
1/25

Ghidra script to decrypt strings in Amadey 1.09
maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-decrypt-strings-in-amadey-1-09/

This article was published on the 9th of February 2021. This article was updated on the 8th
of December 2021.

On the 21st of March 2019, the American National Security Agency (NSA) released Ghidra:
a free and open-source reverse engineering tool. The tool can disassemble and decompile
code for a variety of architectures. Additionally, users can create scripts in Python and Java
using the exposed API. This article will cover the the string encryption in Amadey 1.09, and
will provide a step-by-step guide to create an automatic string decryption script in Java.

Table of contents

The sample

This sample is taken from KrabsOnSecurity‘s blog from Feburary 2019. The specific sample
is the unpacked stage, as is described in the blog. The sample can be downloaded from
VirusBay, Malware Bazaar, or MalShare. The hashes are given below.

MD5: dbaaa2699c639f652117e9176fd27fdf
SHA-1: 3e4cd703deef2cfd1726095987766e2f062e9c57
SHA-256: 654b53b4ef5b98b574f7478ad11192275178ca651d9e8496070651cd6f72656a
Size: 51396 bytes

Additionally, snippets from this blog by Lars A. Wallenborn and Jesko H. Hüttenhain about a
Ghidra script to automatically decrypt strings in REvil samples are used. Within the code,
credit to Lars’ and Jesko’s work and websites is given whenever it is used.

Scripting basics

Scripting in Ghidra can be done using Python and Java. Python scripts are executed with the
help of Jython. As such, the native way of scripting in Ghidra, is with Java. Therefore, this is
also what will be used in this article.

In the official repository’s DevGuide, guidance is given with regards to configuring Ghidra
with Eclipse. This is useful to develop Java based scripts in a proper IDE, with the option to
debug the script.

Once the environment is set-up, one will see that every script extends the GhidraScript class.
This class forces the script to implement the run method, which is the starting point of the
script’s code. Due to the inheritance of the GhidraScript class, the user has access to the

https://maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-decrypt-strings-in-amadey-1-09/
https://ghidra-sre.org/
https://krabsonsecurity.com/2019/02/13/analyzing-amadey-a-simple-native-malware/
https://virusbay.io/sample/browse/dbaaa2699c639f652117e9176fd27fdf
https://bazaar.abuse.ch/sample/654b53b4ef5b98b574f7478ad11192275178ca651d9e8496070651cd6f72656a/
https://malshare.com/sample.php?action=detail&hash=dbaaa2699c639f652117e9176fd27fdf
https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-revil-string-obfuscation-in-ghidra/
https://www.wallenborn.net/
https://huettenhain.net/
https://www.jython.org/
https://github.com/NationalSecurityAgency/ghidra/blob/master/DevGuide.md
https://ghidra.re/ghidra_docs/api/ghidra/app/script/GhidraScript.html

2/25

FlatProgramAPI. Functions might be added to this class, but never removed. Or, as the NSA
explains in the accompanied JavaDoc:

This class is a flattened version of the Program API.

NOTE:

 1. NO METHODS SHOULD EVER BE REMOVED FROM THIS CLASS.
 2. NO METHOD SIGNATURES SHOULD EVER BE CHANGED IN THIS CLASS.

This class is used by GhidraScript.

Changing this class will break user scripts.

That is bad. Don't do that.

Using Eclipse’s built-in auto-completion and JavaDoc viewer, its easy to view all functions
that are directly accessible from the GhidraScript class. Alternatively, or additionally, one can
read the publicly available JavaDoc on the NSA’s website.

As is specified in the GhidraScript class, there are several variables that one can access
within a script, without the need to initialise them. An excerpt of the Ghidra documentation is
given below.

All scripts, when run, will be handed the current state in the form of class instance
variable. These variables are:

currentProgram: the active program
currentAddress: the address of the current cursor location in the tool
currentLocation: the program location of the current cursor location in the tool, or
null if no program location exists
currentSelection: the current selection in the tool, or null if no selection exists
currentHighlight: the current highlight in the tool, or null if no highlight exists

Knowing the basics of scripting before starting to write code will result in a more efficient use
of your time, as well as cleaner code.

Outline

The goal of the script is to automatically decrypt the encrypted strings that are present within
the binary. As such, it is essential to be able to decrypt the strings. For this reason, it is the
first step in this article. After that, it is important to get the required information from the user.
What that is precisely, will follow logically from the decryption routine.

Knowing how to decrypt the strings is only part of the job, as one will also need to find all
references to the decryption function call and its argument(s). Knowing the arguments for
each call, and the decryption routine itself, will allow the script to decrypt all strings. Knowing
how to add comments to the disassembly and decompiler view will show the result in an
organised fashion to the analyst.

https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html
https://ghidra.re/ghidra_docs/api/ghidra/app/script/GhidraScript.html
https://ghidra.re/ghidra_docs/api/
https://ghidra.re/ghidra_docs/api/ghidra/app/script/GhidraScript.html

3/25

Before putting all the pieces are put together, a method to cache decrypted strings will be
introduced. This will reduce the time the script needs to run if the same string is encountered
multiple times.

