
1/20

Déjà vu-lnerability
googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html

A Year in Review of 0-days Exploited In-The-Wild in 2020

Posted by Maddie Stone, Project Zero

2020 was a year full of 0-day exploits. Many of the Internet’s most popular browsers had
their moment in the spotlight. Memory corruption is still the name of the game and how the
vast majority of detected 0-days are getting in. While we tried new methods of 0-day
detection with modest success, 2020 showed us that there is still a long way to go in
detecting these 0-day exploits in-the-wild. But what may be the most notable fact is that 25%
of the 0-days detected in 2020 are closely related to previously publicly disclosed
vulnerabilities. In other words, 1 out of every 4 detected 0-day exploits could potentially have
been avoided if a more thorough investigation and patching effort were explored. Across the
industry, incomplete patches — patches that don’t correctly and comprehensively fix the root
cause of a vulnerability — allow attackers to use 0-days against users with less effort.

Since mid-2019, Project Zero has dedicated an effort specifically to track, analyze, and learn
from 0-days that are actively exploited in-the-wild. For the last 6 years, Project Zero’s mission
has been to “make 0-day hard”. From that came the goal of our in-the-wild program: “Learn
from 0-days exploited in-the-wild in order to make 0-day hard.” In order to ensure our work is
actually making it harder to exploit 0-days, we need to understand how 0-days
are actually being used. Continuously pushing forward the public’s understanding of 0-day
exploitation is only helpful when it doesn’t diverge from the “private state-of-the-art”, what
attackers are doing and are capable of.

Over the last 18 months, we’ve learned a lot about the active exploitation of 0-days and our
work has matured and evolved with it. For the 2nd year in a row, we’re publishing a “Year in
Review” report of the previous year’s detected 0-day exploits. The goal of this report is not to
detail each individual exploit, but instead to analyze the exploits from the year as a group,
looking for trends, gaps, lessons learned, successes, etc. If you’re interested in each
individual exploit’s analysis, please check out our root cause analyses.

When looking at the 24 0-days detected in-the-wild in 2020, there’s an undeniable
conclusion: increasing investment in correct and comprehensive patches is a huge
opportunity for our industry to impact attackers using 0-days.

A correct patch is one that fixes a bug with complete accuracy, meaning the patch no longer
allows any exploitation of the vulnerability. A comprehensive patch applies that fix
everywhere that it needs to be applied, covering all of the variants. We consider a patch to
be complete only when it is both correct and comprehensive. When exploiting a single

https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/p/rca.html

2/20

vulnerability or bug, there are often multiple ways to trigger the vulnerability, or multiple paths
to access it. Many times we’re seeing vendors block only the path that is shown in the proof-
of-concept or exploit sample, rather than fixing the vulnerability as a whole, which would
block all of the paths. Similarly, security researchers are often reporting bugs without
following up on how the patch works and exploring related attacks.

While the idea that incomplete patches are making it easier for attackers to exploit 0-days
may be uncomfortable, the converse of this conclusion can give us hope. We have a clear
path toward making 0-days harder. If more vulnerabilities are patched correctly and
comprehensively, it will be harder for attackers to exploit 0-days.

This vulnerability looks familiar 🤔

As stated in the introduction, 2020 included 0-day exploits that are similar to ones we’ve
seen before. 6 of 24 0-days exploits detected in-the-wild are closely related to publicly
disclosed vulnerabilities. Some of these 0-day exploits only had to change a line or two of
code to have a new working 0-day exploit. This section explains how each of these 6 actively
exploited 0-days are related to a previously seen vulnerability. We’re taking the time to detail
each and show the minimal differences between the vulnerabilities to demonstrate that once
you understand one of the vulnerabilities, it’s much easier to then exploit another.

Product Vulnerability
exploited in-the-
wild

Variant of...

