Dissecting a RAT. Analysis of DroidJack v4.4 RAT
network traffic.

stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic
Kamila Babayeva February 3, 2021

L.

L

This blog post was authored by Kamila Babayeva (@_kamifai_) and Sebastian Garcia
(@eldracote).

The RAT analysis research is part of the Civilsphere Project
(https.//www.civilsphereproject.org/), which aims to protect the civil society at risk by
understanding how the attacks work and how we can stop them. Check the webpage for
more information.

This is the second blog of a series analyzing the network traffic of Android RATs from our
Android Mischief Dataset [more information here], a dataset of network traffic from Android
phones infected with Remote Access Trojans (RAT). In this blog post we provide the
analysis of the network traffic of the RAT02-DroidJack v4.4 [download here].

RAT Details and Execution Setup

The goal of each of our RAT experiments is to use the software ourselves and to execute
every possible action while capturing all the traffic and storing all the logs. So these RAT
captures are functional and were used in real attacks.

The DroidJack v.4.4 RAT is a software package that contains the controller software and
builder software to build an APK. It was executed on a Windows 7 virtual machine with
Ubuntu 20.04 as a host. The Android Application Package (APK) built by the RAT builder
was installed in the Android virtual emulator called Genymotion with Android version 8.

While performing different actions on the RAT controller (e.g. upload a file, get GPS
location, monitor files, etc.), we captured the network traffic on the Android virtual emulator.

The details about the network traffic capture are:
e The controller IP address: 147.32.83.253
e The phone IP address: 10.8.0.57

o UTC time of the infection in the capture: 2020-08-01 14:10:43 UTC

1/11

https://www.stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic
https://www.civilsphereproject.org/
https://www.stratosphereips.org/android-mischief-dataset
https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/AndroidMischiefDataset_v1/DroidJack.zip

Initial Communication and Infection

Once the APK was installed in the phone, it directly tries to establish a TCP connection with
the command and control (C&C) server. To connect, the phone uses the IP address and the
port of the controller specified in the APK. In our case, the IP address of the controller is
147.32.83.253 and the port is 1337/TCP. Also, DroidJack uses the port 1334/TCP as a
default port and the phone connects to it later too. The controller IP 147.32.83.253 is the IP
address of Windows 7 virtual machine in our lab computer, meaning that the IP address is
not connected to any indicator of compromise (loC).

54667 2020-08-01 14:10:49 10.8.0.57 147.32.83.253 1337 40 41893 —~ 1337 [ACK] Se

54668 2020-08-01 14:10:49 147.32.83.253 1337 10.8.0.57 41893 TCP 46 1337 — 41893 [PSH, ACI

54669 2020-08-01 14:10:49 10.8.0.57 41893 147.32.83.253 1337 TCcP 40 41893 — 1337 [ACK] Se Ack=7 Win=880 =t

54670 2020-08-061 14:16:49 10.8.0.57 41893 147.32.83.253 1337 TCP 104 41893 —~ 1337 [PSH, ACI eq=1 Ack=7 Win=88064 Len=64
54671 2020-08-01 14:10:49 147.32.83.253 1337 10.8.0.57 41893 TCP 40 1337 —~ 41893 [ACK] Seq=7 Ack=65 Win=262400 Len=0

64 Len=0

Figure 1. A 3-way handshake started by the phone to establish TCP connection with the
C&C controller.

In Figure 1 we can see that the connection was established, but the C&C server was
resetting it several times. After a while a successful 3-way handshake was performed and
the connection was established, the C&C sends the next packet with following data:

OpeoeEEe 66 00 e 2 @b B2 ..
Figure 2. Data sent by the C&C after establishing the first TCP connection with the phone.

The phone replies with some initialization parameters such as its phone model, Android
version, and other parameters in plain text.

0EEEERRe 60 88 B0 3c 03 4e 6f 6b 69 61 20 36 2e 31 23 4de ...<.Nok ia 6.1#N
oeEeee1e 6T 6b 69 61 23 31 3@ 23 75 G6e 6b 6e 6T 77 6e 23 okia#10# unknowns
DepEER20 de 6T 74 20 52 65 67 69 73 74 65 72 65 64 23 64 Not Regli stered#d
peeeER30 72 6f 69 64 6a 61 63 6b 2d 61 70 VO 23 30 20 T3 roidjack -app#@ .