In this article, a Ghidra build from the 21st of December 2020 (which has a few more
commits than Ghidra 9.2.1) is used. Due to the usage of the FlatProgramAPI, it should run
on future versions, and is likely to run on older versions.

Finding the decryption routine

After loading this sample in Ghidra and running the default analysers, it becomes apparent
that the sample’s symbols were not stripped during the compilation. As such, it becomes
easy to find the main function, as is given below. Note that the function is called _main.

int __cdecl _main(int _Argc,char **_Argv,char **_Env)
{
 char *pcVar1;
 size_t in_stack_fffffff0;

 __alloca(in_stack_fffffff0);
 ___main();
 __Z10aBypassUACv();
 pcVar1 = __Z12aGetSelfPathv();
 __Z13aDropToSystemPc(pcVar1);
 pcVar1 = __Z19aGetSelfDestinationi(0);
 __Z11aAutoRunSetPc(pcVar1);
 __Z6aBasici(0);
 return 0;
}

The mangled names provide insight into what the functions do. These symbols can be
misleading, and should not always be trusted as-is, but the symbols in this sample are
representative for the functionality that is within the functions. The ___main function, note the
triple underscore, does not contain code that was made by the author.

Searching for encrypted strings can be done in a variety of ways. One can use the Defined
Strings view (as found in the Window toolstrip menu), browse through the function tree to
look for a name that is likely to handle encrypted strings (which is __Z8aDecryptPc), or click
through the functions until one encounters a function call that seems to decrypt a string (as
can be seen in __Z6aBasici).

The decryption routine is given below.

https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html

4/25

undefined * __cdecl __Z8aDecryptPc(char *param_1)
{
 size_t sVar1;
 uint local_10;

 _memset(&_ZZ8aDecryptPcE14aDecryptResult,0,0x400);
 local_10 = 0;
 while(true) {
 sVar1 = _strlen(param_1);
 if (sVar1 <= local_10) break;
 sVar1 = _strlen(s_1ee76e11929a07445c5abd744aa407db_00405000);
 (&_ZZ8aDecryptPcE14aDecryptResult)[local_10] =
 param_1[local_10] - s_1ee76e11929a07445c5abd744aa407db_00405000[local_10 %
sVar1];
 local_10 = local_10 + 1;
 }
 return &_ZZ8aDecryptPcE14aDecryptResult;
}

At first, two variables are declared, after which the memory buffer for the output is set. The
variable local_10 is incremented with one at the end of every iteration in the while loop. Only
when the length of the input is equal or bigger than the amount of iterations that have taken
place, the endless loop breaks. At last, the result is returned. The decryption itself is based
on the used key, together with the iterative value. Refactoring the method with more readable
names, the function becomes easily readable.

undefined * __cdecl __Z8aDecryptPc(char *input)
{
 size_t inputLength;
 uint i;

 _memset(&result,0,0x400);
 i = 0;
 while(true) {
 inputLength = _strlen(input);
 if (inputLength <= i) break;
 inputLength = _strlen(key);
 (&result)[i] = input[i] - key[i % inputLength];
 i = i + 1;
 }
 return &result;
}

In conclusion, this function requires one argument, which is decrypted using a hardcoded
key, after which the decrypted value is returned.

Remaking the decryption routine

As the Ghidra script is to be written in Java, the decryption routine is also to be written in
Java. The ported function will take two arguments, rather than one. The first one is the input,
which is the string to decrypt. As memory is read from the sample, the type of this variable is

5/25

a byte array. The second argument is the decryption key, which is represented as a string.
The ported function is more readable than the decompiled code, as can be seen below.

private String decrypt(byte[] input, String key) {
char[] keyArray = key.toCharArray();
int keyLength = keyArray.length;
byte[] output = new byte[input.length];

for (int i = 0; i < input.length; i++) {
 output[i] = (byte) (input[i] - keyArray[i % keyLength]);
}

return new String(output);

}

Getting user-input

Getting information from the user is a useful way to make a script more generic. If a specific
malware family uses the same decryption routine with a different key per sample, one can
request the key from the user, without the need to alter the decryption script.

In Ghidra, one can request values from the user using the ask* functions, where the asterisk
should be read as a wildcard, as there are many functions present to help. Aside from the
added convenience of not having to write such a function, it is important to note that a user
cannot provide an empty string to this dialog. The requested string cannot be null either, as
closing the dialog will lead to the termination of the script, which is clearly shown to the user
in Ghidra’s console.

To print data to the console, one can use the built-in println and print functions. The
difference is that the latter does not print the script name into the console.