Microsoft Internet Explorer CVE-2020-0674 CVE-2018-8653* CVE-2019-
1367* CVE-2019-1429*

Mozilla Firefox CVE-2020-6820 Mozilla Bug 1507180

Google Chrome CVE-2020-6572 CVE-2019-5870

CVE-2019-13695

Microsoft Windows CVE-2020-0986 CVE-2019-0880*

Google Chrome/Freetype CVE-2020-15999 CVE-2014-9665

Apple Safari CVE-2020-27930 CVE-2015-0093

https://bugzilla.mozilla.org/show_bug.cgi?id=1507180

3/20

* vulnerability was also exploited in-
the-wild in previous years

Internet Explorer JScript CVE-2020-0674

CVE-2020-0674 is the fourth vulnerability that’s been exploited in this bug class in 2 years.
The other three vulnerabilities are CVE-2018-8653, CVE-2019-1367, and CVE-2019-1429. In
the 2019 year-in-review we devoted a section to these vulnerabilities. Google’s Threat
Analysis Group attributed all four exploits to the same threat actor. It bears repeating, the
same actor exploited similar vulnerabilities four separate times. For all four exploits, the
attacker used the same vulnerability type and the same exact exploitation method. Fixing
these vulnerabilities comprehensively the first time would have caused attackers to work
harder or find new 0-days.

JScript is the legacy Javascript engine in Internet Explorer. While it’s legacy, by default it is
still enabled in Internet Explorer 11, which is a built-in feature of Windows 10 computers. The
bug class, or type of vulnerability, is that a specific JScript object, a variable (uses the VAR
struct), is not tracked by the garbage collector. I’ve included the code to trigger each of the
four vulnerabilities below to demonstrate how similar they are. Ivan Fratric from Project Zero
wrote all of the included code that triggers the four vulnerabilities.

CVE-2018-8653

In December 2018, it was discovered that CVE-2018-8653 was being actively exploited. In
this vulnerability, the this variable is not tracked by the garbage collector in the
isPrototypeof callback. McAfee also wrote a write-up going through each step of this exploit.

var objs = new Array();

var refs = new Array();

var dummyObj = new Object();

function getFreeRef()

{

 // 5. delete prototype objects as well as ordinary objects

 for (var i = 0; i < 10000; i++) {

 objs[i] = 1;

 }

https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://www.blog.google/threat-analysis-group/identifying-vulnerabilities-and-protecting-you-phishing/
https://support.microsoft.com/en-us/topic/option-to-disable-jscript-execution-in-internet-explorer-9e3b5ab3-8115-4650-f3d8-e496e7f8e40e
https://msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8653
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/ie-scripting-flaw-still-a-threat-to-unpatched-systems-analyzing-cve-2018-8653/

4/20

 CollectGarbage();

 for (var i = 0; i < 200; i++)

 {

 refs[i].prototype = 1;

 }

 // 6. Garbage collector frees unused variable blocks.

 // This includes the one holding the "this" variable

 CollectGarbage();

 // 7. Boom

 alert(this);

}

// 1. create "special" objects for which isPrototypeOf can be invoked

for (var i = 0; i < 200; i++) {

 var arr = new Array({ prototype: {} });

 var e = new Enumerator(arr);

 refs[i] = e.item();

}

// 2. create a bunch of ordinary objects

for (var i = 0; i < 10000; i++) {

 objs[i] = new Object();

}

// 3. create objects to serve as prototypes and set up callbacks

for (var i = 0; i < 200; i++) {

 refs[i].prototype = {};

 refs[i].prototype.isPrototypeOf = getFreeRef;

}

// 4. calls isPrototypeOf. This sets up refs[100].prototype as "this" variable

// During callback, the "this" variable won't be tracked by the Garbage collector

5/20

// use different index if this doesn't work

dummyObj instanceof refs[100];

CVE-2019-1367

In September 2019, CVE-2019-1367 was detected as exploited in-the-wild. This is the same
vulnerability type as CVE-2018-8653: a JScript variable object is not tracked by the garbage
collector. This time though the variables that are not tracked are in the arguments array in
the Array.sort callback.

var spray = new Array();

function F() {

 // 2. Create a bunch of objects

 for (var i = 0; i < 20000; i++) spray[i] = new Object();

 // 3. Store a reference to one of them in the arguments array

 // The arguments array isn't tracked by garbage collector

 arguments[0] = spray[5000];

 // 4. Delete the objects and call the garbage collector

 // All JSCript variables get reclaimed...

 for (var i = 0; i < 20000; i++) spray[i] = 1;

 CollectGarbage();

 // 5. But we still have reference to one of them in the

 // arguments array

 alert(arguments[0]);

}

// 1. Call sort with a custom callback

[1,2].sort(F);

CVE-2019-1429

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-1367

6/20

The CVE-2019-1367 patch did not actually fix the vulnerability triggered by the proof-of-
concept above and exploited in the in-the-wild. The proof-of-concept for CVE-2019-1367 still
worked even after the CVE-2019-1367 patch was applied!