Figure 3. Data sent by the phone with initialization parameters.

Communication over 1337/TCP

After establishing the communication over port 1337/TCP, there is a sequence of three
NULL (00) bytes in the data of both packets, as shown in Figure 2 and Figure 3. This
sequence is followed by the hexadecimal number 0x3C, which represents the packet
length in its decimal form, and after that the phone sends the delimiter byte 0x03. The
amount for the packet length does not include bytes for the NULL sequence and the byte
for the packet length. The following is an example of the bytes in hexadecimal as seen from
the packet sent by the phone in the Figure 3:

2/11

data length ~ delimiter

00000000|00 00 00}3cf034e 6f 6b 69 61 20 36 2e 31 23 4e ...<.Nok ia 6.1#N
00000010 6f 6b 69 61 23 31 30 23 75 6e 6b 6e 6f 77 6e 23 okia#10# unknown#
00000020 4e 6f 74 20 52 65 67 69 73 74 65 72 65 64 23 64 Not Regi stered#d
00000030 72 6f 69 64 6a 61 63 6b 2d 61 70 70 23 30 20 f3 roidjack -app#0 .

Figure 4. Bytes sent from the phone to the C&C controller in one packet, including how we
found the format.

In Figure 4, the actual length of the packet is 64. The byte 0x3C is 60 in a decimal format,
which is exactly the length of the packet without the byte for packet length 0x3C (1 byte)
and the sequence of NULL characters (3 bytes).

In the small packets of length 1 or 2, like in Figure 2 or in the heartbeat in Figure 6, there
are no delimiters. Thus only packets with data of more than 2 bytes sent from the C&C and
the phone over 1337/TCP has the following format:

{00 00 00}{data length}{delimiter}{data in plain text}

Figure 5. The format of packets sent from the C&C and the phone as part of the custom
protocol used by the RAT.

After sending phone parameters, the phone is waiting for the command from the controller.
While waiting for the command, the phone and the C&C maintain a heartbeat, which in this
case is a couple of packets in both directions inside the same connection. They exchange
packets every 8 seconds.

pepeoeeBE PO GG GO OGA GA .
00OEEP4A GO @O e ®1 Od L.
fPOEEE1® OGP GO EEe ®1@d L
OPEEERAF GO O e® O@LEed
pepeEe15 e EE GO P12 ed L.
0PEEEE54 GO @O ®® 1 Od L.
OPOEEE1A GB GO E®Ee ®1 @d L.
0pEEERS9 GO RO BB O@LEed
0ePeER1F e EE EGE P2 6d .
OPOEEE5E @@ GO ®® 1 Od L.

Figure 6. The heartbeat between the C&C and the phone.

After some time, when it is requested by the botmaster, the C&C server sends a packet with
the command to the phone. The command is ‘File Voyager’, which aims to search through
the file system of the phone. In the C&C software, the command ‘File Voyager ’ looks like
this:

3/11

LI e

=
J Dewcesow Generate APK l' [Tnemem W Abuu@[Luungeo }

Country | Phone Number | Model | Manufacturer | version | IP Address | 1D | Running app | Idle time

Mot Registered MNokia 6.1 Mokia 1473280119 unknown Quickstep

@ DroidJack - File Voyager - Nokia 6.1 - 147.32.80.119 - O X

il Folders . Files

- Mame:

g

Type

Date

Read:

Write:

DroidJack says: Hi nuil! How are you doing? :D

Port 1337 Status: Listening for new connections Reception (% On

DroidJack says: How do you like me null? 3)

Figure 7. The command ‘File Voyager’ in DroidJack v4.4 C&C software.

Figure 8 shows an example of this order “File Voyager”, that is sent unencrypted.

opeeee24 e @ @@ 1 QA
0CEEER29 B0 B B0 1a 03 32 30 23 66 61 6c 73 65 23 2f 7e 20# false#/~
0EEEEE39 23 30 31 39 34 30 37 34 35 36 36 37 23 bo #0194074 5667#.