In this case, the askString function is used to request a string from the user. Within the script,
two values will be required: the name of the decryption function and the key that is used to
decrypt the encrypted input.

Getting all cross references for the decryption function

The decryption function’s name is obtained earlier on in the script, as the user provides the
name. Based on that, one can get a list of functions that use this name. As symbol names do
not have to be unique in Ghidra, it is possible that there are more functions with the same
name. The code to obtain such a list is given below.

List<Function> functions = getGlobalFunctions(functionName);

Basic sanity checks to see if there are more functions with the given name can be
implemented. The ReferenceIterator class is present in the currentProgram variable, which is
already initialised. Using the getReferencesTo function, one can use an Address object to get

6/25

all references to that address. To convert a raw address, which is represented as a Long, to
an Address object, one can use the toAddr function. This function is accessible via the
extended GhidraScript class.

ReferenceIterator references =
currentProgram.getReferenceManager().getReferencesTo(toAddr(decryptionFunctionAddress)

To iterate over all references, one can use a simple for-loop, as is shown below.

for (Reference reference : references) {
 Address address = reference.getFromAddress();
 //...
}

This for-loop is the basis for the following steps, as these have to be done per reference.
Obtaining the address for the reference is the first action that has to be completed.

Iterating all decryption calls

This part of the script is based upon two steps. The first one is being able to decrypt a given
string, which is possible due to the decryption method that was written in an earlier step. The
second step is to obtain the encrypted string for each function call. To do so, one can use
code from the earlier mentioned blog by Lars A. Wallenborn and Jesko H. Hüttenhain.

The function named getConstantCallArgument is used. This function requires two
arguments, the first being an Address object, and the second is an integer array. The
Address object is the address of the function call. The integer array is used to obtain one or
more arguments of the given function’s call. The indices of the arguments in this array
correspond with the arguments for the function call, where the first index is 1, unlike the
usual 0 in an array. The function is given below.

https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-revil-string-obfuscation-in-ghidra/

7/25

//Code by Lars A. Wallenborn and Jesko H. Hüttenhain (see
https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-revil-string-
obfuscation-in-ghidra/) with a slight change in the exception handling by Max 'Libra'
Kersten
private OptionalLong[] getConstantCallArgument(Address addr, int[] argumentIndices)

 throws IllegalStateException, IllegalArgumentException {
int argumentPos = 0;
OptionalLong argumentValues[] = new OptionalLong[argumentIndices.length];
Function caller = getFunctionBefore(addr);
if (caller == null)
 throw new IllegalStateException();
DecompInterface decompInterface = new DecompInterface();
decompInterface.openProgram(currentProgram);
DecompileResults decompileResults = decompInterface.decompileFunction(caller,

120, monitor);
if (!decompileResults.decompileCompleted())
 throw new IllegalStateException();
HighFunction highFunction = decompileResults.getHighFunction();
Iterator<PcodeOpAST> pCodes = highFunction.getPcodeOps(addr);
while (pCodes.hasNext()) {
 PcodeOpAST instruction = pCodes.next();
 if (instruction.getOpcode() == PcodeOp.CALL) {
 for (int index : argumentIndices) {
 argumentValues[argumentPos] =

traceVarnodeValue(instruction.getInput(index));
 argumentPos++;
 }
 }
}
return argumentValues;

}

This function returns an array of OptionalLong objects. Such an object can contain a Long,
although it might not. In some cases, there might occur an error whilst retrieving the address,
meaning that the object itself is actually set to null. To avoid returning null, the OptionalLong
object is used.

Within the function, the decompiler interface is used to get access to the PCode values. For
each call, the Varnode‘s value is traced using traceVarnodeValue, which is also written by
Lars A. Wallenborn and Jesko H. Hüttenhain. The code is given below.

8/25

//Code by Lars A. Wallenborn and Jesko H. Hüttenhain (see
https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-revil-string-
obfuscation-in-ghidra/) with a slight change in the exception handling by Max 'Libra'
Kersten
private OptionalLong traceVarnodeValue(Varnode argument) throws
IllegalArgumentException {

while (!argument.isConstant()) {
 PcodeOp ins = argument.getDef();
 if (ins == null)
 break;
 switch (ins.getOpcode()) {
 case PcodeOp.CAST:
 case PcodeOp.COPY:
 argument = ins.getInput(0);
 break;
 case PcodeOp.PTRSUB:
 case PcodeOp.PTRADD:
 argument = ins.getInput(1);
 break;
 case PcodeOp.INT_MULT:
 case PcodeOp.MULTIEQUAL:
 return OptionalLong.empty();
 default:
 throw new IllegalArgumentException(String.format("Unknown

opcode %s for variable copy at %08X",
 ins.getMnemonic(),

argument.getAddress().getOffset()));
 }
}
return OptionalLong.of(argument.getOffset());

}

Within the decryption routine in Amadey 1.09, only a single argument is used. This argument
points to an encrypted value of a string. As such, the index one wants to retrieve is the only
equal to one, meaning an integer array with the value 1 at index 0 is required as input. The
address for the function is the address of each referenced function call of the decryption
routine. The integer array is given below.

int[] argumentIndices = { 1 };

One can get the Long value from the OptionalLong object by using the getAsLong function,
as can be seen in the code below.