In November 2019, Microsoft released another patch to address this gap. CVE-2019-
1429 addressed the shortcomings of the CVE-2019-1367 and also fixed a variant. The
variant is that the variables in the arguments array are not tracked by the garbage collector in
the toJson callback rather than the Array.sort callback. The only difference between the
variant triggers is the highlighted lines. Instead of calling the Array.sort callback, we call the
toJSON callback.

var spray = new Array();

function F() {

 // 2. Create a bunch of objects

 for (var i = 0; i < 20000; i++) spray[i] = new Object();

 // 3. Store a reference to one of them in the arguments array

 // The arguments array isn't tracked by garbage collector

 arguments[0] = spray[5000];

 // 4. Delete the objects and call the garbage collector

 // All JSCript variables get reclaimed...

 for (var i = 0; i < 20000; i++) spray[i] = 1;

 CollectGarbage();

 // 5. But we still have reference to one of them in the

 // arguments array

 alert(arguments[0]);

}

+ // 1. Cause toJSON callback to fire

+ var o = {toJSON:F}

+ JSON.stringify(o);

- // 1. Call sort with a custom callback

- [1,2].sort(F);

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-1429
https://bugs.chromium.org/p/project-zero/issues/detail?id=1947

7/20

CVE-2020-0674

In January 2020, CVE-2020-0674 was detected as exploited in-the-wild. The vulnerability is
that the named arguments are not tracked by the garbage collector in the Array.sort callback.
The only changes required to the trigger for CVE-2019-1367 is to change the references to
arguments[] to one of the arguments named in the function definition. For example, we
replaced any instances of arguments[0] with arg1.

var spray = new Array();

+ function F(arg1, arg2) {

- function F() {

 // 2. Create a bunch of objects

 for (var i = 0; i < 20000; i++) spray[i] = new Object();

 // 3. Store a reference to one of them in one of the named arguments

 // The named arguments aren't tracked by garbage collector

+ arg1 = spray[5000];

- arguments[0] = spray[5000];

 // 4. Delete the objects and call the garbage collector

 // All JScript variables get reclaimed...

 for (var i = 0; i < 20000; i++) spray[i] = 1;

 CollectGarbage();

 // 5. But we still have reference to one of them in

 // a named argument

+ alert(arg1);

- alert(arguments[0]);

}

// 1. Call sort with a custom callback

[1,2].sort(F);

CVE-2020-0968

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0674

8/20

Unfortunately CVE-2020-0674 was not the end of this story, even though it was the fourth
vulnerability of this type to be exploited in-the-wild. In April 2020, Microsoft patched CVE-
2020-0968, another Internet Explorer JScript vulnerability. When the bulletin was first
released, it was designated as exploited in-the-wild, but the following day, Microsoft changed
this field to say it was not exploited in-the-wild (see the revisions section at the bottom of the
advisory).

var spray = new Array();

function f1() {

 alert('callback 1');

 return spray[6000];

}

function f2() {

 alert('callback 2');

 spray = null;

 CollectGarbage();

 return 'a'

}

function boom() {

 var e = o1;

 var d = o2;

 // 3. the first callback (e.toString) happens

 // it returns one of the string variables

 // which is stored in a temporary variable

 // on the stack, not tracked by garbage collector

 // 4. Second callback (d.toString) happens

 // There, string variables get freed

 // and the space reclaimed

 // 5. Crash happens when attempting to access

 // string content of the temporary variable

https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2020-0968
https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2020-0968

9/20

 var b = e + d;

 alert(b);

}

// 1. create two objects with toString callbacks

var o1 = { toString: f1 };

var o2 = { toString: f2 };

// 2. create a bunch of string variables

for (var a = 0; a < 20000; a++) {

 spray[a] = "aaa";

}

boom();

In addition to the vulnerabilities themselves being very similar, the attacker used the same
exploit method for each of the four 0-day exploits. This provided a type of “plug and play”
quality to their 0-day development which would have reduced the amount of work required
for each new 0-day exploit.

