When You Can’t See “the Whole
Picture”

blog.reversinglabs.com/blog/malware-in-images

Threat Research | March 2, 2021

Blog Author

https://blog.reversinglabs.com/blog/malware-in-images
https://blog.reversinglabs.com/blog/tag/threat-research

2/14

Karlo Zanki, Reverse Engineer at ReversingLabs. Read More...

Introduction

Malicious actors often want to get information of interest from targeted computer
environments. To achieve this goal, they usually decide to plant some kind of software that
will provide that information continuously. Throughout history, the most common way of doing
that was to plant an executable file and make it run. Over time, the defensive systems
improved and became more successful at detecting such executable implants. In this cat-
and-mouse game, both sides try to improve their tools and, as defensive tools get better,
malware actors try to find new ways of smuggling malicious software into a system. There
are several popular ways of doing this, suchs as embedding malicious code into various
document formats or executing malicious code in memory without saving anything on disk.
As time passes, security solutions are becoming increasingly more aware of such threats.

ReversingLabs continuously improves its malware-detection capabilities. One of the more
novel methods that caught our eye is hiding malware inside image formats like PNG, BMP,
GIF or JPEG. Recently, we enhanced our platform support for unpacking these image
formats, and listed some of those improvements in one of our previous blog posts.
In this blog, we will demonstrate how these new enhancements can be used to discover
novel malware threats and showcase several examples of images with hidden PHP
executable content. Most of them try to fetch additional resources from a remote server and
use different kinds of obfuscation to hide their malicious intents. As an example of threat
hunting via this new functionality, a hidden web shell which led to discovery of a vulnerable
web site will also be shown.

Malware hiding in images

https://blog.reversinglabs.com/blog/author/karlo-zanki
https://blog.reversinglabs.com/blog/platform-technology-updates-better-malware-detection-for-multiple-image-formats-with-titaniumcore

3/14

Image formats are interesting to malware authors because they are generally considered far
less harmful than executable files. Images can be used to deploy malware in combination
with a dropper, where the dropper acts as a benign executable which parses malicious
content hidden inside of an image.

One area where this technique can be used are web uploads. Many websites enable
uploading image content, but improperly filter out executables and scripts. In such cases,
malicious code can be packed into an image and uploaded to a web server containing a
potential vulnerability which enables execution of its contents. Probably the most familiar
type of such payloads are PHP web shells.

Threat actors discover and exploit vulnerabilities in applications used to parse image
formats. To remain undetected and avoid attracting the attention of security tools, they
typically try to create files which adhere to the image format specification whenever possible.

The simplest way to embed malicious content into an image is to append it to the image end,
or, as it’s commonly referred to, the overlay. Malicious actors typically just take a benign
image file and append some content. This makes it a well-known method that is quite easy to
detect.

For example, in the case of a GIF file, all bytes after the GIF’s trailer byte (0x3B) can be
considered an overlay. In the case of a PNG file, everything after the end of the IEND chunk
can be considered an overlay. This is conceptually the same as appending content to any
other regular file format, so we won’t go into more details about overlays in this blog post.

Another interesting place to look for malware when analyzing image samples are the EXIF
tags. These tags are metadata fields used to store additional descriptive data about the
image, like the model of the camera used to take the picture, the date and time when the
picture was taken, or even the geolocation of the place where the image was taken. This
data is part of the image format, but it isn’t required for the image's visual interpretation and
some tools used to view the images opt to not present all of these tags to the users, which
makes them a great hiding place.

Malware in PHP EXIF tags

Titanium Platform uses a proprietary parser to extract these metadata fields and makes it
possible to search for images based on their EXIF metadata content. Therefore, an
interesting starting point is searching for images containing PHP code in their EXIF tags.
Even such a simple search query provides a few worthy results.

4/14

Using A1000’s advanced search to find sample with PHP code in exif tags

The first one in the list is a file with the b497e231d19934c5d96853985bdbc147589a9a77
SHA1 hash. Analyzing its Artist and ImageDescription EXIF tags reveals PHP code getting
content from a URL. Even though this isn’t necessarily malicious behaviour as it can have
some legitimate uses, it is also quite possible that such PHP code could be used to fetch
malicious content from a C2 server.

