
1/5

February 25, 2021

Microsoft open sources CodeQL queries used to hunt for
Solorigate activity

microsoft.com/security/blog/2021/02/25/microsoft-open-sources-codeql-queries-used-to-hunt-for-solorigate-activity/

UPDATE: Microsoft continues to work with partners and customers to expand our
knowledge of the threat actor behind the nation-state cyberattacks that compromised
the supply chain of SolarWinds and impacted multiple other organizations. Microsoft
previously used ‘Solorigate’ as the primary designation for the actor, but moving
forward, we want to place appropriate focus on the actors behind the sophisticated
attacks, rather than one of the examples of malware used by the actors. Microsoft
Threat Intelligence Center (MSTIC) has named the actor behind the attack against
SolarWinds, the SUNBURST backdoor, TEARDROP malware, and related
components as NOBELIUM. As we release new content and analysis, we will use
NOBELIUM to refer to the actor and the campaign of attacks.

A key aspect of the Solorigate attack is the supply chain compromise that allowed the
attacker to modify binaries in SolarWinds’ Orion product. These modified binaries were
distributed via previously legitimate update channels and allowed the attacker to remotely
perform malicious activities, such as credential theft, privilege escalation, and lateral

https://www.microsoft.com/security/blog/2021/02/25/microsoft-open-sources-codeql-queries-used-to-hunt-for-solorigate-activity/
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/


2/5

movement, to steal sensitive information. The incident has reminded organizations to reflect
not just on their readiness to respond to sophisticated attacks, but also the resilience of their
own codebases.

Microsoft believes in leading with transparency and sharing intelligence with the community
for the betterment of security practices and posture across the industry as a whole. In this
blog, we’ll share our journey in reviewing our codebases, highlighting one specific technique:
the use of CodeQL queries to analyze our source code at scale and rule out the presence of
the code-level indicators of compromise (IoCs) and coding patterns associated with
Solorigate. We are open sourcing the CodeQL queries that we used in this investigation so
that other organizations may perform a similar analysis. Note that the queries we cover in
this blog simply serve to home in on source code that shares similarities with the source in
the Solorigate implant, either in the syntactic elements (names, literals, etc.) or in
functionality. Both can occur coincidentally in benign code, so all findings will need review to
determine if they are actionable. Additionally, there is no guarantee that the malicious actor is
constrained to the same functionality or coding style in other operations, so these queries
may not detect other implants that deviate significantly from the tactics seen in the Solorigate
implant. These should be considered as just a part in a mosaic of techniques to audit for
compromise.

Microsoft has long had integrity controls in place to verify that the final compiled binaries
distributed to our servers and to our customers have not been maliciously modified at any
point in the development and release cycle. For example, we verify that the source file
hashes generated by the compiler match the original source files. Still, at Microsoft, we live
by the “assume breach” philosophy, which tells us that regardless of how diligent and
expansive our security practices are, potential adversaries can be equally as clever and
resourced. As part of the Solorigate investigation, we used both automated and manual
techniques to validate the integrity of our source code, build environments, and production
binaries and environments.

Microsoft’s contribution during Solorigate investigations reflects our commitment to a
community-based sharing vision described in Githubification of InfoSec. In keeping with our
vision to grow defender knowledge and speed community response to sophisticated threats,
Microsoft teams have openly and transparently shared indicators of compromise, detailed
attack analysis and MITRE ATT&CK techniques, advanced hunting queries, incident
response guidance, and risk assessment workbooks during this incident. Microsoft
encourages other security organizations that share the “Githubification” vision to open source
their own threat knowledge and defender techniques to accelerate defender insight and
analysis. As we have shared before, we have compiled a comprehensive resource for
technical details of the attack, indicators of compromise, and product guidance at
https://aka.ms/solorigate. As part of Microsoft’s sweeping investigation into Solorigate, we
reviewed our own environment. As we previously shared, these investigations found activity

https://securitylab.github.com/tools/codeql
https://aka.ms/Solorigate-CodeQL-Queries
https://techcommunity.microsoft.com/t5/azure-sentinel/solarwinds-post-compromise-hunting-with-azure-sentinel/ba-p/1995095
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/understanding-quot-solorigate-quot-s-identity-iocs-for-identity/ba-p/2007610
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://techcommunity.microsoft.com/t5/azure-sentinel/solarwinds-post-compromise-hunting-with-azure-sentinel/ba-p/1995095
https://www.microsoft.com/security/blog/2020/12/21/advice-for-incident-responders-on-recovery-from-systemic-identity-compromises/
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/azure-ad-workbook-to-help-you-assess-solorigate-risk/ba-p/2010718
https://aka.ms/solorigate
https://msrc-blog.microsoft.com/2020/12/31/microsoft-internal-solorigate-investigation-update/)


3/5

with a small number of internal accounts, and some accounts had been used to view source
code, but we found no evidence of any modification to source code, build infrastructure,
compiled binaries, or production environments.