Figure 8. Command ‘File Voyager’ sent from the C&C after the heartbeat.

The commands from the C&C server to the phone seem to be predefined with a specific
number. From Figure 8, number 20 might define the command ‘File Voyager’ and it is
followed by some extra parameters (false#/~#0194074 5667#.). The character ‘# might be
a separator between parameters. As a reply to the C&C command, the phone sends back:

OPPEPE63 0©00 00 @0 15 @3 6b 72 79 6T 6e 65 74 20 2d 20 6b kry onet - k
eopeeeT73 65 65 70 3a 61 6c 69 76 e5 eep:aliv .

Figure 9. The phone’s reply on the command ‘File Voyager’ sent by the C&C.

Communication over 1334/TCP

The reply of the phone to the C&C in Figure 9 is an acknowledgement for the received
command. The actual phone reply with data is sent in a different connection. For each new
command received from the C&C, the phone establishes a new TCP connection over port
1334/TCP, sends the data and closes the connection. Figure 10 shows a new connection
over 1334/TCP to reply on the command in Figure 8.

4/11

[Aecp.stream eq 85
No.

Source SrcPort Destination DstPort Protocol Info

54801 10.8.0.57
54802 10.8.0.57

147.32.83.253
147.32.83.253

37842 — 1334
37842 — 1334

Seg=1 Ack=1 Win=88064 Len=0
ACK] Seq=1 Ack=1 Win=88064
54804 147.32.83.253

1334 — 37842 Seq=1 Ack=6 Win=262656 Len=

54806 10.8.0.57 147.32.83.253 37842 — 1334 [ACK] Seq=6 Ack=2 Win=88064 Len=0

» Frame 54802: 44 bytes on wire (352 bits), 44 bytes captured (352 bits)
Raw packet data
+ Internet Protocol Version 4, Src: 10.8.0.57, Dst: 147.32.83.253
» Transmission Control Protocol, Src Port: 37842, Dst Port: 1334, Seq: 1, Ack: 1, Len: 4
- Data (4 bytes)

Data: 6e756c6c

[Length: 4]
0000 45 00 0@ 2c 75 12 40 00 40 06 d4 5h Ga 08 G0 39 E--,u-@ @ -[---9
0010 93 20 53 fd 93 d2 05 36 67 7d 4a b6 b4 af bc 9¢ - S-- 6 g}I-- - -
0020 50 18 00 ac 26 54 00 00 [TINENTEE P &T -

Figure 10. The phone replies to the command sent by the C&C in port 1337/TCP (shown in
Figure 8) with data over another connection on port 1334/TCP.

The packets in the connection 1334/TCP do not have any format as in Figure 5, the data is
sent in the plain text:

EEEEEEEE 6e 75 6C 6C
Figure 11. Packet sent from the phone to the controller over 1334/TCP.

null

Communication over 1337/UDP

Even though there is a heartbeat over port 1337/TCP, the phone sends UDP packets to the
C&C over port 1337 every 20 seconds.

[N]udp.port ==1337

No. Time ~ Source SrcPort Destination DstPort Protocol Info Length
54753 16:11:02 10.8.0.57 41299 147.32.83.253 1337 UDP 41299 1337 Len=34 6z
54771 16:11:23 10.8.0.57 44048 147.32.83.253 1337 UDP 44048 1337 Len=34 6z
54781 16:11:43 10.8.0.57 38401 147.32.83.253 1337 UDP 38401 1337 Len=34 62
54815 16:12:03 160.8.0.57 45927 147.32.83.253 1337 UDP 45927 1337 Len=34 6z
54826 16:12:23 160.8.0.57 40713 147.32.83.253 1337 UDP 40713 1337 Len=34 6z
54837 16:12:43 10.8.0.57 40365 147.32.83.253 1337 UDP 40365 1337 Len=34 6z
54881 16: NECH
54954 16:13:23 10.8.0.57 38992 147.32.83.253 1337 UDP 38992 1337 Len=34 6z
54987 16:13:43 10.8.0.57 43793 147.32.83.253 1337 UDP 43793 1337 Len=34 6z
55003 16:14:03 10.8.0.57 42748 147.32.83.253 1337 UDP 42748 1337 Len=34 6z
55090 16:14:23 10.8.0.57 43126 147.32.83.253 1337 UDP 43126 1337 Len=34 6z

