An Exhaustively-Analyzed IDB for FlawedGrace

msreverseengineering.com/blog/2021/3/2/an-exhaustively-analyzed-idb-for-flawedgrace
March 2, 2021

| %

L

March 2, 2021 Rolf Rolles

This blog entry announces the release of an exhaustive analysis of FlawedGrace. You can

find the IDB for the main executable, and for the 64-bit password stealer module, here. The
sha1sum for the main executable is 9bb72ae1dc6c49806064992e0850dc8cb02571ed, and
the md5sum is bc91e2¢139369a1ae219a11cbd9a243b.

Like the previous entry in this series on COmRAT v4, | did this analysis as part of my
preparation for an upcoming class on C++ reverse engineering. The analysis took about a
month, and made me enamored with FlawedGrace's architecture. | have personally never
analyzed (nor read the source for) a program with such a sophisticated networking
component. Were | ever to need a high-performance, robust, and flexible networking
infrastructure, I'd probably find myself cribbing from FlawedGrace. This family is also
notable for its custom, complex virtual filesystem used for configuration management and
C2 communications. | would like to eventually write a treatise about all of the C++ malware
family analyses that | performing during my research for the class, but that endeavor was
distracting me from work on my course, and hence will have to wait.

(Note that if you are interested in the forthcoming C++ training class, it probably will be
available in Q3/Q4 2021. More generally, remote public classes (where individual students
can sign up) are temporarily suspended; remote private classes (multiple students on behalf
of the same organization) are currently available. If you would like to be notified when public
classes become available, or when the C++ course is ready, please sign up on our no-
spam,_very low-volume, course notification mailing_list. (Click the button that says "Provide
your email to be notified of public course availability".))

(Note that | am looking for a fifth and final family (beyond ComRAT, FlawedGrace, XAgent,
and Kelihos) to round out my analysis of C++ malware families. If you have suggestions --
and samples, or hashes | can download through Hybrid-Analysis -- please send me an
email at rolf@ my domain.)

About the IDB

Here are some screenshots. First, a comparison of the unanalyzed executable versus the
analyzed one:

1/6

https://www.msreverseengineering.com/blog/2021/3/2/an-exhaustively-analyzed-idb-for-flawedgrace
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
https://github.com/RolfRolles/IDBs/tree/master/FlawedGrace
https://www.msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4
https://www.msreverseengineering.com/training-classes
https://www.hybrid-analysis.com/

Ere. 0 @EeB EveB Bo.@ BB E Boa. @ Eesew. B [Fruncons .. [| [E rseudo. (] [Epatsbasen. B | Elst. [Bloa. @ | Elen. E
lbool __fastcall sub_433C6@(int *al, int a2) 1|// Used when creating or modifying a DataHivePack. Creates a

!
/1 @

if (

1

2

3

4

5 v3 =
6

7 {
8

9

OLLAPSED LOCAL DECLARATIONS. PRESS KEYR

*(_DWORD *)(a2 + 28);
*((_BYTE *)al + 56))

if (w3)
v1i2z = *(_QWORD *)(al[6] + 4@ * v3);

18 else
11 v12 = @i64;
12 v4 = *(_DWORD *)(az + 12);
13 if (v4)
14 v13 = *(_QuWORD *)(al[6] + 4@ * va);
15 else
16 vl3 = @ied;
17 v5 = *(_DWORD *)(a2 + 24);
18 if (w5)
19 vi4 = *(_QWORD *)(al[7] + 4@ * v5);
28 else
21 v14 = @i64;
22 ve = &v12j;
23 vl5 = *(_BYTE *)(a2 + 36);
24 vl6 = *(_WORD *)(a2 + 38);
25| }
26| else
27| {
28 if (w3)
29 vl7 = *(_DWORD *)(al[6] + 4@ * v3);
3e else
31 vi7 = @;
32 v7 = *(_DWORD *)(a2 + 12);
33 if (V7))
34 vig = *(_DWORD *)(al[6] + 4@ * v7);
35 else
36 vlg = @3
37 v8 = *(_DWORD #*)(a2 + 24);
38 if (v)
39 v19 = *(_DWORD #)(=1[7] + 4@ * v8);
48 else
a1 vio = @;
42 v = (__int64 *)&vl7;
a3 v20 = *(_BYTE *)(a2 + 36);
44 v21 = *(_WORD *)(a2 + 38);
as| '}
46| v22 = *(_DWORD *)a2;
47| w23 = *(_DWORD *)(a2 + 4);
48| vl1l = *alj;
49| v9 = #(void (__cdecl *#*)(int, int, int *, ch
5e| v24 = 9;
51| w9(vll, 5, &v22, &v24);
52| if (lvz4)
53 return @;
54| w23 = al[15];
55| return 21[15] == (*(int (__cdecl **)(int, in
56|}