Long argument = arguments[0].getAsLong();

Right now, all information to decrypt a string has been obtained, as the address of the
encrypted string, the decryption key, and the decryption routine have been collected. The
getDecryptedArgument function contains all code to decrypt an argument, which is then
returned as a string. It requires an address as a Long, and the decryption string as a String.
The code for the function is given below.

9/25

private String getDecryptedArgument(Long argument, String key) throws
MemoryAccessException {

MemoryBlock block = getMemoryBlock(toAddr(argument));
int size = ((Long) block.getSize()).intValue();
byte[] input = getBytes(toAddr(argument), size);
String decryptedValue = decrypt(input, key);
decryptedValue = decryptedValue.replace("\n", "\\n").replace("\r", "\\r");
return getFirstReadableString(decryptedValue);

}

At first, a memory block is read, based on the address of the given argument. The
getMemoryBlock function is accessible via the GhidraScript class. The size of the block is
stored in a different variable to increase the readability of the code. The getBytes function,
also accessible via the GhidraScript class, gets the bytes from the given argument’s location
until the location plus the given size.

The decryptedValue string contains the decrypted string. If any newline and carriage return
values are present in that string, they are escaped using the chained replace function calls.
The input that was provided to the decryption function is much bigger than the actual string.
As such, the first human readable string has to be recovered, which is done using the
getFirstReadableString method.

This method, as can be seen below, requires a string as input, and will return the first human
readable string.

10/25

private String getFirstReadableString(String input) {
int beginIndex = -1;
int endIndex = -1;

int asciiLow = 0;
int asciiHigh = 255;

for (int i = 0; i < input.toCharArray().length; i++) {
 char currentChar = input.charAt(i);
 if (currentChar < asciiHigh || currentChar > asciiLow) {
 beginIndex = i;
 break;
 }
}

for (int i = 0; i < input.toCharArray().length; i++) {
 char currentChar = input.charAt(i);
 if (currentChar > asciiHigh || currentChar < asciiLow) {
 endIndex = i;
 break;
 }
}

if (beginIndex >= 0 && endIndex >= 0) {
 return input.substring(beginIndex, endIndex);
}

return "NO_ASCII_STRING_FOUND";

}

This function declares four local integers, named beginIndex, endIndex, asciiLow, and
asciiHigh. The first two are set to -1, whereas the last two are set to 0 and 255 respectively.
The beginIndex and endIndex are used to store the beginning and ending indices of the first
human readable string, whereas the latter two variables are hardcoded to define the
beginning and ending of the human readable range of ASCII characters. Wide strings are out
of scope for this function, as they are not used within this sample.

The given string is iterated over twice: once for the first character, and once for the last
character. Whilst this can be done in a single loop, this would decrease the code’s
readability. As this function is rather rudimentary at best, the code’s optimisation has not
been included in this article.

The return value of this function is a substring of the provided input. If none of the characters
are readable, then a default value is returned. This default value is never returned in the
used sample.

Caching the decrypted results

11/25

Even though some optimisation steps were left out in the previous step, this step is purely
meant as an optimisation. Caching results is a useful way to easily decrease the time that
the script takes, without adding a needless complex layer of logic into the code.

At first, a mapping is created. Mappings are often known as dictionaries in other languages.
In this case, the mapping will use addresses (as a Long) as a key, where the value at a given
key is a String. The mapping’s keys are the locations of the encrypted variables, whereas the
mapping’s values are decrypted strings. The creation of the mapping is given below.

Map<Long, String> handled = new HashMap<>();

When iterating over the argument locations, the following if-statement is required to
implement the caching of decrypted values.

if (handled.containsKey(argument)) {
 //...
} else {
 //...
}

As such, it checks if the given address already present in the mapping. If it is, the value for
the given key should be used. Otherwise, it can go through the normal decryption process,
and add the outcome to the given mapping. The lookup in the mapping is much quicker than
the decryption routine, thereby saving several seconds in a small sample such as this. In
testing on my local machine, the script’s runtime went down from 22 seconds to 16 seconds.
Slower computers might benefit more of the caching, whereas faster computers might benefit
less.

Adding comments and bookmarks

Once the decrypted values have been obtained, they need to be handed back to the user.
This is done in multiple ways. One can add comments (both to the disassembly and
decompiler views), bookmarks, and print the results in the output window. In the code below,
both comment methods, as well as the bookmark creation, have been listed. Do note that
existing bookmarks for a specific address will be overwritten with the createBookmark
function.

