
1/8

CinaRAT Resurfaces With New Evasive Tactics and Techniques
blog.morphisec.com/cinarat-resurfaces-with-new-evasive-tactics-and-techniques

Posted by Nadav Lorber on February 5, 2021
Find me on:
Twitter

Tweet

Introduction

In this post, we will be covering CinaRAT loader`s evasive TTPs (tactics, techniques, and procedures) as have been
identified and prevented by Morphisec’s zero-trust endpoint security solution, powered by moving target defense
technology.

We will be reviewing different versions of multi-staged loaders that attempt to inject and execute CinaRAT within the
victim’s host memory. CinaRAT code is available on GitHub for download; generally it's just a rebranded QuasarRAT.

https://blog.morphisec.com/cinarat-resurfaces-with-new-evasive-tactics-and-techniques
https://blog.morphisec.com/author/nadav-lorber
https://twitter.com/LNadav
https://twitter.com/share

2/8

We will focus on the evasive components that allowed the attackers to sustain zero detection for such a long period of
time (VirusTotal)

1st stage - ISO/VBS script

Our investigation begins with a Visual Basic script that has been identified in a customer environment. We observed its
delivery through an ISO archive file.

The script implements reflective loading, persistence, and evasion functionality.

The first step is a reflective loading of a remote .NET DLL executable, usually from a GitHub user account represented by
an image download.

Figure 1:The image download

As soon as the image is downloaded and loaded into memory, it is written into a startup folder using an advanced method:

In order to copy itself into the autoruns, the script calls “NameSpace(7).Self.Path” that retrieves the autoruns path. This is
a unique technique which isn’t often used for malware delivery.

Figure 2: NameSpace(7) usage

The obfuscation method for each version is different, and within each version the attacker changes the comment line in
each code line so they can avoid hash detection.

Figure 3: Comment as a dynamic artifact

An interesting note is that the string technique utilized in the “GMR” variable evades VirusTotal when it is parsed.

Figure 4: VirusTotal content parsing

These are the main changes between Visual Basic script versions

Obfuscation, mainly splitting strings

Figure 5: Part of a split string

“If” condition within the Powershell in order to validate that the payload was successfully downloaded
Different payloads with different URLs

3/8

The following table lists a few examples that correlate between the URL download domain to the file path saved within the
victim host along with our internal version numbering.

Internal
version

Download URL Local file path

V1 hxxps://raw.githubusercontent[.]com/githubaccountz/z/main/a.png C:\Users\Public\Music\a.jpg

V1.1 hxxps://raw.githubusercontent[.]com/githubuser2x/x/master/New.jpg C:\Users\Public\Music\xt.jpg

V1.1 +
V2

hxxps://raw.githubusercontent[.]com/githubuser2x/aws/main/Img.jpg

V3 https://raw.githubusercontent[.]com/githubuser2x/x/blob/master/One.html C:\Users\Public\Documents\One.html

2nd stage - .NET loader

As was described in a previous stage, the Visual Basic script delivers a second .NET file.

The purpose of this .NET file is to decode the final stage .NET CinaRAT payload and inject it into a legitimate Windows
process utilizing process hollowing. This is done with several evasion techniques in order to avoid detection and AI.

The RAT payload resides in a base64 encoded string that, during the execution, is decoded and XORed with string as the
key. Once the .NET DLL decodes the RAT, it will hollow legitimate images in memory and inject it.

byte[] array = bxx.fhghjhhfgddg(Convert.FromBase64String(bxx.xxxz), "!@#$%^&*
(gfgghgj)_)*gjgj^$#GJgjgjgjNHGH%^*(&^$#$$%&");

Figure 6: The XOR decoding routine in V2

We have observed four different versions along with four subversions between December 8, 2020, and February 2, 2021
It's noticeable that the attacker updated the evasion techniques from version to version in order to avoid detection.

The following table lists the different internal versions along the with first seen date either from the attacker’s GitHub or
VirusTotal submission

Loader Internal version Github date VirusTotal date

V1 December 8, 2020

V1.1 December 18, 2020 December 20, 2020

V2 December 24, 2020

4/8

V2.1 December 24, 2020 December 31, 2020

V2.2 January 16, 2021 Was not submitted

V3 January 23, 2021 January 27, 2021

V4 January 22, 2021 January 25, 2021

V4.1 February 1, 2021 February 3, 2021

Code pattern:

In each version the code pattern is different but eventually, the execution flow stays the same except for minor changes.
Here are a few examples:

The called method convention is the same in all of the versions (axx.bxx.cxx()) except V4 ([WorkArea.Work]::Exe()).
In V1 and V2, the encoded base64 string is loaded from a variable while in V3 and V4 it’s loaded from a bunch of
functions that are joined together to form the string.
The XOR key is the same in all of the versions except in V4.