// serialized representation of the pack metadata, and write
// the raw bytes into the stream. Return false on stream failure.
bool __fastcall DataHive::SerializePackToStream(DataHive *this, DataHivePack *aPack)

{

unsigned int vSiblingIdx; // eax

unsigned int vFirstChildIdx; // eax MAPDST

unsigned int vFirstEntryldx; // eax MAPDST

DWORD *vpSerializedPack; // ebx

size_t (__cdecl *fpStream)(ByteStream *, StreamOperations, DWORD *, DWORD *); // cax
ByteStream *vpStream; // [esp-12h] [ebp-58h]

SerializedPack64 vSer64; // [esp+Ch] [ebp-3Ch] BYREF

SerializedPack32 vSer32; // [esp+28h] [ebp-20h] BYREF

unsigned __int64 vThisPackStreamPes; // [esp+38h] [ebp-18h] BYREF

char vSetPosStatus; // [esp+43h] [ebp-5h] BYREF

vSiblingldx = aPack->dwNextSiblingPackIdx;
// The DataHive class can use 64-bit or 32-bit encodings for
[/ stream positions. The latter are obviously smaller. Here we
// determine which encoding is being used.
if (this->bUse64BitOffsets)
{
// The serialized packs store the stream position of the next sibling pack.
// Copy it if there is one; use @ if not.
if { vSiblingIdx)
vSerc4.qwStreamPos_NextSiblingPack = this->pPacksMem[vSiblingIdx].quwStreamPos;
else
vSeréd,qwStreamPos_NextSiblingPack = 8i64;
// Copy the stream position of the first child pack, or @.
vFirstChildIdx = aPack->dwFirstChildPackIdx;
if (vFirstChildIdx)
vSer6d.qwStreamPos_FirstChildPack = this->pPacksMem[vFirstChildIdx].quwStreamPos;
else
vSeréd,qwStreamPos_FirstChildPack = @ié4;
// Copy the stream position of the first entry, or 0.
vFirstEntryIdx = aPack->dwFirstEntryldx;
if { vFirstEntryIdx)
vSer6d.qwStreamPos_FirstEntry = this->pEntriesMem[vFirstEntryIldx].quwEntryStreamPos;
else
vSeréd.qwStreamPos_FirstEntry = @i64;
vpSerializedPack = (DWORD *)&vSer64d;
// Copy pack name metadata
vSer6d.bEntryNamelslideString = zPack->mPackNameIsWideString;
vSeréd.wEntryNamelen = aPack->mPackNamelen;
}
else
{
// The serialized packs store the stream position of the next sibling pack.
// Copy it if there is one; use @ if not.
if { vSiblingIdx)
vSer32.dwStreamPos_NextSiblingPack = this->pPacksMem[vSiblingIdx].quwStreamPos;
else
vSer32.dwStreamPos_NextSiblingPack = @;
// Copy the stream position of the first child pack, or ©.
vFirstChildIdx = aPack->dwFirstChildPackIdx;
if (vFirstChildIdx)
vSer32.dwStreamPos_FirstChildPack = this->pPacksMem[vFirstChildIdx].quStreamPos;
else
vSer3l.dwStreamPos_FirstChildPack = @;
// Copy the stream position of the first entry, or @.
vFirstEntryldx = aPack->dwFirstEntryldx;
if { vFirstEntryIdx)
vSer32.dwStreamPos_FirstEntry = this->pEntriesMem[vFirstEntryldx].qwEntryStreamPos;

Alea

Next, IDA's function folders shouldumake it easy to find the parts that interest you:

Configuration
hd Virtual File System

b

HiveHeap

ByteStream

DataHive
Constructors, Destructor
High-Level Interface
Internals

hd Pack, Entry Metadata Management

Construction from Bytes
hd Stream Backing Storage

DataHive_FreeEntryStreamData 00000050
DataHive_FreePackEntries 000000AA
DataHive_Read5erializedDataForEntry 00000110
DataHive_SerializeEntryToStream 00000118

s M B -

M T _ ™ AAAARYd S A

2/6

J | LEatanive__DEraliZerack 103Tream UUUUY 108

IE DataHive_WriteSerializedDataForEntry 000001C0
Index Management
Removal
Stream Data Management
Retrieval
IE IterativeCrackDataHivePathA 00000090
IE IterativeCrackDataHivePathW 00000049
Backdoor Commands
hd Channels
RDP
Download
Upload
GenericChannelDescriptor
7] EnqueueDataHiveAsChannelWriteEntry 00000048
K ShutdownChannelBylD 00000055
7] EnqueueChannelWriteEntry 00000078
7] ShutdownChannelsOfType 000000B1
(7] ChannelThreadProc 000000F2
[7] CreateChannel 00000117
7] g_List_GenericChannelDescriptor_EnqueueChannelMessage 00000140
hd Grace
GraceThread
GraceTunnellO
GraceOhject
Metwaork