//Decompiler comment
currentProgram.getListing().getCodeUnitAt(toAddr(argument)).setComment(CodeUnit.PLATE_
comment);
//Disassembly comment
currentProgram.getListing().getCodeUnitAt(toAddr(argument)).setComment(CodeUnit.PRE_CO
comment);
//Bookmark creation
createBookmark(toAddr(argument), "Decrypted string", "The variable named " +
getSymbolAt(toAddr(argument)) + " is equal to \"" + decryptedValue + "\"");

Putting it all together

12/25

The complete script is given below. It contains a few more sanity checks, the most notable
being the user feedback when providing details, and the check if there is only a single
function with the provided name. When running the script, the following output is observed at
the end, aside from the list of decrypted values in Ghidra’s console:

Decrypted 47 strings (using 11 cached strings), placed 210 comments, and
created 47 bookmarks in 16 seconds!

To show the difference in the decompiled code, two excerpts are given. The first excerpt is
the decompiler output in Ghidra prior to running the string decryption script, as can be seen
below.

 pcVar2 = __Z8aDecryptPc(&_aAV00);
 bVar1 = __Z7aPathAVPc(pcVar2);
 uVar3 = bVar1 != false;

 pcVar2 = __Z8aDecryptPc(&_aAV01);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 2;
 }

 pcVar2 = __Z8aDecryptPc(&_aAV02);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 3;
 }

 pcVar2 = __Z8aDecryptPc(&_aAV03);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 4;
 }

 pcVar2 = __Z8aDecryptPc(&_aAV04);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 5;
 }

The second one contains the comments that have been added by the script.

13/25

 /* Decrypted value: "AVAST Software" */
 pcVar2 = __Z8aDecryptPc(&_aAV00);
 bVar1 = __Z7aPathAVPc(pcVar2);
 uVar3 = bVar1 != false;
 /* Decrypted value: "Avira" */
 pcVar2 = __Z8aDecryptPc(&_aAV01);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 2;
 }
 /* Decrypted value: "Kaspersky Lab" */
 pcVar2 = __Z8aDecryptPc(&_aAV02);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 3;
 }
 /* Decrypted value: "ESET" */
 pcVar2 = __Z8aDecryptPc(&_aAV03);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 4;
 }
 /* Decrypted value: "Panda Security" */
 pcVar2 = __Z8aDecryptPc(&_aAV04);
 bVar1 = __Z7aPathAVPc(pcVar2);
 if (bVar1 != false) {
 uVar3 = 5;
 }

The decompiled code becomes easily readable, especially with the included symbols. This
allows the analyst to quickly analyse the malware’s functionality.

Conclusion

Scripting will greatly reduce the amount of time that an analyst needs to spend when looking
at a repetitive task. Understanding the basics of Ghidra’s architecture will greatly reduce the
amount of time an analyst needs to write such a script. By creating a heavily documented
script, it becomes reusable for similar tasks in other samples. As such, each new script will
make future work easier.

Note that not all parts of the script in this article are required, more specifically the caching
part. Even though it does save some time in this script, the overhead that it requires to write
the code is longer than the time that is saved with it. When looking at a sample that has a
really heavy decryption routine, and/or a lot of encrypted strings, the overhead might be
worth it.

This trade-off is up to the analyst to decide, and is also depending on the goal of analyst.
Learning how to write such a script might involve more work that is not necessarily the most
efficient for a given sample, but has a positive influence on the analyst’s future scripting
abilities.

14/25

The complete script

The complete script is given below. It can be added as a file to any working ghidra_script
directory, or one can use the simple editor within Ghidra to create a new script and paste this
script in it.

15/25

//This script is used to annotate function calls to decrypt strings with the
decrypted string. The decryption routine and key are taken from an Amadey sample
(MD5: dbaaa2699c639f652117e9176fd27fdf). One can easily modify the code to make it
suitable for other families or decryption routines.
//@author Max 'Libra' Kersten
//@category String decryption
//@keybinding
//@menupath
//@toolbar

import java.time.Duration;
import java.time.Instant;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.OptionalLong;

import ghidra.app.decompiler.DecompInterface;
import ghidra.app.decompiler.DecompileResults;
import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.Address;
import ghidra.program.model.listing.CodeUnit;
import ghidra.program.model.listing.Function;
import ghidra.program.model.mem.MemoryAccessException;
import ghidra.program.model.mem.MemoryBlock;
import ghidra.program.model.pcode.HighFunction;
import ghidra.program.model.pcode.PcodeOp;
import ghidra.program.model.pcode.PcodeOpAST;
import ghidra.program.model.pcode.Varnode;
import ghidra.program.model.symbol.Reference;
import ghidra.program.model.symbol.ReferenceIterator;

public class Amadey extends GhidraScript {

/**
 * Global variable that is used to keep track of the amount of decrypted

strings
 */
private int decryptionCount;

/**
 * Global variable that is used to keep track of the amount of comments that
 * have been set
 */
private int commentCount;