Firefox CVE-2020-6820

Mozilla patched CVE-2020-6820 in Firefox with an out-of-band security update in April 2020.
It is a use-after-free in the Cache subsystem.

CVE-2020-6820 is a use-after-free of the CacheStreamControlParent when closing its last
open read stream. The read stream is the response returned to the context process from a
cache query. If the close or abort command is received while any read streams are still open,
it triggers StreamList::CloseAll. If the StreamControl (must be the Parent which lives in the
browser process in order to get the use-after-free in the browser process; the Child would
only provide in renderer) still has ReadStreams when StreamList::CloseAll is called, then this
will cause the CacheStreamControlParent to be freed. The mId member of the
CacheStreamControl parent is then subsequently accessed, causing the use-after-free.

The execution patch for CVE-2020-6820 is:

https://www.mozilla.org/en-US/security/advisories/mfsa2020-11/

10/20

StreamList::CloseAll ← Patched function

 CacheStreamControlParent::CloseAll

 CacheStreamControlParent::NotifyCloseAll

 StreamControl::CloseAllReadStreams

 For each stream:

 ReadStream::Inner::CloseStream

 ReadStream::Inner::Close

 ReadStream::Inner::NoteClosed

 …

 StreamControl::NoteClosed

 StreamControl::ForgetReadStream

 CacheStreamControlParent/Child::NoteClosedAfterForget

 CacheStreamControlParent::RecvNoteClosed

 StreamList::NoteClosed

 If StreamList is empty && mStreamControl:

 CacheStreamControlParent::Shutdown

 Send__delete(this) ← FREED HERE!

 PCacheStreamControlParent::SendCloseAll ← Used here in call to Id()

CVE-2020-6820 is a variant of an internally found Mozilla vulnerability, Bug 1507180.
1507180 was discovered in November 2018 and patched in December 2019. 1507180 is a
use-after-free of the ReadStream in mReadStreamList in StreamList::CloseAll. While it was
patched in December, an explanatory comment for why the December 2019 patch was
needed was added in early March 2020.

For 150718 the execution path was the same as for CVE-2020-6820 except that the the use-
after-free occurred earlier, in StreamControl::CloseAllReadStreams rather than a few calls
“higher” in StreamList::CloseAll.

In my personal opinion, I have doubts about whether or not this vulnerability was actually
exploited in-the-wild. As far as we know, no one (including myself or Mozilla engineers [1, 2]),
has found a way to trigger this exploit without shutting down the process. Therefore,

https://bugzilla.mozilla.org/show_bug.cgi?id=1507180
https://hg.mozilla.org/mozilla-central/rev/cdf525897bff
https://hg.mozilla.org/mozilla-central/rev/25beb671c14a
https://bugzilla.mozilla.org/show_bug.cgi?id=1626728#c15
https://bugzilla.mozilla.org/show_bug.cgi?id=1507180#c10

11/20

exploiting this vulnerability doesn’t seem very practical. However, because it was marked as
exploited in-the-wild in the advisory, it remains in our in-the-wild tracking spreadsheet and
thus included in this list.

Chrome for Android CVE-2020-6572

CVE-2020-6572 is use-after-free in
MediaCodecAudioDecoder::~MediaCodecAudioDecoder(). This is Android-specific code that
uses Android's media decoding APIs to support playback of DRM-protected media on
Android. The root of this use-after-free is that a `unique_ptr` is assigned to another, going out
of scope which means it can be deleted, while at the same time a raw pointer from the
originally referenced object isn't updated.