A primer on CodeQL and how Microsoft utilizes it

CodeQL is a powerful semantic code analysis engine that is now part of GitHub. Unlike many
analysis solutions, it works in two distinct stages. First, as part of the compilation of source
code into binaries, CodeQL builds a database that captures the model of the compiling code.
For interpreted languages, it parses the source and builds its own abstract syntax tree
model, as there is no compiler. Second, once constructed, this database can be queried
repeatedly like any other database. The CodeQL language is purpose-built to enable the
easy selection of complex code conditions from the database.

One of the reasons we find so much utility from CodeQL at Microsoft is specifically because
this two-stage approach unlocks many useful scenarios, including being able to use static
analysis not just for proactive Secure Development Lifecycle analysis but also for reactive
code inspection across the enterprise. We aggregate the CodeQL databases produced by
the various build systems or pipelines across Microsoft to a centralized infrastructure where
we have the capability to query across the breadth of CodeQL databases at once.
Aggregating CodeQL databases allows us to search semantically across our multitude of
codebases and look for code conditions that may span between multiple assemblies,
libraries, or modules based on the specific code that was part of a build. We built this
capability to analyze thousands of repositories for newly described variants of vulnerabilities
within hours of the variant being described, but it also allowed us to do a first-pass
investigation for Solorigate implant patterns similarly, quickly.

https://www.microsoft.com/security/blog/2021/02/18/turning-the-page-on-solorigate-and-opening-the-next-chapter-for-the-security-community/
https://securitylab.github.com/tools/codeql


4/5

We are open sourcing several of the C# queries that assess for these code-level IoCs, and
they can currently be found in the CodeQL GitHub repository. The Solorigate-Readme.md
within that repo contains detailed descriptions of each query and what code-level IoCs each
one is attempting to find. It also contains guidance for other query authors on making
adjustments to those queries or authoring queries that take a different tactic in finding the
patterns.

GitHub will shortly publish guidance on how they are deploying these queries for existing
CodeQL customers. As a reminder, CodeQL is free for open-source projects hosted by
GitHub.

Our approach to finding code-level IoCs with CodeQL queries

We used two different tactics when looking for code-level Solorigate IoCs. One approach
looks for particular syntax that stood out in the Solorigate code-level IoCs; the other
approach looks for overall semantic patterns for the techniques present in the code-level
IoCs.

The syntactic queries are very quick to write and execute while offering several advantages
over comparable regular expression searches; however, they are brittle to the malicious
actor changing the names and literals they use. The semantic patterns look for the overall
techniques used in the implant, such as hashing process names, time delays before
contacting the C2 servers, etc. These are durable to substantial variation, but they are more
complicated to author and more compute-intensive when analyzing many codebases at
once.

By combining these two approaches, the queries are able to detect scenarios where the
malicious actor changed techniques but used similar syntax, or changed syntax but
employed similar techniques. Because it’s possible that the malicious actor could change
both syntax and techniques, CodeQL was but one part of our larger investigative effort.

Next steps with CodeQL

https://aka.ms/Solorigate-CodeQL-Queries
https://aka.ms/Solorigate-CodeQL-ReadMe


5/5

The queries we shared in this blog and described in Solorigate-Readme.md target patterns
specifically associated with the Solorigate code-level IoCs, but CodeQL also provides many
other options to query for backdoor functionality and detection-evasion techniques.

These queries were relatively quick to author, and we were able to hunt for patterns much
more accurately across our CodeQL databases and with far less effort to manually review
the findings, compared to using text searches of source code. CodeQL is a powerful
developer tool, and our hope is that this post inspires organizations to explore how it can be
used to improve reactive security response and act as a compromise detection tool.

In future blog posts, we’ll share more ways that Microsoft uses CodeQL. We’ll also continue
open-sourcing queries and utilities that build upon CodeQL so that others may benefit from
them and further build upon them.

https://aka.ms/Solorigate-CodeQL-ReadMe