/**
 * Global variable that is used to keep track of the amount of bookmarks that
 * have been set
 */
private int bookmarkCount;

/**
 * Global variable that is used to keep track of the amount of variables that

16/25

 * have been cached
 */
private int cacheCount;

/**
 * This function is the first that is called by Ghidra when running the

script.
 * In here, variables need to be initialised first. This script uses this
 * function to obtain information from the user, and to verify this

information.
 * After the verification and other sanity checks, the "handle" function is
 * called. In there, the decryption logic starts.
 */
public void run() throws Exception {
 // Initialisation of the three counters, starting at zero
 decryptionCount = 0;
 commentCount = 0;
 bookmarkCount = 0;
 cacheCount = 0;

 /*
 * Requesting the function name in a pop-up dialog. The result is

provided as
 * the return value, which is stored into the variable
 */
 String functionName = askString("Function name required",
 "Please provide the name of the function that

decrypts the strings:");
 // Provide feedback to the user regarding the provided function name
 println("Received function name: " + functionName);

 /*
 * Request the decryption key in a pop-up dialog. The result is

provided as the
 * return value, which is stored into the variable
 */
 String key = askString("Decryption key required",
 "Please provide the name of the function that is used

during the string decryption:");
 // Provide feedback to the user regarding the provided decryption key
 println("Received decryption key: " + key);

 /*
 * The lack of checks for null values or empty strings are omitted,

as the
 * pop-up dialog does not accept empty strings. Closing the dialog

will result
 * in the cancellation of the whole script, which is out of scope to

handle
 * here.
 */

 /*
 * Get all the functions for the given name. Symbol names do not need

to be

17/25

 * unique in Ghidra, hence the fact that a list is returned
 */
 List<Function> functions = getGlobalFunctions(functionName);

 // If there is only one function with that name, it is safe to

continue
 if (functions.size() == 1) {
 // The first, and only, function resides at index 0
 Function function = functions.get(0);
 /*
 * The function address is the first address of the function,

which is the
 * minimum.
 */
 long decryptionFunctionAddress =

function.getBody().getMinAddress().getOffset();
 // Provide feedback to the user about the decryption function

details
 println("Decryption function (" + function.getName() + "

found at 0x"
 + Long.toHexString(decryptionFunctionAddress)

+ ")");
 // A divider is printed as the decryption process is about to

start
 println("--

-------------");

 // To keep track of the time, the start time is saved
 Instant begin = Instant.now();
 // The "handle" function deals with the decryption logic
 handle(decryptionFunctionAddress, key);
 // After the function returns, the end time is saved
 Instant end = Instant.now();
 // The difference between the two is calculated
 Duration duration = Duration.between(begin, end);
 // As the decryption routine has finished, a new divided is

printed
 println("--

-------------");

 // The collected statistics, as well as the time the script
took, are then

 // printed
 println("Decrypted " + decryptionCount + " strings (using " +

cacheCount + " cached strings), placed "
 + commentCount + " comments, and created " +

bookmarkCount + " bookmarks in " + duration.toSeconds()
 + " seconds!");
 // Provide more information about the script to the user
 println("If you have any questions or suggestions, feel free

to ping me on Twitter: @Libranalysis");
 } else if (functions.size() == 0) {
 /*
 * If no function is found, the user is notified and the

script returns

18/25

 */
 println("No functions were found for the given name, please

make sure the name is correct and try again.");
 } else if (functions.size() >= 2) {
 /*
 * If multiple functions are using the same name, the user

should pick a unique
 * name for the decryption function and try again
 */
 println("More than one function with this name has been

found. Ensure that the name is unique and try again.");
 }
}

/**
 * This function handles the string decryption logic. It caches the decrypted
 * strings, meaning strings that are decrypted more than once, do not need to

be
 * decrypted, as the mapping already exists. The decrypted variables and
 * cross-references are commented in both the disassembly view, as well as

the
 * decompiler. Additionally, bookmarks are added for each decrypted string.
 *
 * @param decryptionFunctionAddress the address of the decryption function
 * within the sample
 * @param key the decryption key
 */
private void handle(long decryptionFunctionAddress, String key) {
 /*
 * Create a mapping for handled strings and the address of the

variable the
 * encrypted content resides at
 */
 Map<Long, String> handled = new HashMap<>();
 /*
 * The reference iterator is not limited to a reference amount limit,

whereas
 * some other methods are
 */
 ReferenceIterator references = currentProgram.getReferenceManager()
 .getReferencesTo(toAddr(decryptionFunctionAddress));

 // Iterate over all references
 for (Reference reference : references) {
 /*
 * Get the address of the location that calls the string

decryption function
 */
 Address address = reference.getFromAddress();

 /*
 * Get the index of the argument that is to be decrypted.

Note that the index
 * count for this starts at 1 (unlike the usual starting

point of 0).