EXIF data from b497e231d19934c5d96853985bdbc147589a9a77 sample

The second one in the list is a file with the 518178bdd959ca17eca15777d38499bc9f3d95ad
SHA1 hash. It has quite a large code snippet in its Copyright tag. At the beginning of the
snippet are some manipulations of PHP comments. It seems that the code is trying to
conceal the fact that it is a PHP script by commenting out the PHP opening tag. Regular
PHP parsers would ignore the comment opening before the tag. However, some tools might
have a different implementation of the PHP parsing algorithm.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_01.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_02.jpg

5/14

EXIF data from 518178bdd959ca17eca15777d38499bc9f3d95ad sample

A detailed look at the code reveals that it tries to open a socket to a specific IP address and
port, then uses that socket to fetch a stream of data and execute it with the eval() function
afterwards. Even though the IP address is from the private IP range, it is hard to imagine a
legitimate reason for embedding this kind of code into an EXIF tag of an image. Such a
sample could be used for lateral movement by a malicious actor within the private network
after getting the initial foothold.

The third example is a file with the 1c308589a493469416df53acaa75a7fd4aed7e65 SHA1
hash. The only EXIF metadata it has is a Copyright tag. It is obvious that this is a specifically
chosen sequence of bytes. A bit of googling provides a quick answer: this PHP code was
used in the past to check if a server is vulnerable to file inclusion attacks. Mainly on sites

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_03.jpg

6/14

using Content Management Systems like Joomla or Wordpress.

EXIF data from 1c308589a493469416df53acaa75a7fd4aed7e65 sample

While this PHP code on its own is detected by the majority of security tools, hiding it inside of
an image drastically reduces the detection rate. It is understandable why detection rate was
low 10 years ago when this code was first spotted in the wild, but the problem is that the
detection rate of this type of code smuggling hasn’t significantly improved over the years.

How a packed web shell led to a vulnerable website

Previous samples were found using the Titanium Platform’s advanced search engine, but
another way of finding interesting files is by using the ReversingLabs YARA Retrohunt
feature.

rule image_eval_hunt
 {

 strings:
 $png = {89 50 4E 47}

 $jpeg = {FF D8 FF}
 $gif = "GIF"

 $eval = "eval("
 condition:

 (($png at 0) or ($jpeg at 0) or ($gif at 0)) and $eval
 }

YARA rule for hunting samples with eval call

The provided YARA rule is trying to match samples starting with some of the magic byte
sequences characteristic for image formats and also have the string “eval (” within, meaning
they potentially have a call to an eval function somewhere in the image content which isn’t
expected in multimedia files. TitaniumCloud YARA Retrohunt provides quite a few samples,
and after analyzing the results, two interesting ones emerge. Both of these samples have
PHP code in a regular image segment.

The first one is a file with the e3a64475e1272f34fe8a9043b486d60595460aa2 SHA1 hash.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_04.jpg
https://www.reversinglabs.com/solutions/hunt-threats-continuously

7/14

ReversingLabs A1000 - Sample summary

It is visible from the summary that this is a JPEG image. The summary also shows that
Titanium Platform detected and extracted an additional file from it. Quick examination of the
extracted files shows that it is recognized as a Text/PHP file, and by using the A1000’s
Preview Sample feature its content is shown. This simple PHP script first decodes a base64
encoded string and then calls the eval function on the decoded content.

Content preview of the segment extracted from the image sample

The base64 encoded string can be decoded with a handy tool called CyberChef. This
operation leads to more obfuscated PHP code which can be seen in the following image.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_05.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_06.jpg
https://gchq.github.io/CyberChef

8/14

Result of the first layer base64 string decoding

Code above performs self-deobfuscation and results in yet another layer of obfuscated code.
This obfuscation method includes inserting ‘I’ character at random places in some of the
string literals, and inserting of ‘an’ character sequence to hide create_function string.

The simplest way to deobfuscate such PHP code is to copy/paste it to a PHP sandbox and
replace the last line of code with an echo on the $H variable. This will print out the
deobfuscated code.

Result of deobfuscating the second layer code

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_07.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_08.jpg

9/14

This is the last layer. It takes raw data after the HTTP-headers of the HTTP-request and tries
to find content delimited by values specified by the $kh and $kf variables. When the regular
expression gets matched, it takes the content between the delimiters, decodes it via base64,
and passes it as an argument to function x that performs simple XOR decryption on it. The
output of all these operations is a compressed stream which is decompressed and then
executed by the eval function.

Beside the information on the functionality of the code embedded within the image, Titanium
Platform also provides a way to find the origin of a sample. Looking at the sources from
which this sample was acquired, an interesting URL reveals itself.

