
1/11

By K7 Labs February 19, 2021

GitHub – Home to AsyncRAT Backdoor
labs.k7computing.com/

These days threat actors are hosting their encrypted malware in user familiar places such
as Google Drive, OneDrive, Discord CDN, Pastebin amongst others and target a huge
victim base. This abuse is not new for GitHub too, a popular code hosting platform. In
this blog, we will be getting into the nuances of AsyncRAT Backdoor hosted on the
GitHub repository and its delivery mechanism, orchestrated in different stages.

While monitoring the Twitter handles, we came across a tweet from @Glacius_
mentioning about the availability of AsyncRAT payload on GitHub as depicted in Figure 1.

https://labs.k7computing.com/?p=21759

2/11

Figure 1:

Tweet from @Glacius_ about AsyncRAT
From Figure 2, we can notice that the above said attacker’s GitHub repository has multiple
binaries. Contents of all these binaries are encoded in decimal format to avoid being
identified and detected easily.

3/11

Figure 2: GitHub repository where the malware binaries are present
This GitHub account was created on January 8, 2021 which is managed by Mohamed-
Sayed with only 1 follower as shown in Figure 3. Also, we noticed that the attacker has
added 2 new PE files on Jan 31st, 2021 in the “NEW” repository; possibly the threat actor
is planning for another campaign. On digging deeper, we found that this attack has multi-
stage payloads and finally executes the main payloads facebook.dll and stub.exe which
were not available in VirusTotal at the time of writing this blog.

4/11

Figure 3: https://github.com/hbankers
Now, let’s get into the details about the multi-stage scripts and the main payloads. The
complete flow of this attack and the multi-stage scripts used to execute the final payload
using a process injector DLL has been depicted in Figure 4.

Figure 4: Process Flow of this Malware

5/11

The initial binary fww.exe, a .NET file downloads the first stage payload “encoding.txt”
from “hxxp[:]//f0509448[.]xsph[.]ru/hjebWnlfsjdlPz/encoding[.]txt” (ip: 141.8.193.236
) and executes the encoding.txt, a VBScript using “mshta.exe” as depicted in Figure 5.

Figure 5: Initial binary which executes the VBScript
Decoding the 1st stage VBScript, we could see that it uses Wscript.Shell command to
execute the PowerShell script using PowerShell.exe and download the second stage
payload “all.txt” from the same URL and execute the downloaded file using Invoke-
Expression (IEX) as depicted in Figure 6.

Figure 6: Use of VBScript to download second stage payload
The second stage payload all.txt; a PowerShell script, before proceeding further checks if
predefined AV files are running in the system. For instance, “AVAST : AvastUI.exe”,
“ESET : ecmds.exe”, “KASPERSKY : avpui.exe”, “AVG : AVGUI.exe” as depicted in

6/11

Figure 7.

Figure 7: Checks for Famous AVs existing in the system
Once it is confirmed that none of the specified AVs are present in the system, all.txt
continues its execution. It sets Servicepointmanager as TLS 1.2 security protocol (3072
represents TLS1.2 protocol) to communicate with its server through a secure channel and
downloads the third stage payload “ps1.txt” binary from the server. It converts the hex
value to ascii character using “[char] [byte]” instruction and stores the string in
“asciiString” variable and executes it using Invoke-Expression as depicted in Figure 8.

Figure 8: PowerShell script is used to download ps1.txt

7/11

Removing all of the junk data from the PowerShell script, ps1.txt we can also see that it is
downloading the DLL
“hxxps[:]//raw[.]githubusercontent[.]com/hbankers/PE/main/PE03[.]txt” and the
Hbanker exe file
“hxxps[:]//raw[.]githubusercontent[.]com/hbankers/v1/main/Server[.]txt” as strings
using “downloadstring” function. Now, ps1.txt script executes
“Reflection.assembly::Load()” command

to load the “HAPPY” method from the DLL, PE03.txt and execute the binary Server.txt
(stored in the argument HCrypt of HAPPY method) as depicted in Figure 9 and Figure 10.