19/25

 */
 int[] argumentIndices = { 1 }; // The decryption routine has

only one argument

 try {
 // Get an array with the addresses of the given

indices, in this case only 1
 OptionalLong[] arguments =

getConstantCallArgument(address, argumentIndices);
 // Get the address from the array as a long
 Long argument = arguments[0].getAsLong();

 // Initialise the variables to ensure there are no

compiler errors
 String decryptedValue = "";
 String comment = "";
 /*
 * If the mapping already contains the address of the

encrypted variable, it has
 * already been encountered (and thus decrypted)

before. Simply obtaining the
 * value in the mapping for the given key (the

variable's address) yields the
 * correct result and decreases the time the script

needs to run
 */
 if (handled.containsKey(argument)) {
 decryptedValue = handled.get(argument);
 comment = "Decrypted value (from cache): \""

+ decryptedValue + "\"";
 //Increase the cache count with one
 cacheCount++;
 } else {
 /**
 * If the address of the encrypted variable

is not present, it has not been
 * encountered before. As such, it needs to

be decrypted.
 */
 decryptedValue =

getDecryptedArgument(argument, key);
 comment = "Decrypted value: \"" +

decryptedValue + "\"";

 /*
 * Set comments at the variable itself in the

disassembly and decompiler views
 * respectively
 */

currentProgram.getListing().getCodeUnitAt(toAddr(argument)).setComment(CodeUnit.PLATE_

 comment);

currentProgram.getListing().getCodeUnitAt(toAddr(argument)).setComment(CodeUnit.PRE_CO

20/25

 comment);
 // Increase the comment count with two, based

on the above added comments
 commentCount += 2;

 // Create a bookmark at the encrypted

variable's address
 createBookmark(toAddr(argument), "Decrypted

string", "The variable named "
 +

getSymbolAt(toAddr(argument)) + " is equal to \"" + decryptedValue + "\"");

 // Increase the bookmark count, based on the
above added bookmark

 bookmarkCount++;
 // Add this address (and the decrypted value)

to the mapping
 handled.put(argument, decryptedValue);
 }

 /*
 * Regardless how the data was obtained, the user is

provided with feedback
 * related to decryption of the string. The argument

is also printed, as it
 * becomes clickable in the console in Ghidra,

allowing the user to navigate to
 * it by double clicking.
 */
 println(comment + " (located at 0x" +

Long.toHexString(argument) + ")");

 /*
 * Set comments at the reference in the disassembly

and decompiler views
 * respectively
 */

currentProgram.getListing().getCodeUnitAt(reference.getFromAddress()).setComment(CodeU

 comment);

currentProgram.getListing().getCodeUnitAt(reference.getFromAddress()).setComment(CodeU

 comment);
 // Increase the comment count with two, based on the

above added comments
 commentCount += 2;
 } catch (Exception ex) {
 println(ex.getMessage());
 }
 }

}

21/25

/**
 * Gets the decrypted argument from the given address, which is decrypted

using
 * the given key
 *
 * @param argument the address of the argument
 * @param key the key that is used to decrypted the value at the

argument
 * @return the decrypted string
 * @throws MemoryAccessException if an error occurs when obtaining the bytes

at
 * the given address
 */
private String getDecryptedArgument(Long argument, String key) throws

MemoryAccessException {
 // Gets the memory block at the argument's address
 MemoryBlock block = getMemoryBlock(toAddr(argument));
 // The size of the memory block
 int size = ((Long) block.getSize()).intValue();
 // Get the bytes at the given address for the given size
 byte[] input = getBytes(toAddr(argument), size);
 // Get the raw string from the decryption routine
 String decryptedValue = decrypt(input, key);
 /*
 * Replace values that are lower than 32 in the ASCII table with

escaped ones,
 * only those which are used in this sample are visible here
 */
 decryptedValue = decryptedValue.replace("\n", "\\n").replace("\r",

"\\r");
 // Get the first readable string from the block of memory and return

that value
 return getFirstReadableString(decryptedValue);
}

/**
 * Gets the first readable ASCII string from a given input. If no such value

can
 * be found, the function will return "NO_ASCII_STRING_FOUND".
 *
 * @param input the string to obtain the first readable ASCII string from
 * @return the first readable ASCII string
 */
private String getFirstReadableString(String input) {
 // The begin index of the human readable ASCII string
 int beginIndex = -1;
 // The end index of the human readable ASCII string
 int endIndex = -1;

 // The lowest human readable ASCII value
 int asciiLow = 0;
 // The highest human readable ASCII value
 int asciiHigh = 255;

22/25

 /*
 * This loop iterates over the given string to find the first human

readable
 * ASCII character. When it does, the beginIndex variable is set to

that value
 * and the loop is broken.
 */
 for (int i = 0; i < input.toCharArray().length; i++) {
 char currentChar = input.charAt(i);
 if (currentChar < asciiHigh || currentChar > asciiLow) {
 beginIndex = i;
 break;
 }
 }

