
1/10

Newly Identified Dependency Confusion Packages Target
Amazon, Zillow, and Slack; Go Beyond Just Bug
Bounties

blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files

https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files

2/10

Sonatype has identified new “dependency confusion” packages published to the npm
ecosystem that are malicious in nature.

These squatted packages are named after repositories, namespaces or components used by
popular companies such as Amazon, Zillow, Lyft, and Slack.

The malicious packages include:

amzn
zg-rentals
lyft-dataset-sdk
serverless-slack-app

As previously reported by Sonatype, Alex Birsan’s dependency confusion research
disclosure led to copycat researchers publishing 275+ identical packages to the npm repo
within 48 hours, in hopes of scoring bug bounties. The number then jumped to over 550
within the next few days.

As of today, Sonatype’s automated malware detection systems, part of Nexus
Intelligence, has since identified well over 700 npm copycat packages based on Birsan’s
proof-of-concept packages.

https://blog.sonatype.com/malicious-dependency-confusion-copycats-exfiltrate-bash-history-and-etc-shadow-files
https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations
https://blog.sonatype.com/sonatype-spots-150-malicious-npm-packages-copying-recent-software-supply-chain-attacks
https://www.sonatype.com/nexus/intelligence

3/10

Although ethical hacking for bug bounties and spreading security awareness has its place
and is even welcomed by the community as it keeps us all more secure, the copycat
packages recently identified by Sonatype unfortunately crosses the line of what is deemed
ethical.

What’s inside your /etc/shadow?

Most of the copycat packages spotted by Sonatype that exploited the “dependency or
namespace confusion” issue across various open source ecosystems, did so by exfiltrating
minimal information - just enough to get a proof to present to a bug bounty program.

For example, this would typically involve the researcher making a DNS request from the
successfully breached machine to their own server, and collecting information such as the
computer’s hostname and IP address.

The new packages discovered by Sonatype however go a step further.

First of all, many of these have no disclaimers or code comments in place indicating these
are linked to any kind of ethical bug bounty program, or created for security research
purposes. While having such a disclaimer in place is no guarantee that a package’s author is
working in good faith, lack thereof can surely raise alarm bells especially when combined
with malicious code.

Secondly, as soon as these packages are installed automatically because they share a name
with an internal dependency (thereby exploiting “dependency confusion”), they exfiltrate the
user’s .bash_history file and /etc/shadow, and in some cases spawn a reverse shell.

For example, let’s take a look at the `amzn` package. The npm webpage for `amzn` has no
indication or disclaimer that it could be linked to an ethical research effort, neither does the
code inside.

https://blog.sonatype.com/dependency-hijacking-software-supply-chain-attack-hits-more-than-35-organizations

4/10

npm webpage for the `amzn` package

The package has two identical versions (1.0.0 and 2.0.0) each of which contain just two files:
a manifest, package.json and the functional run.js file.

The manifest file of amzn malicious package

Of note here is the fact that the “author” listed within the package.json is “zappos,” even
though the package has been published by a pseudonymous author osama775on npm.

https://www.npmjs.com/~osama775

5/10

Zappos is an Amazon subsidiary and naturally has systems that interact with Amazon’s [1,
2]. Amazon’s GitHub repository and some of its packages use the shorthand “amzn” notation
making it not too hard to see why an adversary would want to squat the “amzn” name on an
open-source repository like npm.

Inside “run.js” is where we see the contents of the /etc/shadow file being accessed (on line
7), and ultimately exfiltrated to the package’s author to domain the comevil[.]fun.

The code above also has the author opening a reverse shell to their server which would
spawn as soon as the `amzn` package infiltrates the vulnerable build.

https://en.wikipedia.org/wiki/Zappos#Amazon_subsidiary
https://www.zappos.com/zaw/amazon
https://www.zappos.com/c/prime-link
https://github.com/amzn
https://github.com/amzn/amzn-drivers

6/10

The /etc/shadow file is a successor to the /etc/passwd Linux file that maintains hashed
password data of user accounts on a system. Although the file is typically restricted to “super
user” accounts, there remains a slight chance of a malicious actor, in this case, being able to
obtain the file should the infected machine be running npm with elevated privileges.

The package “zg-rentals” also posted by the author osama775 is identical in structure and
functionality. The term “zg-rentals” is associated with the real estate company Zillow
Group[1, 2]. Packages with names including the “zg-rentals” keyword were previously used
by Alex Birsan as well.

Sonatype security researcher Juan Aguirre who spent time analyzing more identical copycat
packages that engage in exfiltrating the user’s /etc/shadow said:

“I was starting to wonder when we were going to see a malicious actor take advantage of the
current situation. Finally, we've spotted one.”

“There is no scenario I can imagine where I'm going to submit a PoC for a bug bounty
program that actually harms the organization. Taking their /etc/shadow file is definitely
harmful.”

Can I sneak peek at your .bash_history?

Another set of packages identified by Sonatype exfiltrate the user’s .bash_history file, along
with the fingerprinting information such as IP address, hostname, and current directory.

The .bash_history file contains a list of commands previously executed by a Unix-based OS
user at the terminal. Unless periodically cleared, this file can contain the usernames,
passwords, and other sensitive bits of data that nobody other than the user themself should
have access to.