Figure 9: 4th stage script after removing junks

Figure 10: List of APIs for Process Injection

8/11

APIs “ResumeThread, Wow64SetThreadContext, SetThreadContext,
Wow64GetThreadContext, GetthreadContext, VirtualAllocEx, WriteProcessMemory,
ReadProcessMemory, ZwUnmapViewOfSection, CreateProcessA” are used to inject
the AsyncRAT payload (server.txt) in the memory of another file and then execute the
same. This technique is called the ProcessHallowing – Injection Technique.

AsyncRAT (Server.txt) carries multiple features like checking for Anti-analysing
techniques, network connection using SSL certificate, persistence techniques etc. The
attacker pre-defines the domain name, port number, ssl certificate, version, mutex, key
etc., and its values are in a sophisticated base64 encoded format and to decode the string
it uses aesCryptoServiceProvider in addition to base64 decoder to get the original value
as depicted in Figure 11.

Figure 11: Decoded string of pre-defined values
The domain which attacker tries to connect is “fat7e0recovery[.]ddns[.]net” via the port
number 6666 as depicted in Figure 12. The Mutex value is “AsyncMutex_6SI8OkPnk”
and it also has a server certificate “CN=AsyncRAT Server” valid from 17-01-2021 to 31-
12-9999. This SSL certificate is used to encrypt the packets between the compromised
system and the server.

9/11

Figure 12: Connecting the domain using the port specified
In order to detect virtual machines, AsyncRAT uses Anti-analysis techniques like

Checks if the disk size is less than or equal to 50GB
Checks whether the OS is XP
Looks for the VM names like “Virtualbox”, “vm” or “Virtual” strings in system
manufacturing data
Checks for SbieDll.dll in the system to detect sandboxie virtual machines
Uses CheckRemoteDebuggerPresent API to check for debugger as depicted in
Figure 13.

Figure 13: Anti-

analysis Technique
To be persistent in the system, AsyncRAT confirms if the user login has admin privilege. If
yes, it creates a scheduled task as depicted in Figure 14, where fileinfo.name represents
the currently running malware file.

10/11

Figure 14: Creates scheduled task using cmd
If the AsyncRAT does not run with admin privilege, it creates a run entry under
CurrentUser\Run for persistence. Run registry key is in reversed order and the
StrReversecommand is employed to retrieve the actual data
“Software\\Microsoft\\Windows\\CurrentVersion\\Run” as depicted in Figure 15.

Figure 15: Run registry key for persistence

Conclusion

Attackers are not only very interested in creating new malware but also trying to use every
single possibility to host/spread their payloads. In this case, AsyncRAT is spread using the
credibility of popular code hosting platforms to evade detection from Anti-Virus engines.
We are constantly monitoring such techniques and ensuring that we provide proactive
protection against such malware attacks. As always we recommend our customers to use
the K7 security products to protect your data and keep it updated to stay protected from
the latest threats.

Indicators Of Compromise (IOCs)

11/11

MD5 File Name K7 Detection Name

527EE147DC7B2E5D768945DCC7D87326 fww.exe Trojan-Downloader
(005771b51)

4FAC2D80A7C3AEA83D61432F66A25B69 Facebook.dll Trojan (004cf1da1)

416C48AEF6DDF720BE0D8B68DD2F0BD0 stub.exe Trojan (005678321)

URLs

Fat7e0recovery[.]ddns[.]net:6666
hxxps[:]//raw[.]githubusercontent[.]com/hbankers/PE/main/PE03[.]txt
hxxps[:]//raw[.]githubusercontent[.]com/hbankers/v1/main/Server[.]txt
hxxp[:]//f0509448[.]xsph[.]ru/hjebWnlfsjdlPz/encoding[.]txt