» Frame 54881: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)

Raw packet data
» Internet Protocol Version 4, Src: 10.8.0.57, Dst: 147.32.83.253
» User Datagram Protocol, Src Port: 48133, Dst Port: 1337
- Data (34 bytes)
Data: 5544504d5T46475245475247554e443a756e6b6e6T776e2¢e..
[Length: 34]

0000 45 00 00 3e cb 3c 40 00 40 11 7e 14 Ga 08 00 39 E--><@ @~ ---9
0016 93 20 53 fd bc 65 05 39 00 2a 2b 26 55 44 50 4d - S----9 -*+8UDPM
0026 5f 46 4f 52 45 47 52 4f 55 4e 44 3a 75 6e 6b 6e _FOREGRO UND:unkn
0030 ef 77 6e 2e 2c 51 75 69 63 6b 73 74 65 70 own.,Qui ckstep

Figure 12. UDP packets from the phone to the C&C server sent every 20 seconds over port
1337/UDP.

5/11

The data inside UDP packets is in the plain text:

00EEEEEe 55 44 50 4d 5T 46 4F 52 45 47 52 47 55 4e 44 3a UDPM_FOR EGROUND:
OPEEEE1e 75 6e 6b 6e 6f 77 6e 2e 2c 51 75 69 63 6b 73 74 unknown. ,Quickst
0ooREE20 65 TO ep

Figure 13. Example data inside the UDP packets on port 1337/UDP sent from the phone to
the controller.

Long Connections

If we open the Conversations -> statistics -> TCP menu in Wireshark, as shown in Figure
14, a lot of connections between the phone and the controller are over port 1334/TCP (new
C&C - new connection) and only a few are over 1337/TCP. The connections over 1337/TCP
are usually long, e.g. 1548.2056 seconds (approximately 40 minutes) or 1413.3981
seconds (approximately 31 minutes). This indicates that the connections between the
phone and the controller are kept for long periods of time in order to answer fast.

6/11

Ethernet

Address A
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57
10.8.0.57

Figure 14. Top connections between the phone and the controller from Wireshark ->
Statistics -> Conversations -> TCP. It can be noted the long duration of the main

connections.

IPv4 - 50
Port A

42059
41893
41883
41887
41881
41885
41889
41891
38038
37932
38010
37874
38092
37928
37852
37890
37892
37954
38084
37914
37930
38090
37886
37952
38008
37920
37868
37946
38056
37850
38040
38096

IPvE
Address B

147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253
147.32.83.253

Detecting C&C using Slips

TCP - 214

UDP - 304
Fort B

1337
1337
1337
1337
1337
1337
1337
1337
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334
1334

~ Packets

780
730

P

Ll
00 00 00 WM MPMPMMN

Duration

1548.2056
1413.3981
0.0008
0.0008
0.0007
0.0007
0.0006
0.0005
30.0918
1.5981
1.5777
0.8858
0.8760
0.7056
0.5474
0.5463
0.4804
0.4384
0.4013
0.3839
0.3087
0.2916
0.2512
0.2326
0.21596
0.2008
0.1814
0.1523
0.0954
0.0641
0.0407
0.0260

Slips is a Python Intrusion Detection and Prevention system that uses machine learning to
detect malicious behaviours in the network traffic of the devices. Slips is an open-source

tool and can be installed from _here.

After Slips is run on the DroidJack v4.4 packet capture, Slips creates a profile per each IP
that appeared in the traffic. Each profile contains flows sent from this IP. Each flow is
described with a specific letter which description can be found here. Considering that, Slips

7/11

https://www.stratosphereips.org/download
https://www.stratosphereips.org/stratosphere-testing-framework

detects the C&C channel over 1334/TCP. The behavioral model of the connection between
the phone and C&C is in Figure 15, and Slips’ machine learning module called LSTM
detecting C&C channel is shown in Figure 16.