As an example, the malicious “serverless-slack-app” package published today is named
after a legitimate package made by an Atlassian developer. It has both preinstall and
postinstall scripts launched by the manifest file.

Manifest file package.json of serverless-slack-app

While the index.js script spun up at the preinstall stage is an identical replica of that in
Birsan’s PoC research packages, the postinstall script is particularly interesting.

https://en.wikipedia.org/wiki/Passwd#Shadow_file
https://www.npmjs.com/~osama775
https://en.wikipedia.org/wiki/Zillow
https://vimeo.com/zillowgrouprentals
https://twitter.com/ZGRentals
https://www.skypack.dev/view/@zg-rentals/particles-js
https://www.linkedin.com/in/juan-aguirre-039b12113/
https://www.npmjs.com/package/chuss-phuss
https://github.com/johnagan/serverless-slack-app

7/10

At the postinstall stage, another script hosted on GitHub is run that sends the user’s
“.bash_history” file to the author behind serverless-slack-app.

.bash_history being accessed by the script

These activities would take place as soon as a dependency confusion attack succeeds and
would need no action from the victim, given the nature of the dependency/namespace
hijacking issue.

Again, the npm webpage for “serverless-slack-app” has no clear cut sign that this package is
linked to an ethical research or a bug bounty program. Although few packages published by
its author do have “security research purposes only” disclaimer, the pattern does not seem
consistent.

https://gist.github.com/dimax0220/52da30e74adb24f2190ee7967444c864#file-index-js-L19
https://www.npmjs.com/~d1m4x

8/10

Likewise, the lyft-dataset-sdk dependency by the same author shares name with a Python-
based package used by Lyft [1, 2]. Perhaps, the author is taking a guess here that an internal
npm dependency by the same name exists too.

“It's interesting to look at all the malicious npm copycat packages released recently. You can
see their evolution.”

“They start out with pretty much the same code base as the PoC released by researcher
Alex Birsan and they gradually start getting creative.”

“These packages stood out because they reflect the behavior of actual malware, a first stage
payload to grab a binary which further grabs your bash history,” says Aguirre.

More dependency hijacking packages to surface, what to do?

The list of 4 malicious packages above is not exhaustive.

In the week following the original report of Alex Birsan’s supply chain attack that infiltrated
over 35 tech firms including Microsoft, Apple, and Netflix, we saw a 7000% increase in
dependency confusion copycats published to npm.

And given the daily volume of suspicious npm packages being picked up by Sonatype’s
automated malware detection systems, we only expect this trend to increase, with
adversaries abusing dependency confusion to conduct even more sinister activities.

Fortunately, based on the visibility Sonatype has, none of our customers have been detected
running these malicious copycats.

https://pypi.org/project/lyft-dataset-sdk/
https://github.com/lyft/nuscenes-devkit
https://www.bleepingcomputer.com/news/security/researcher-hacks-over-35-tech-firms-in-novel-supply-chain-attack/

9/10

Sonatype’s customers with the Advance Development Packbenefit from the additional
protection offered by our automated malware detection systems and world-class security
research data.

Furthermore, Nexus Firewall instances will automatically quarantine any suspicious
components detected by our automated malware detection systems while a manual review
by a researcher is in the works, thereby keeping your software supply chain protected from
the start.

Users of Nexus Repository Manager can additionally download Sonatype’s
“dependency/namespace confusion checker” script from GitHub to check if they have
artifacts with the same name between repositories, and to determine if they have been
impacted by a dependency confusion attack in the past.

Sonatype’s 2020 State of the Software Supply Chain states that next-generation upstream
software supply chain attacks are far more sinister because bad actors are no longer waiting
for public vulnerability disclosures. Instead, they are taking the initiative to contribute code to
open source projects and then - unbeknownst to the other OSS project maintainers -
injecting malicious code. Those code changes then make their way into open source
projects that feed the software supply chains of developers around the world. is happening at
a rapidly increased rate.

And this is happening at a rapidly increased rate. In fact, there was a 430% increase in
upstream software supply chain attacks over the past year. Keeping this in mind, it is virtually
impossible to manually chase and keep track of such components.

Sonatype’s world-class security research data, combined with our automated malware
detection technology safeguards your developers, customers, and software supply chain
from infections.

Tags: vulnerabilities, featured, Nexus Intelligence Insights

https://www.sonatype.com/nexus/advanced-development-pack
https://www.sonatype.com/nexus/firewall
https://github.com/sonatype-nexus-community/repo-diff
https://www.sonatype.com/2020ssc
https://www.sonatype.com/press-release-blog/next-generation-nexus-intelligence
https://blog.sonatype.com/topic/vulnerabilities
https://blog.sonatype.com/topic/featured
https://blog.sonatype.com/topic/nexus-intelligence-insights

10/10

Written by Ax Sharma

Ax is a Security Researcher at Sonatype and Engineer who holds a passion for perpetual
learning. His works and expert analyses have frequently been featured by leading media
outlets. Ax's expertise lies in security vulnerability research, reverse engineering, and
software development. In his spare time, he loves exploiting vulnerabilities ethically and
educating a wide range of audiences.

Follow me on:

https://blog.sonatype.com/author/akshay-ax-sharma