Version Key

V1 - V3 !@#$%^&*(gfgghgj)_)*gjgj^$#GJgjgjgjNHGH%^*(&^$#$$%&

V4 !@#$%%&*(*))_D!@#DasHF

Figure 7: Encoded payload chunk from V4.1

5/8

Code obfuscator:

The attacker obfuscated the code using an unregistered version of Eziriz .NET Reactor, although in V2 and V3 it seems
that either they switched to a registered version or discarded the remnant code as the following script was not there
anymore. In V4 the attacker did not implement any obfuscator, but in V4.1 the obfuscation was implemented again with
the “unregistered” remnant code.

Figure 8: Fingerprint string

Code Masquerading:

From V1.1, the attacker added legitimate namespaces from popular .NET libraries to the loader. This evasion technique
tries to disguise the loader as a legitimate .DLL in order to avoid analysis. It's also possible that this technique can bypass
AV solutions that implement whitelist rules on chunks from those .NET libraries. The following table lists a few examples
of libraries that were used.

Version Libraries

V1 None

V1.1 Newtonsoft json.NET

V2.1 RestSharp + DiscUtils

Figure 9: Some of the namespaces in V2

Analyzing the submission dates and the first detection dates on all of the loaders in VirusTotal suggests that the code
masquerading technique succeeds with bypassing AV solutions.

3rd stage - RAT Payload

We have observed four different versions of RAT payloads. The first one that was used was QuasarRAT 1.4, while later
on CinaRAT 1.0.1.1 was used instead with some modifications. For the C2 domain, the attacker mostly used a dynamic
DNS service from myq-see[.]com

The following table correlates the observed RAT version with the C2 domain and Loader version.

RAT Version Loader internal version C2 Domain

QuasarRAT 1.4 V1
server.homesbill[.]com

6/8

CinaRAT 1.0.1.1 variant A V1.1

V1.1 + V2 aptzebi.myq-see[.]com

V2.1 aptzebi0.myq-see[.]com

V2.1 + V2.2
mahost.myq-see[.]com

CinaRAT 1.0.1.1 variant B

V3

V4 aptzebi3.myq-see[.]com

CinaRAT 1.0.1.1 variant C V4.1 zebi4.myq-see[.]com

Figure 10: RAT configuration

example from V4.1

Conclusion

The Morphisec platform prevents attacks from CinaRAT with a zero-trust default-deny approach to endpoint security,
powered by moving target defense. Customers of Morphisec are thus protected from CinaRAT, regardless of what evasive
techniques the attacker deploys to bypass AV and NGAV solutions.

IOCs

VB Scripts (Stage 1)

SHA256 Internal version

6dd24a396feba685ed77ee73e20388a571ffee2a857e5269406043aa5a03fb50 V1

8c07a453e85d6ce766a5cb60dd5d2311f3570f2b818b6050c70bb91cfcecefe4

7/8

c1112384f112be4ca371297019f4ca8d93d7b76e105014d1b9d54b18aced9124 V1.1

d14a38bf604ba56945f3e16732103dbb47067977e14de567cacf1c09ba20b7f7
V1.2

f1afcbbd219edc56641787aee26420e55a8ab7f088dc900a146361733698c6da

44a69db5be76bfd200aaa79510e2f8a240f07f9d0840df95e55a0fec0944afdb V2

addd44ee803082c4667bae68284e316f1a799b72ecbdaae38097ba2c4ccb9d16 V3

.NET Loader (Stage 2)

SHA256 Internal version

f5fd82f7f599b1ed477a6f66388cbe0f2beec9fc28e83d35105cd3222a85d5ab V1

c6e20052ab38341af626b0a07654c763af77fe830d5e216f03ed3b99d944de65

cc18946e23d3fd289375912cb1d997be0ae3e71d2b4bcf1a14583f9f3ab4f919 V1.1

ceb9cf440fc521f09a503e90889acb7f51b4c39ce8a8c4d37dd8304fca2db4ce

714cdcd6e144b482d1c98661e894900244862c7135a895f2edfcd7fdac6d84fc V2

47684fe237efc9dd608bac491db984f7b67b91b9fbf890da788123af8cadbe30

e1594447ff87f29d61735f5ce39a8150fae79349b389c8e5dab2c2de30e62966 V2.1

d4235a670e2f7c5232cc9961b843db239e43d0cf3f619c6104b162944b3ee39d

32a9caba473f6f19103526c605e65c421adc50421cab6e0a7de9d745b8829778 V2.2

96fe6bfe32a8cc77adff891b39c45c638c456b48915798e69012ea1e4333560f V3

4ba57a45bfd29555d3e269abdb6efa391befc164e90813fb0ff2d486b52792ca V4

230a74b0f306464dcb6e16b9d3c62d364e13c2d69e3c654dce303e1efd3fc6b2 V4.1

8/8

Contact SalesInquire via Azure

https://cta-redirect.hubspot.com/cta/redirect/1534169/35f808d8-54b9-43d4-b119-4effc1286b1e
http://10.10.0.46/mailto:sales@morphisec.com
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/morphisec.morphisec_unified_threat_prevention_platform?tab=overview