More specifically, MediaCodecAudioDecoder::Initialize doesn't reset
media_crypto_context_ if media_crypto_ has been previously set. This can occur if
MediaCodecAudioDecoder::Initialize is called twice, which is explicitly supported. This is
problematic when the second initialization uses a different CDM than the first one. Each
CDM owns the media_crypto_context_ object, and the CDM itself (cdm_context_ref_) is a
`unique_ptr`. Once the new CDM is set, the old CDM loses a reference and may be
destructed. However, MediaCodecAudioDecoder still holds a raw pointer to
media_crypto_context_ from the old CDM since it wasn't updated, which results in the use-
after-free on media_crypto_context_ (for example, in
MediaCodecAudioDecoder::~MediaCodecAudioDecoder).

This vulnerability that was exploited in-the-wild was reported in April 2020. 7 months prior, in
September 2019, Man Yue Mo of Semmle reported a very similar vulnerability, CVE-2019-
13695. CVE-2019-13695 is also a use-after-free on a dangling media_crypto_context_ in
MojoAudioDecoderService after releasing the cdm_context_ref_. This vulnerability is
essentially the same bug as CVE-2020-6572, it’s just triggered by an error path after
initializing MojoAudioDecoderService twice rather than by reinitializing the
MediaCodecAudioDecoder.

In addition, in August 2019, Guang Gong of Alpha Team, Qihoo 360 reported another similar
vulnerability in the same component. The vulnerability is where the CDM could be registered
twice (e.g. MojoCdmService::Initialize could be called twice) leading to use-after-free. When
MojoCdmService::Initialize was called twice there would be two map entries in
cdm_services_, but only one would be removed upon destruction, and the other was left
dangling. This vulnerability is CVE-2019-5870. Guang Gong used this vulnerability as a part
of an Android exploit chain. He presented on this exploit chain at Blackhat USA 2020,
“TiYunZong: An Exploit Chain to Remotely Root Modern Android Devices”.

While one could argue that the vulnerability from Guang Gong is not a variant of the
vulnerability exploited in-the-wild, it was at the very least an early indicator that the Mojo
CDM code for Android had life-cycle issues and needed a closer look. This was noted in the

https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=1869060786
https://chromereleases.googleblog.com/2020/04/stable-channel-update-for-desktop_7.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1004730
https://chromereleases.googleblog.com/2019/10/stable-channel-update-for-desktop.html
https://bugs.chromium.org/p/chromium/issues/detail?id=999311
https://chromereleases.googleblog.com/2019/09/stable-channel-update-for-desktop.html
https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=999311#c8

12/20

issue tracker for CVE-2019-5870 and then brought up again after Man Yue Mo reported
CVE-2019-13695.

Windows splwow64 CVE-2020-0986

CVE-2020-0986 is an arbitrary pointer dereference in Windows splwow64. Splwow64 is
executed any time a 32-bit application wants to print a document. It runs as a Medium
integrity process. Internet Explorer runs as a 32-bit application and a Low integrity
process. Internet Explorer can send LPC messages to splwow64. CVE-2020-0986 allows an
attacker in the Internet Explorer process to control all three arguments to a memcpy call in
the more privileged splwow64 address space. The only difference between CVE-2020-0986
and CVE-2019-0880, which was also exploited in-the-wild, is that CVE-2019-0880 exploited
the memcpy by sending message type 0x75 and CVE-2020-0986 exploits it by sending
message type 0x6D.

From this great write-up from ByteRaptors on CVE-2019-0880 the pseudo code that allows
the controlling of the memcpy is:

void GdiPrinterThunk(LPVOID firstAddress, LPVOID secondAddress, LPVOID
thirdAddress)

{

 ...

 if(*((BYTE*)(firstAddress + 0x4)) == 0x75){

 ULONG64 memcpyDestinationAddress = *((ULONG64*)(firstAddress + 0x20));

 if(memcpyDestinationAddress != NULL){

 ULONG64 sourceAddress = *((ULONG64*)(firstAddress + 0x18));

 DWORD copySize = *((DWORD*)(firstAddress + 0x28));

 memcpy(memcpyDestinationAddress,sourceAddress,copySize);

 }

 }

...

