
1/6

March 2, 2021

An Exhaustively-Analyzed IDB for FlawedGrace
msreverseengineering.com/blog/2021/3/2/an-exhaustively-analyzed-idb-for-flawedgrace

March 2, 2021 Rolf Rolles

This blog entry announces the release of an exhaustive analysis of FlawedGrace. You can
find the IDB for the main executable, and for the 64-bit password stealer module, here. The
sha1sum for the main executable is 9bb72ae1dc6c49806064992e0850dc8cb02571ed, and
the md5sum is bc91e2c139369a1ae219a11cbd9a243b.

Like the previous entry in this series on ComRAT v4, I did this analysis as part of my
preparation for an upcoming class on C++ reverse engineering. The analysis took about a
month, and made me enamored with FlawedGrace's architecture. I have personally never
analyzed (nor read the source for) a program with such a sophisticated networking
component. Were I ever to need a high-performance, robust, and flexible networking
infrastructure, I'd probably find myself cribbing from FlawedGrace. This family is also
notable for its custom, complex virtual filesystem used for configuration management and
C2 communications. I would like to eventually write a treatise about all of the C++ malware
family analyses that I performing during my research for the class, but that endeavor was
distracting me from work on my course, and hence will have to wait.

(Note that if you are interested in the forthcoming C++ training class, it probably will be
available in Q3/Q4 2021. More generally, remote public classes (where individual students
can sign up) are temporarily suspended; remote private classes (multiple students on behalf
of the same organization) are currently available. If you would like to be notified when public
classes become available, or when the C++ course is ready, please sign up on our no-
spam, very low-volume, course notification mailing list. (Click the button that says "Provide
your email to be notified of public course availability".) )

(Note that I am looking for a fifth and final family (beyond ComRAT, FlawedGrace, XAgent,
and Kelihos) to round out my analysis of C++ malware families. If you have suggestions --
and samples, or hashes I can download through Hybrid-Analysis -- please send me an
email at rolf@ my domain.)

About the IDB

Here are some screenshots. First, a comparison of the unanalyzed executable versus the
analyzed one:

https://www.msreverseengineering.com/blog/2021/3/2/an-exhaustively-analyzed-idb-for-flawedgrace
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
https://github.com/RolfRolles/IDBs/tree/master/FlawedGrace
https://www.msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4
https://www.msreverseengineering.com/training-classes
https://www.hybrid-analysis.com/


2/6

Next, IDA's function folders should make it easy to find the parts that interest you:



3/6

Finally, the local types window contains all of the reconstructed data structures:



4/6

About the Analysis

Like the previous analysis of ComRAT v4, this analysis was conducted purely statically. Like
the previous, I have reverse engineered every function in the binary that is not part of the
C++ standard library, and some of those that are. Like the previous, all analysis was
conducted in Hex-Rays, so you will not find anything particularly interesting in the plain
disassembly listing. Unlike the previous, this binary had RTTI, meaning that I was given the
names and inheritance relationships of classes with virtual functions.



5/6

Each C++ program that I devote significant time to analyzing seems to present me with
unique challenges. With ComRAT, those were scale and usage of modern additions to the
STL that had been previously unfamiliar to me. With XAgent, it was forcing myself to
muddle through the subtleties of how MSVC implements multiple inheritance. For
FlawedGrace, those challenges were:

Extensive use of virtual functions and inheritance, beyond anything I've analyzed
previously. Tracing the flow of data from point A to point B often involved around a
dozen different object types and virtual function calls, sometimes more. You can see
an example of this in the database notepad, where I describe the RDP tunneling
implementation.

A type reconstruction burden that seemed to never end. FlawedGrace has one of the
highest ratios of custom types to program size of anything I've analyzed. In total, I
manually reconstructed 178 custom data types across 454 programmer-written
functions, which you will find in the Local Types window.

Having to reverse engineer a complex virtual file system statically, with no sample
data. You can find the relevant code in the functions window, under the folder path
Modalities\Standalone\Virtual File System. I suspect this was written by a different
team than the networking component, given the difference in coding styles: i.e., the
VFS was written in plain C, with some features that mimic VTables.

Having to confront, as a user, the challenges that reverse engineering tools have with
x86/Windows programs (in contrast to x64) with regards to stack pointer analysis and
64-bit integers.

Having to brush up on my network programming skills. For example, I had forgotten
what the “Nagle algorithm” was. It’s clear that the server-side component is derived
from the same codebase. However, the server portion of the code was not present in
the binary, so I could not analyze it.

FlawedGrace makes proficient use of C++ features and the STL, and its authors are
experts in concurrent programming and networking. However, it is mostly written in an older
style than ComRAT was; for example, it does not use <memory>. Here is a list of the STL
data types used, in descending frequency of usage:

<atomic>

thread

list<T>

map<K,V>



6/6

deque<T>

set<T>

vector<T>

I hope you enjoy the IDB.


