
1/11

Long Live, Osiris; Banking Trojan Targets German IP
Addresses

blog.morphisec.com/long-live-osiris-banking-trojan-targets-german-ip-addresses

Posted by Michael Dereviashkin on February 8, 2021
Tweet

https://blog.morphisec.com/long-live-osiris-banking-trojan-targets-german-ip-addresses
https://blog.morphisec.com/author/michael-dereviashkin
https://twitter.com/share

2/11

During the period between January 15 and 20, Morphisec identified a significant campaign
targeting multiple German customers from the manufacturing industry. Targeted personnel
were redirected to compromised websites that were, and still are, delivering advanced
fileless downloaders that eventually lead to an Osiris client with a bundled mini-Tor
communicating to a C2 onion Tor panel.

Following an additional investigation and sharing some of the TTPs with the community, we
were notified of additional targeted countries such as the United States and Korea, which
were delivered REvil and other payloads using the same delivery mechanism as described in
the report.

In this blog, we will go over every stage of the attack chain in the German campaign.

Technical Introduction

The attack chain is composed of five main stages;

An obfuscated Javascript downloader from a compromised site
A Second stage Javascript downloader that takes care of persistence
A Powershell executed by the Javascript that leads to reflective loading of the next
stage .NET file
A fileless .NET loader that’s mapped from the registry and decodes to a new .NET
hollower in-memory executable, which is responsible for hollowing the Osiris trojan
into a legitimate Windows process.
Osiris connects to its C2 with the help of a mini-Tor bundle.

3/11

Figure 1: The Osiris attack chain.

Initial Access

The victim receives a link to a compromised website that contains a download link to a
malicious zip file, which then contains a JS file. , the web page and the file name translates
to “collective agreement on-call remuneration ig metal.”

The download as well as the rest of the attack chain communication will be available only to
an IP located in Germany.

Figure 2: The compromised website.

The screen shot above is taken from the compromised website.

Stage 1 - Javascript downloader

4/11

The JavaScript file inside the zip archive:

Figure 3: The JavaScript file.

The screenshot below is a formatted view of the malicious Javascript:

Figure 4: A formatted view of the malicious JavaScript

As seen above, the Javascript code is composed of dictionary generated code and includes
real words in order to evade the static file scan used by AV solutions for obfuscation
detection. It’s important to note that for every new download of javascript, the JS code won’t
be exactly the same, but it will have a similar structure.

In order to deobfuscate the embedded code in all Javascript stages, the following code
snippet can be used:

Figure 5: Deobfuscating the JavaScript

5/11

Step 2

The “prove” variable (the long obfuscated string) actually contains the embedded next step
obfuscated Javascript code that deobfuscates itself into:

Figure 6: The "prove" variable.

Note that for every new download of Javascript, the unique id is represented by the registry
path generated within the “HKCU/<Random 5 letters>.” The “create” function is then called
with the Javascript code execution in the next step.

Step 3

As seen on the screenshot below, the Javascript contains three domains that the code
attempts to communicate with. It’s worth mentioning that they are also compromised (those
domains change every couple of days).

Figure 7: The three compromised domains the code communicates with.

6/11

The parameter for ‘search’ is also unique per download. The script identifies if the machine is
located in a domain by expending the environment variable %USERDNSDOMAIN%.
Depending on what it receives, it sends a different get request to the compromised website
with a high possibility for a different malware.

Stage 2 - Javascript persistence

The second stage formatted Javascript is delivered only to German IP addresses. The code
already includes its next stage .NET code, which will be persisted into registry.

Figure 8: The second stage formatted JavaScript.

Figure 9: The JavaScript executing 32-bit Powershell

As seen above, the Javascript code will execute 32-bit Powershell using cmd. It identifies the
OS architecture by validating the program files directory name extension.

7/11

Powershell - reflective loading

The executed Powershell command reflectively loads the next stage .NET executable from
registry represented by “HKCU:\SOFTWARE\<username>1”, but not before applying a
minimalistic deobfuscation replacement algorithm on the value of the registry :

Figure 10: Reflective loading of the next stage.

A simple search in VirusTotal that is based on the replacement function “chba” will lead to
previous versions of the Powershell that are dependent on “HKCU:\SOFTWARE\<machine
name>1.”

.NET loader

As seen from the previous stages, the .NET loader is a small size code that is written to the
registry by the second stage Javascript and is loaded to the memory by the third stage
Powershell reflective loader

Figure 11: The .NET loader

The .NET loader will add additional persistence and is responsible for decoding the next step
.NET hollower variant, which is located under “HKCU:\SOFTWARE\<machine name>”
(without the 1).

8/11

Figure 12: The .NET hollower variant.

The .NET code under <username> is obviously much larger than the loader as it includes
both the hollowing functionality and the Osiris code.

Figure 13: The .NET code containing hollowing and Osiris.

This .NET hollower injects the Osiris executable into a legitimate “ImagingDevice” executable
that comes preinstalled with Windows as part of the Windows Photo Viewer software.

9/11

Figure 14: The .NET hollower injecting Osiris.

Osiris TROJAN

Following the hollowing, the Osiris executable uses its bundled mini-Tor component to
communicate with a Tor panel. As can be seen below, the banking trojan still implements
many of its original banker functionalities.

Figure 15: The Osiris executable uses a bundled mini-Tor.

10/11

Figure 16: Osiris retains some banker functionality.

Figure 17: Some banker functionality in Osiris.

Artifact file - bundled mini-Tor.

Figure 18: A bundled mini-Tor.

Conclusion

11/11

The Osiris trojan attacking German IP addresses continues the trojan’s historical use. The
Morphisec platform blocks Osiris with a zero-trust default-deny approach to endpoint
security, powered by moving target defense. Customers of Morphisec are thus protected
from Osiris, regardless of what defense evasion techniques the authors deploy.

IOC:

EC936B6BB7497FFB11577C14A9AB2860EC1DD705DC18225BBDAB5BF57804BDBC -
JS

72C5EEB8807A4576340485377CACC582A3CA651C4632DB06903C125BE6692968 -
.NET module <username1>

63C62D6086A6CF2FCBB22A16C06EB0BC870CDB2F0BB029390D3BC815C06A6C6B -
.NET module <username>

2FC970B717486762F6C890F525329962662074EB632F0827C901FB1081CBD98F - Osiris

91F1023142B7BABF6FF75DAD984C2A35BDE61DC9E61F45483F4B65008576D581 -
Minitor www.underregnbuen[.]dk/?p=5739 - the compromised website

hxxp://ylnfkeznzg7o4xjf[.]onion/kpanel/connect.php - Osiris C2

Contact SalesInquire via Azure

https://cta-redirect.hubspot.com/cta/redirect/1534169/d9fd9894-e27f-4cbe-b476-8c321c26f3d0
http://10.10.0.46/mailto:sales@morphisec.com
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/morphisec.morphisec_unified_threat_prevention_platform?tab=overview