}

The equivalent pseudocode for CVE-2020-0986 is below. Only the message type (0x75 to
0x6D) and the offsets of the controlled memcpy arguments changed as highlighted below.

https://bugs.chromium.org/p/chromium/issues/detail?id=999311#c8
https://bugs.chromium.org/p/chromium/issues/detail?id=1004730#c1
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0986
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0880
https://byteraptors.github.io/windows/exploitation/2020/05/24/sandboxescape.html

13/20

void GdiPrinterThunk(LPVOID msgSend, LPVOID msgReply, LPVOID arg3)

{

 ...

 if(*((BYTE*)(msgSend + 0x4)) == 0x6D){

 ...

 ULONG64 srcAddress = **((ULONG64 **)(msgSend + 0xA));

 if(srcAddress != NULL){

 DWORD copySize = *((DWORD*)(msgSend + 0x40));

 if(copySize <= 0x1FFFE) {

 ULONG64 destAddress = *((ULONG64*)(msgSend + 0xB));

 memcpy(destAddress,sourceAddress,copySize);

 }

 }

...

}

In addition to CVE-2020-0986 being a trivial variant of a previous in-the-wild vulnerability,
CVE-2020-0986 was also not patched completely and the vulnerability was still exploitable
even after the patch was applied. This is detailed in the “Exploited 0-days not properly fixed”
section below.

Freetype CVE-2020-15999

In October 2020, Project Zero discovered multiple exploit chains being used in the wild. The
exploit chains targeted iPhone, Android, and Windows users, but they all shared the same
Freetype RCE to exploit the Chrome renderer, CVE-2020-15999. The vulnerability is a heap
buffer overflow in the Load_SBit_Png function. The vulnerability was being triggered by an
integer truncation. `Load_SBit_Png` processes PNG images embedded in fonts. The image
width and height are stored in the PNG header as 32-bit integers. Freetype then truncated
them to 16-bit integers. This truncated value was used to calculate the bitmap size and the
backing buffer is allocated to that size. However, the original 32-bit width and height values
of the bitmap are used when reading the bitmap into its backing buffer, thus causing the
buffer overflow.

https://chromereleases.googleblog.com/2020/10/stable-channel-update-for-desktop_20.html
https://savannah.nongnu.org/bugs/?59308

14/20

In November 2014, Project Zero team member Mateusz Jurczyk reported CVE-2014-9665 to
Freetype. CVE-2014-9665 is also a heap buffer overflow in the Load_SBit_Png function. This
one was triggered differently though. In CVE-2014-9665, when calculating the bitmap size,
the size variable is vulnerable to an integer overflow causing the backing buffer to be too
small.

To patch CVE-2014-9665, Freetype added a check to the rows and width prior to calculating
the size as shown below.

if (populate_map_and_metrics)

 {

 FT_Long size;

 metrics->width = (FT_Int)imgWidth;

 metrics->height = (FT_Int)imgHeight;

 map->width = metrics->width;

 map->rows = metrics->height;

 map->pixel_mode = FT_PIXEL_MODE_BGRA;

 map->pitch = map->width * 4;

 map->num_grays = 256;

+ /* reject too large bitmaps similarly to the rasterizer */

+ if (map->rows > 0x7FFF || map->width > 0x7FFF)

+ {

+ error = FT_THROW(Array_Too_Large);

+ goto DestroyExit;

+ }

 size = map->rows * map->pitch; <- overflow size

 error = ft_glyphslot_alloc_bitmap(slot, size);

 if (error)

 goto DestroyExit;

 }

https://bugs.chromium.org/p/project-zero/issues/detail?id=168
http://git.savannah.gnu.org/cgit/freetype/freetype2.git/tree/src/sfnt/pngshim.c?id=54abd22891bd51ef8b533b24df53b3019b5cee81

15/20

To patch CVE-2020-15999, the vulnerability exploited in the wild in 2020, this check was
moved up earlier in the `Load_Sbit_Png` function and changed to `imgHeight` and
`imgWidth`, the width and height values that are included in the header of the PNG.

 if (populate_map_and_metrics)

 {

+ /* reject too large bitmaps similarly to the rasterizer */

+ if (imgWidth > 0x7FFF || imgHeight > 0x7FFF)

+ {

+ error = FT_THROW(Array_Too_Large);