 /*
 * This loop iterates over the given string to find the last human

readable
 * ASCII character. When it does, the endIndex variable is set to

that value and
 * the loop is broken.
 */
 for (int i = 0; i < input.toCharArray().length; i++) {
 char currentChar = input.charAt(i);
 if (currentChar > asciiHigh || currentChar < asciiLow) {
 endIndex = i;
 break;
 }
 }

 /*
 * If the beginIndex and endIndex are equal to zero or more, both

values have
 * been found in the two loops. As such, the human readable substring

can be
 * returned as a substring from the input at the given two indices.
 */
 if (beginIndex >= 0 && endIndex >= 0) {
 return input.substring(beginIndex, endIndex);
 }

 /*
 * If either (or both) of the indices could not be found, the default

value is
 * returned
 */
 return "NO_ASCII_STRING_FOUND";
}

/**
 * The decryption routine that is present in this specific sample
 *
 * @param input the encrypted data
 * @param key the decryption key
 * @return the decrypted string

23/25

 */
private String decrypt(byte[] input, String key) {
 // The key from the sample
 char[] keyArray = key.toCharArray();
 // The length of the key in the sample
 int keyLength = keyArray.length;
 // The encrypted data is stored in input
 // The decrypted data
 byte[] output = new byte[input.length];

 // Loop through the input
 for (int i = 0; i < input.length; i++) {
 // Decrypt the character
 output[i] = (byte) (input[i] - keyArray[i % keyLength]);
 }

 // Increase the decryption count
 decryptionCount++;
 // Return the decrypted string
 return new String(output);
}

/**
 * This function returns an array of optional longs. The size of this array

is
 * equal to the size of the argument indices' size. The indices of the

functoin
 * at the given address starts at 1, unlike the usual 0.
 *
 * @author Lars A. Wallenborn and Jesko H. Hüttenhain(see
 * https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-

revil-string-obfuscation-in-ghidra/)
 * with a slight change in the exception handling by Max 'Libra'

Kersten
 *
 * @param addr the address of the function
 * @param argumentIndices the indices of the arguments of said function,
 * starting at 1
 * @return an array of optional longs, with the addresses of the variables
 * @throws IllegalStateException if the previously defined function is null

or
 * if the decompiler fails to complete
 * @throws UnknownVariableCopy if the variable's varnode type is unknown
 */
private OptionalLong[] getConstantCallArgument(Address addr, int[]

argumentIndices)
 throws IllegalStateException, IllegalArgumentException {
 int argumentPos = 0;
 OptionalLong argumentValues[] = new

OptionalLong[argumentIndices.length];
 Function caller = getFunctionBefore(addr);
 if (caller == null)
 throw new IllegalStateException();
 DecompInterface decompInterface = new DecompInterface();
 decompInterface.openProgram(currentProgram);

24/25

 DecompileResults decompileResults =
decompInterface.decompileFunction(caller, 120, monitor);

 if (!decompileResults.decompileCompleted())
 throw new IllegalStateException();
 HighFunction highFunction = decompileResults.getHighFunction();
 Iterator<PcodeOpAST> pCodes = highFunction.getPcodeOps(addr);
 while (pCodes.hasNext()) {
 PcodeOpAST instruction = pCodes.next();
 if (instruction.getOpcode() == PcodeOp.CALL) {
 for (int index : argumentIndices) {
 argumentValues[argumentPos] =

traceVarnodeValue(instruction.getInput(index));
 argumentPos++;
 }
 }
 }
 return argumentValues;
}

/**
 * This function returns an optional long for the given argument's value.
 *
 * @author Lars A. Wallenborn and Jesko H. Hüttenhain (see
 * https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-

revil-string-obfuscation-in-ghidra/),
 * with a slight change in the exception handling by Max 'Libra'

Kersten
 *
 * @param argument the instruction at the given index as a Varnode object
 * @return the address of the argument's value
 * @throws UnknownVariableCopy if the variable is unknown
 */
private OptionalLong traceVarnodeValue(Varnode argument) throws

IllegalArgumentException {
 while (!argument.isConstant()) {
 PcodeOp ins = argument.getDef();
 if (ins == null)
 break;
 switch (ins.getOpcode()) {
 case PcodeOp.CAST:
 case PcodeOp.COPY:
 argument = ins.getInput(0);
 break;
 case PcodeOp.PTRSUB:
 case PcodeOp.PTRADD:
 argument = ins.getInput(1);
 break;
 case PcodeOp.INT_MULT:
 case PcodeOp.MULTIEQUAL:
 return OptionalLong.empty();
 default:
 throw new

IllegalArgumentException(String.format("Unknown opcode %s for variable copy at %08X",
 ins.getMnemonic(),

argument.getAddress().getOffset()));

25/25

 }
 }
 return OptionalLong.of(argument.getOffset());
}

}

