
1/5

michenriksen February 28, 2021

Finding Evil Go Packages
michenriksen.com/blog/finding-evil-go-packages/

Home
Blog
Projects

Sunday, February 28, 2021 - 8 mins

Because of the big SolarWinds hack and the recent blog post describing a new Dependency
Confusion attack, there has been a lot of talk lately about supply chain attacks, the sneaky
technique of compromising less secure elements in a supply chain to compromise more
secure targets.

A popular target for supply chain attacks has always been the many package management
systems for popular programming languages such as NPM for JavaScript, Rubygems for
Ruby, and PyPI for Python. These systems have been plagued for years by malicious actors
uploading malicious packages and waiting for victims to install them.

I haven’t heard much talk about how the situation looks for the Go ecosystem, and since Go
is my new language of choice, I decided to do some investigation.

The novel Dependency Confusion attack vector is luckily not something a Go developer has
to worry about since the source is always explicitly specified when importing a package, so
when Go fetches the external dependency, it can’t be confused about where to fetch it:

import "github.com/stretchr/testify"

There is however still a possible attack vector via simple typosquatting where the attacker
exploits the fact that people often hit the wrong keys when typing on their keyboard. This
could both be done on the host domain where the attacker registers a common typo of

https://michenriksen.com/blog/finding-evil-go-packages/
https://michenriksen.com/
https://michenriksen.com/blog
https://michenriksen.com/projects
https://michenriksen.com/assets/images/pkgtwist/gopher.png
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://en.wikipedia.org/wiki/Typosquatting

2/5

github.com, but even easier would be to simply register a new user on GitHub, or any other
open package host, with a common typo of the package owner’s username.

With this in mind, I set out to build a tool that would help me uncover potential typosquat
packages in the wild:

1. Take a large list of Go package import paths (e.g. github.com/stretchr/testify)
2. Permutate the username of every unique package owner to get a list of potential

typosquats
3. Check if any of the typosquat users exists on the platform
4. If a potential typosquat user is found, retrieve all of their repositories
5. Log any of the repositories that have a name equal to the original packages being

checked

This resulted in a new tool I call pkgtwist which is available on GitLab (the name is
inspired by the awesome dnstwist tool) if you are interested in doing your own evil Go
package hunting.

Permutations

Probably the most important part of pkgtwist was the generation of good username
permutations in order to have the best chance of detecting typosquats. A bit of research led
me to zntrio/typogenerater which looked like the perfect package for generating potential
username typos. The package implements a pretty long list of permutation strategies that I
picked a few from so that pkgtwist only spends time on checking what I feel are the most
likely typosquats:

Omission: removal of a single character (missing a keypress, stretchr =>
strechr)

Repetition: repetition of characters (pressing a key twice, gobuffalo =>
gobuffallo)

Bitsquatting: possible bit-flip errors (stretchr => strftchr)
Transposition: swapping of adjacent characters (pressing keys in the wrong order,
stretchr => strethcr)

This means that if pkgtwist is given the package github.com/stretchr/testify as input,
it will check if any of the of following users exist on GitHub, and if they do, check if they have
also have a repository called testify :

tretchr sretchr stetchr strtchr strechr strethr stretcr stretch
sstretchr sttretchr strretchr streetchr strettchr stretcchr
stretchhr stretchrr rtretchr qtretchr ptretchr wtretchr vtretchr
utretchr ttretchr suretchr svretchr swretchr spretchr sqretchr
srretchr ssretchr stsetchr stpetchr stqetchr stvetchr stwetchr

https://gitlab.com/michenriksen/pkgtwist
https://github.com/elceef/dnstwist
https://github.com/zntrio/typogenerator
https://en.wikipedia.org/wiki/Bitsquatting

3/5

sttetchr stuetchr strdtchr strgtchr strftchr stratchr strctchr
strbtchr streuchr strevchr strewchr strepchr streqchr strerchr
streschr stretbhr stretahr stretghr stretfhr stretehr stretdhr
stretcir stretcjr stretckr stretclr stretcmr stretcnr stretcor
stretchs stretchp stretchq stretchv stretchw stretcht stretchu
tsretchr srtetchr stertchr strtechr strecthr strethcr stretcrh

Subjects

Next up was to find a list of packages to check. Initially, I thought about finding some sort of
“Top X Go packages” list, but I couldn’t really find a good resource for that, so I ended up
running pkgtwist against every github.com and gitlab.com hosted packages from the Go
Module Index (731 packages in all).