Thread Procedures
A Global State

h ProtocolStateManager

GraceObjectManager

ProtocolEventianager
7] ProtocolStateMa nager_ RemoveDelayedEventsBylD 0000007C
7] ProtocolStateMa nager__AcquireGraceObjectBySerial 00000086
IE ProtocolStateManager_ AddDelayedEvent 0000008F
IE ProtocolStateManager_ DequeueAndExecuteProtocolEvent 00000047
IE ProtocolStateManager_ DequeueProtocolEvent 000000A8
IE ProtocolStateManager_ RegisterMewEvent 000000C1
IE ProtocolStateManager_ RemoveEventBylD 000000CE
7] ProtocolStateMa nager_RemoveDelayedEventsByObject 000000DE
[7] ProtocolStateMa nager_ EnqueueProtocolEventBylD 000000E1
IE ProtocolStateManager_ RemoveGraceObjectFromTrackedSet 000000ES
7] ProtocolStateMa nager_ CleanupAndRemoveGraceObject 0000015E
IE ProtocolStateManager_ Cleanup 00000163
IE ProtocolStateManager_ Destructor 00000160
|E| ProtocolStateManager_ Constructor 00000104
IE ProtocolStateManager_ ProcessDelayedEvents 00000270
TransportThreadiManager
Transporthanager

Finally, the local types window contains all of the reconstructed data structures:

3/6

Com

Global State
STL
Networking
Cryptography
Modules
Miscellaneous
hd Grace
v GraceThread
vector
v GraceTransportThread
IE 221 GraceObjectThread
& 222 GraceTransportReadThread 00000014 Auto struct _cppobj : GraceTransportThread §
&= 223 GraceTransportWriteThread 00000014 Auto struct _cppobj : GraceTransportThread §
[426 GraceTransportThread 00000014 Auto struct _cppobj : GraceThread {TransportThreadManager *mg
v GraceObjectThread
& 228 GraceObjectThread (0014 Auto struct _cppobj _declspec(align(4)] : GraceThread {ProtocolSt
[E] 229 GraceDelayThread 00000014 Auto struct _cppobj : GraceThread {ProtocolStateManager *m_Syn
v GraceWireClientConnectionThread
= 236 GraceWireClientConnectionThread ~ 00000078 Auto struct _cppobj _declspecfalign(4)) : GraceThread {SOCKET rr
3] 474 GWCCT_SYN_MainServerConnection 00000034 Auto struct {unsigned int mCRC:GUID mGlobalManagerinstanceGuUl
@ 475 GWCCT_ACKMessage 00000024 Auto struct _unaligned _declspec(align(2)) {int mCRC;_int186 mwM
3 476 GWCCT_SYMN_Channel 00000026 Auto struct _unaligned _declspec(align(2)) {unsigned int mCRC;GL
= 477 GWCCT_SynType 00000004 Auto enum {GWCCT_Invalid = 0x0,GWCCT_SynString = Ox1,GWCCT.
= 473 GWCCT_SYN_Type1String 00000028 Auto struct {unsigned int mCRCunsigned _int16 mStringLen;unsigr
IE 501 GWOCCT_FirstSYNGeneric 0000000E Auto struct _unaligned {unsigned int mCRC;unsigned int mMagicu
v Tunnelling
3 232 GraceTunnelReadThread 00000014 Auto struct _cppobj : GraceThread {GraceTunnellO *m_Tunnel}
@ 233 GraceTunnelWrite Thread 00000014 Auto struct _cppobj : GraceThread {GraceTunnellO *m_Tunnel}
= 216 GraceThread 00000010 Auto struct _cppobj {GraceThread_vtbl *_vftable /*VFT*/;bool bis2
& 217 GraceThread_vtbl 0000000C Auto struct AVFT*/ {GraceThread *(_thiscall *VirtualDestructor)(Gre
v GraceTunnellO
v GraceTunnelClientlO
B 235 GraceTunnelClientlO Auto struct __cppobj _declspec(align(4)) : GraceTunnellO {GraceTu
v GraceTunnelClientDirectlO
& 237 GraceTunnelClientDirectlO 0 34 Auto struct _cppobj _declspec(align(4)) : GraceTunnellQ {GraceSe
= 230 OutgoingTunnelMessageQueue 00000030 Auto struct _declspec(align(4)) {struct _RTL_CRITICAL_SECTIOMN mC¢
& 231 GraceTunnellQ 00000044 Auto struct _cppobj {GraceTunnellO_vtbl *_vftable /VFT*/,SOCKE]
& 372 GraceTunnellQ_vtbl 00000010 Auto struct AVFT*/ {GraceTunnellQ *(_thiscall *VirtualDestructor}(G
IE 422 TunnelDataltem 00000008 Auto struct {unsigned _int8 *data;size_t size}
= 423 deque_pTunnelDataltem 00000014 Auto struct _declspec(align{4)) {deque_pTunnelDataltem *_Myprox
v GraceObject
GraceWireGeneric
GraceSessionGeneric
= 238 GraceObject 0000004C Auto struct _cppobj {GraceObject_vtbl *_vftable /VFT*/;unsigned
= 241 GraceTunnelClient 00000054 Auto struct __cppobj : GraceObject {void (_stdcall *fpwriteCallback
[269 GraceObjectVariety_t 00000004 Auto enum {GraceObjectVariety_ServerManager = 0x1,GraceObjed
= 370 GraceObject_vtbl 00000014 Auto struct /VFT*/ {GraceObject *(_thiscall *VirtualDestructor){Gra
= 413 ProtocolCode 00000004 Auto enum {Code_0 = 0x0,Code_WireBA_101_NETWORK_ERROR =
& 415 ProtocolCodeData 00000004 Auto union _declspec(align(4)) {MyWSAError_t pc101;WireMessag
=] 458 CommandReceived 0000001C Auto struct _declspec(align{4)) {GUID mGuid;char *mTargetName;v
& 459 MNetworkCallbackMessaged 0000001C Auto struct _declspec(align(4)) {GUID mGuid;int iUnk10;unsigned _
=] 460 ChannelLocataor 00000018 Auto struct _declspec(align(4)) {int mChannellD;GUID mGuid;Chann
= 461 ChannelDataMessage 00000020 Auto struct _cppobj : ChannelLocator {unsigned _int8 *mData;size
= 462 ChannelWriteMessage 00000020 Auto struct _cppobj : Channellocator {int iUnk18:int mSentLength:}
= 463 NetworkCallbackiessages 00000004 Auto union {MyWSAError_t Codel;CommandReceived *Commandf
= 471 ServerDescriptor 00000102 Auto struct {char mAddress[238];unsigned _int16 mPort;}
Windows
Virtual File System
Channels