147.32.83.253:1334:tcp |11+R,r.Y, r+B+s+H+y+Y,Y+r+y+r,a,r+y,s,H,H

,H,y+s,R.R,r,a,a,R,r+I+r,R.R,R*R,A,A, r+r
,A,s,r+s,B,
Figure 15. Behavioral model of the connection between the phone and C&C over
1334/TCP.

Evidence
outTuple:147.32.83.253:1334:tcp:C&C channels detection 1,50,LSTM C&C channels detection, score: 0.7664518

Figure 16. Alert from slips that it detects a C&C channel over port 1334/TCP using a
machine learning LSTM neural network. The LSTM uses the letters shown in Figure 15.

Slips did not detect periodic connection over 1337/UDP because the LSTM module focuses
on TCP. But from the behavioral model of the connections over 1337/UDP shown in Figure
17, we can conclude that the model is periodic and most of connections are of a small size.

147.32.83.253:1337:udp |(11,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,d
,a,a,a,a,a,a,a,a,a,a,ad,ad,a,d,d,a,a,a,a,da
,a,a,a,a,a,a,a,a,a,a,a,a,a,d,d,a,a,a,a,da
,a,a,a,a,a,a,a,a,a,r+r,a,a,r,r,a,a,a,a,a
,a,a,a,a,a,a,a,a,a,a,a,a,r,r,r,a,a,a,a,a
,a,a,a,a,a,a,a,a,a,a,a,ad,ad,d,d,a,a,a,a,a
,a,a,r.r,A;a,a,r,r,r,a,a,a,a,a,a,a,a,a,a
..‘Q..‘a..‘

Figure 17. Behavioral model created by Slips for the connection between phone and C&C

over 1337/UDP.

Conclusion

In this blog, we have analyzed the network traffic from a phone infected with DroidJack v4.4
RAT. We were able to decode its connection and found the distinctive features as long
duration or heartbeat. The DroidJack v4.4 RAT does not seem to be complex in its
communication protocol and it is not sophisticated in its work.

To summarize, the details found in the network traffic of this RAT are:

o The phone connects directly to the IP address and ports specified in APK (default port
and custom port).

8/11

¢ Some connections over port 1337/TCP between the phone and the controller are
long, i.e. more than 30 minutes.

e There is a heartbeat between the controller and the phone over 1337/TCP.

o Packets sent from the phone and the C&C over port 1337/TCP have a form of {00 00
00}{data length}{delimiter}{data in plain text}.

e A new connection over 1334/TCP is established when a new command is received
from the C&C.

e The phone sends UDP packets to the C&C every 20 seconds.

o Packets sent from the phone to the C&C over 1334/TCP and 1337/UDP are in plain
text.

Biographies

.-; ’

Kamila Babayeva

Kamila Babayeva is a 20 years old and third-year bachelor student in the Computer
Science and Electrical Engineering program at the Czech Technical University in Prague.
She is a researcher in the Civilsphere project, a project dedicated to protecting civil
organizations and individuals from targeted attacks. Her research focuses on helping
people and protecting their digital rights by developing free software based on machine
learning. Initially, she worked as a junior Malware Reverser. Currently, Kamila leads the
development of the Stratosphere Linux Intrusion Prevent System (Slips), which is used to
protect the civil society in the Civilsphere lab.

9/11

Sebastian Garcia

Sebastian Garcia is a malware researcher and security teacher with experience in applied
machine learning on network traffic. He founded the Stratosphere Lab, aiming to do
impactful security research to help others using machine learning. He believes that free
software and machine learning tools can help better protect users from abuse of our digital
rights. He researches on machine learning for security, honeypots, malware traffic
detection, social networks security detection, distributed scanning (dnmap), keystroke
dynamics, fake news, Bluetooth analysis, privacy protection, intruder detection, and
microphone detection with SDR (Salamandra). He co-founded the MatesLab hackspace in
Argentina and co-founded the Independent Fund for Women in Tech. @eldracote.
https://www.researchgate.net/profile/Sebastian_Garciab

11/11