Results

pkgtwist running in verbose mode.
After several hours of crunching through the 731 packages, pkgtwist finished with a list of 7
potential typosquat packages to investigate further. I honestly expected the list to be bigger,
but I was of course happy to see that the Go ecosystem isn’t completely infested (yet) with
malicious typosquat packages.

There were however a couple of typosquat packages that jumped out at me…

⚠

https://index.golang.org/index
https://michenriksen.com/assets/images/pkgtwist/pkgtwist_1.png

4/5

github.com/siruspen/logrus ⚠

The logrus package by sirupsen is a very popular logging package (17.3k stars on GitHub)
that many Go projects use, which obviously makes it a target for a typosquat supply chain
attack. So when I saw that the user siruspen (notice the letter swapping) had a similarly
named repository, I quickly checked out what it was doing.

It turns out that the project is a fork of the original logrus repository, so doing a
comparison to find the differences was pretty easy. At the time of writing, the only thing that
is added to the potential typosquat repository, is a small init function with a single Println
call:

Comparing siruspen/logrus with the original repository.
While this is not malicious in any way it could very quickly be changed by the owner in the
future, so I will definitely keep an eye on this repository. I would also recommend double-
checking your projects if you use logrus to make sure you’re not using this package
instead of the real one!

github.com/utfave/cli ⚠

urfave/cli is another popular Go package (15.4k stars on GitHub) for building CLI projects. So
when I saw the user utfave also had a repository called cli , my alarm bells went off and
I investigated further.

It turns out that the second-last commit introduces a highly suspicious init function:

https://github.com/sirupsen/logrus/
https://github.com/sirupsen
https://github.com/sirupsen/logrus/compare/master...siruspen:master#diff-ff87b7c4777a35588053a509583d66c9f404ccbea9e1c71d2a5f224d7ad1323eR13-R16
https://michenriksen.com/assets/images/pkgtwist/siruspen_logrus.png
https://github.com/urfave/cli
https://github.com/utfave/cli/commit/4af15496c49f613503d37d43b99df767f831bae1#diff-8d9ca23280f24fe6444d03ae46e7a15dd152170f32f57f978dfbdfd3cfe8ff55L26-R36

5/5

Ohai there, 122.51.124.140...
It looks like the author utfave wants to know the hostname, operating system, and
architecture of all the machines using their version of urfave/cli . The function extracts
the system information and then calls out to the IP address 122.51.124.140 belonging to
the Chinese company Shenzhen Tencent Computer Systems via HTTP with the system
information added as URL parameters.

While this code won’t give them any access to systems, it’s highly suspicious that they collect
this information and the actor can quickly change this code to call back with a reverse shell if
they identify a system to be valuable or interesting.

I reported this repository to GitHub and hope to see it taken down in the near future. Until
then, I recommend double-checking your projects if you use the urfave/cli to make sure
you’re not using the typosquatted version.

Conclusion

While my little research project didn’t cover every single Go package out there, I feel it
covered enough to give a rough picture of what the supply chain attack situation looks like for
the Go ecosystem. The two repositories siruspen/logrus and utfave/cli , were the
only ones out of the 7 flagged repos that really worried me, but I will keep a close eye on the
rest as they could in theory become malicious at any time.

I think Go is in a better situation than other programming languages because the source of
packages is always explicitly written every time they are used, but code editor automation
could make typosquat attacks more likely to happen as the developer doesn’t write the
import paths manually as often. As an example, if the popular Go extension for VS Code is
installed, a developer will typically only type a package import on the first usage, and then
the editor will automatically add the import in any other files as soon as the package name is
used. If the developer mistypes the import path the first time, a malicious package could be
introduced and live for a long time in a Go project before it’s discovered.

https://michenriksen.com/assets/images/pkgtwist/utfave_cli.png
https://marketplace.visualstudio.com/items?itemName=golang.Go
https://code.visualstudio.com/