ReversingLabs A1000 - Source of the sample

This sample can be found in the wild on a live web location behinburg.com. This address
hosts a legitimate-looking Iranian travel agency’s web-site. The URL path contains an
interesting directory structure with “uploads” that have an unrestricted access to content
uploaded by the users. The website also doesn’t try to restrict unauthorized users from
exploring the directory structure. The contents of the directory where this image was located
included 35 other files uploaded between the 11th and 12th of December 2020. They all
contained some kind of a web shell and were obviously used in an attempt to compromise
this server.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_09.jpg

10/14

Directory listing

Using our telemetry, we weren’t able to conclude if the attacker attempt was successful.
However, in this case the attacker didn’t need to get any additional privileges to get sensitive
data. In the same upload directory, besides the files uploaded by the attacker, a lot of images
containing passport scans could be found. This travel agency enables its users to apply for
Iranian visas using their web page. In order to apply, the users need to upload a passport
scan through the webform.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_10.jpg

11/14

Part of the visa application form

The uploaded images appear to be kept on the server for an indefinite time. It is a very poor
security practice to keep unprotected and unencrypted files in a publicly accessible web
directory. Users are recommended to consider other options before uploading scans of their
personal documents to any web page. There are many similar web sites that fail to follow the
best security practices when it comes to handling personal information.

When small PHP code brings in his big friend

The last sample we will look into is a JPEG image with an embedded PHP script in one of its
regular segments. This keeps it in line with the JPEG format specification. Titanium Platform
can easily detect and extract such embedded malicious content.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_11.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_12.jpg

12/14

Sample summary

Looking at the preview of the extracted image segment shows that this is yet another
obfuscated PHP script. This time the obfuscation method is creating a URL string by calling
the chr function on integer values representing ASCII codes. The output characters are then
concatenated to form the resulting URL.

ReversingLabs A1000 - Preview of the segment content

The PHP comments between the $password and $c variable assignment are encoded in ISO
2022 Simplified Chinese, giving us a clue about the possible origins of this malicious script.

The entire PHP code, with deobfuscated constants in comments, can be seen in the
following image.

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_13.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_14.jpg

13/14

Script contents

The deobfuscated URL “http://i.niupic.com/images/2017/05/21/v1QR1M.gif” was accessible
at the time of writing. It hosted a file with the
370788d26150bba413082979e26da4cd6828a752 SHA1 hash.

This is a compressed Gzip stream containing a PHP webshell. It is 145KB in size with almost
3,000 lines of PHP code, comprising functionalities that include privilege escalation,
operation on the SQL database, file download, port scanning and a few others.

Most of the string literals in the messages displayed by the webshell are encoded in the
already mentioned Chinese character set.

Googling for intelligence on the specific strings shows that some Chinese sources call this
type of webshell PHP Malaysia backdoor, with one similar sample found in this github
repository.

Conclusion

Image formats can be as dangerous as executables, and Titanium Platform is a reliable
partner that can quickly detect such embedded threats. Even though in most cases images
are used as a non-executable container for the malware, there are instances where images
can trigger execution if placed in an unexpected, misconfigured place. For example, the
described PHP web shells placed on a vulnerable server.

This is why every piece of content entering a business network must be analyzed and
checked for malicious content, regardless of the file format. Malware authors and threat
actors will always look for blind spots where they can bypass defenses. Having detection
gaps can lead to severe business operation interruption and cause brand damage.

ReversingLabs makes continuous improvements to its products in order to keep on track
with never-sleeping malware authors. While some security solutions might help you detect if
a non-executable file contains something that might be considered malicious, Titanium
Platform provides you with additional information which helps you to understand how, where
and why content is characterized as malicious. Its inspection capabilities give you the ability
to analyze and collect metadata from over 400 file formats. To detect malware before it
becomes a problem.

IOC list

The following list contains SHA1 hashes of the samples mentioned in this blog post.

https://github.com/ysrc/webshell-sample/blob/master/php/0a8e7002d9c256117a1dad9b1460e3c9ecb9a698.php
https://www.reversinglabs.com/products/malware-analysis-platform
https://blog.reversinglabs.com/resources/explainable-threat-intelligence

14/14

b497e231d19934c5d96853985bdbc147589a9a77
518178bdd959ca17eca15777d38499bc9f3d95ad
1c308589a493469416df53acaa75a7fd4aed7e65
e3a64475e1272f34fe8a9043b486d60595460aa2
9b7284f89af7174a1d3ba91330f67c08a0054c60
370788d26150bba413082979e26da4cd6828a752

Read Other Research Blogs by Karlo:

MORE BLOG ARTICLES