About the Analysis

Like the previous analysis of ComRAT v4, this analysis was conducted purely statically. Like
the previous, | have reverse engineered every function in the binary that is not part of the
C++ standard library, and some of those that are. Like the previous, all analysis was
conducted in Hex-Rays, so you will not find anything particularly interesting in the plain
disassembly listing. Unlike the previous, this binary had RTTI, meaning that | was given the
names and inheritance relationships of classes with virtual functions.

4/6

Each C++ program that | devote significant time to analyzing seems to present me with
unique challenges. With ComRAT, those were scale and usage of modern additions to the
STL that had been previously unfamiliar to me. With XAgent, it was forcing myself to
muddle through the subtleties of how MSVC implements multiple inheritance. For
FlawedGrace, those challenges were:

Extensive use of virtual functions and inheritance, beyond anything I've analyzed
previously. Tracing the flow of data from point A to point B often involved around a
dozen different object types and virtual function calls, sometimes more. You can see
an example of this in the database notepad, where | describe the RDP tunneling
implementation.

A type reconstruction burden that seemed to never end. FlawedGrace has one of the
highest ratios of custom types to program size of anything I've analyzed. In total, |
manually reconstructed 178 custom data types across 454 programmer-written
functions, which you will find in the Local Types window.

Having to reverse engineer a complex virtual file system statically, with no sample
data. You can find the relevant code in the functions window, under the folder path
Modalities\Standalone\Virtual File System. | suspect this was written by a different
team than the networking component, given the difference in coding styles: i.e., the
VFS was written in plain C, with some features that mimic VTables.

Having to confront, as a user, the challenges that reverse engineering tools have with
x86/Windows programs (in contrast to x64) with regards to stack pointer analysis and
64-bit integers.

Having to brush up on my network programming skills. For example, | had forgotten
what the “Nagle algorithm” was. It’s clear that the server-side component is derived
from the same codebase. However, the server portion of the code was not present in
the binary, so | could not analyze it.

FlawedGrace makes proficient use of C++ features and the STL, and its authors are
experts in concurrent programming and networking. However, it is mostly written in an older
style than ComRAT was; for example, it does not use <memory>. Here is a list of the STL
data types used, in descending frequency of usage:

<atomic>
thread
list<T>

map<K,V>

5/6

e deque<T>
e set<T>
e vector<T>

| hope you enjoy the IDB.

6/6

