
1/8

By K7 Labs February 17, 2021

GuLoader Snowballs via MalSpam Campaigns
labs.k7computing.com/

GuLoader is one of the well-known downloader malware of 2020, as its prevalence was
very high during the first half of the year. Its common payloads were FormBook, Agent
Tesla, LokiBot, Remcos RAT, just to name a few, which were delivered by abusing
storage services like OneDrive, Google Drive etc. Our 1 encounter with the GuLoader
binary was in March 2020 when it was delivering FormBook in a spam campaign. Later,
Check Point revealed their findings about the similarities between GuLoader and
CloudEye, a protector for binaries.

Recently, we got our hands on the latest GuLoader binary which was submitted to
bazzar[.]abuse[.]ch by JAMESWT (@JAMESWT_MHT). It came as an email attachment
as depicted in Figure 1. The email seemed interesting because the sender’s name was
Amit Saini claiming to be from Coca-Cola, Bangalore, India.

st

https://labs.k7computing.com/?p=21725Lokesh
https://labs.k7computing.com/?p=19988
https://research.checkpoint.com/2020/guloader-cloudeye/

2/8

Figure 1: Email with Attachment (courtesy of @JAMESWT_MHT)
The infection vector hasn’t changed yet but we at K7 Labs still keep track of GuLoader
because of the efforts taken by them to keep improving their code for detecting the
Virtual/Debug environment. Although some of the tricks are old, they still get the job done.
In this blog, we’ll see the improvements that have been made to the code over time.

Anti-Analysis & Anti-VM/Debug Techniques

3/8

GuLoader in March 2020

1. Debugger Anti-Attach technique – using ntdll.ZwSetInformationThread() with
parameter 0x11

2. Patching ntdll.DbgBreakPoint() and ntdll.DbgUiRemoteBreakin()
3. Patching User mode hooks – patching the 1 5 bytes of unconditional jump (0xe9

????????) set by some AV & sandboxes

GuLoader after July 2020

In addition to previous techniques mentioned above, there were some more tricks found in
the binary which was received after the end of June and they are

1. ZwQueryVirtualMemory() – to detect execution with in virtual machine
2. Check breakpoints
3. Enumerating the active windows using EnumWindows() API
4. Checking for qemu-ga.exe and qga.exe under Program Files.

While all these were documented tricks there are 2 tricks in particular which were quite
interesting to us.

RDTSC and CPUID instruction combination as depicted in Figure 2.

It uses RDTSC instruction to get the elapsed time in EAX:EDX and performs OR operation
between EAX & EDX and saves it in ESI. Then it calls CPUID instruction with EAX=1 and
checks if the 31 bit (0x1f) is set (by default it is 0 & if run under virtual machine it will be
set) and then exits execution by displaying a popup message stating “The program
cannot be run under virtual Environment or debugging software!”.

Again it calls RDTSC instruction and performs the OR operation between EDX and EAX
and subtract the new result with the previous result stored in ESI. In normal execution, the
difference between 2 RDTSC instructions will never be 0, but the code checks if the
difference is less than or equal to 0 which results in an endless loop.

Figure 2: RDTSC and CPUID Instructions

st

st

4/8

Apart from the infinite loop mentioned above, it also uses one more loop which
executes for 0x186a0 times (that is 100000 times). The value 0x186a0 is stored in
ECX and performs addition between EDI (EDI=0 initially) and the result received
after the difference between two RTDSC instructions (mentioned above). This loop is
executed till ECX becomes 0 and if the value in EDI after the loop ends is greater
than 0x68e7780 it again returns to the start of the check where it again sets ECX to
0x186a0.

Figure 3: RDTSC loop

Retrieves the name of the active window and creates a hash with it and matches it
with the predefined hash stored in the code as depicted in Figure 4.

Figure 4: Hash Comparison of the Active Window

GuLoader 2021

5/8

The GuLoader sample which was analyzed recently had almost every check mentioned
above except for the active window hash comparison. Instead they have a different hash
comparison technique.

Using MsiEnumProductsA() and MsiGetProductInfo() function

First it calls MsiEnumProductsA() function with iPoductIndex as 0 and increments it by 1
for subsequent calls. It returns a product code which is a 38 character GUID with a null
terminating character making it 39 character long. This GUID is given as input to
MsiGetProductInfo() function to retrieve the product name installed and this loop is
executed for 0xff times as depicted in Figure 5.

Figure 5: MsiEnumProductsA() and MsiGetProductInfo() loop
The result received after a call to MsiGetProductInfo() is the name of the product in strings
which needs to be converted to a hash for comparison. This eliminates performance
overhead since comparing each character sequentially takes time. The hashing function
used here is djb2 as depicted in Figure 6 which is quite simple and lightweight.

6/8

Figure 6: Hashing Logic
The hashes used in the code (like 0x7c8aa9fd, 0x9b8ffb51) are unknown to us at this
point in time but anyone can guess that it must be mostly related to check if AV, sandboxes
or debuggers are installed.

Use of NtQueryInformationProcess() with processInformationClass parameter as
0x07 (process debug port) as depicted in Figure 7. This API usage is well
documented and is an old trick to detect if the process is being debugged.

Figure 7: NtQueryInformationProcess() function
Code implementation changes – to make the process of reversing/debugging a little
harder they have implemented spaghetti code which is a code having a lot of jumps
and calls.

Once all these Anti-VM and Anti-Debugging checks are over it proceeds to download the
encrypted binary from the domain stated and copies it to a buffer space and decrypts it as
depicted in Figure 8.

7/8

Figure 8: Downloading after Decrypting the Binary
The domain is still live and seems to be bogus because the domain name mentioned in
the contact section of the page is repair-electronics[.]com whereas the domain name
active is repair-electrons[.]com and the “created by Mohamad Chedid” line under
copyright symbol has a HTML href tag, which is blank and doesn’t redirect anywhere.
When viewing the source of the page there is a commented line saying “Free HTML5
template developed by FREEHTML5.CO” as depicted in Figure 9.

8/8

Figure 9: Bogus Domain Name
Threat actors are always evolving by modifying their tools with improved techniques and
tricks to evade detection and make the analysis harder. Here at K7 Labs we actively
monitor such malware and have proactive detection for all the files. So stay safe from
these kinds of attacks in this pandemic situation by using a reputed AV product such as K7
products.

Indicators Of Compromise (IOCs)

MD5: 1C8B24FCF8143C9035EE722EC8714EB0

File Name: EXTERNAL RFP – PAN India Epoxy PU – 2021.exe

K7 Detection Name: Trojan (005774081)

URL

hxxps[:]//www[.]repair-electrons[.]com