+ goto DestroyExit;

+ }

+

 metrics->width = (FT_UShort)imgWidth;

 metrics->height = (FT_UShort)imgHeight;

 map->width = metrics->width;

 map->rows = metrics->height;

 map->pixel_mode = FT_PIXEL_MODE_BGRA;

 map->pitch = map->width * 4;

 map->num_grays = 256;

- /* reject too large bitmaps similarly to the rasterizer */

- if (map->rows > 0x7FFF || map->width > 0x7FFF)

- {

- error = FT_THROW(Array_Too_Large);

- goto DestroyExit;

- }

[...]

To summarize:

16/20

CVE-2014-9665 caused a buffer overflow by overflowing the size field in the size =
map->rows * map->pitch; calculation.
CVE-2020-15999 caused a buffer overflow by truncating metrics->width and metrics-
>height which are then used to calculate the size field, thus causing the size field to be
too small.

A fix for the root cause of the buffer overflow in November 2014 would have been to bounds
check imgWidth and imgHeight prior to any assignments to an unsigned short. Including the
bounds check of the height and widths from the PNG headers early would have prevented
both manners of triggering this buffer overflow.

Apple Safari CVE-2020-27930

This vulnerability is slightly different than the rest in that while it’s still a variant, it’s not clear
that by current disclosure norms, one would have necessarily expected Apple to have picked
up the patch. Apple and Microsoft both forked the Adobe Type Manager code over 20
years ago. Due to the forks, there’s no true “upstream”. However when vulnerabilities were
reported in Microsoft’s, Apple’s, or Adobe’s fork, there is a possibility (though no guarantee)
that it was also in the others.

CVE-2020-27930 vulnerability was used in an exploit chain for iOS. The variant, CVE-2015-
0993, was reported to Microsoft in November 2014. In CVE-2015-0993, the vulnerability is in
the blend operator in Microsoft’s implementation of Adobe’s Type 1/2 Charstring Font
Format. The blend operation takes n + 1 parameters. The vulnerability is that it did not
validate or handle correctly when n is negative, allowing the font to arbitrarily read and write
on the native interpreter stack.

CVE-2020-27930, the vulnerability exploited in-the-wild in 2020, is very similar. The
vulnerability this time is in the callothersubr operator in Apple’s implementation of Adobe’s
Type 1 Charstring Font Format. In the same way as the vulnerability reported in November
2014, callothersubr expects n arguments from the stack. However, the function did not
validate nor handle correctly negative values of n, leading to the same outcome of arbitrary
stack read/write.

Six years after the original vulnerability was reported, a similar vulnerability was exploited in
a different project. This presents an interesting question: How do related, but separate,
projects stay up-to-date on security vulnerabilities that likely exist in their fork of a common
code base? There’s little doubt that reviewing the vulnerability Microsoft fixed in 2015 would
help the attackers discover this vulnerability in Apple.

Exploited 0-days not properly fixed… 😭

Three vulnerabilities that were exploited in-the-wild were not properly fixed after they were
reported to the vendor.

http://bugs.chromium.org/p/project-zero/issues/detail?id=180
https://support.apple.com/en-us/HT211929

17/20

Product Vulnerability that was
exploited in-the-wild

2nd patch

Internet Explorer CVE-2020-0674 CVE-2020-0968

Google Chrome CVE-2019-13764* CVE-2020-6383

Microsoft Windows CVE-2020-0986 CVE-2020-
17008/CVE-2021-
1648

* when CVE-2019-13764 was patched, it
was not known to be exploited in-the-wild

Internet Explorer JScript CVE-2020-0674

In the section above, we detailed the timeline of the Internet Explorer JScript vulnerabilities
that were exploited in-the-wild. After the most recent vulnerability, CVE-2020-0674, was
exploited in January 2020, it still didn’t comprehensively fix all of the variants. Microsoft
patched CVE-2020-0968 in April 2020. We show the trigger in the section above.

Google Chrome CVE-2019-13674

CVE-2019-13674 in Chrome is an interesting case. When it was patched in November 2019,
it was not known to be exploited in-the-wild. Instead, it was reported by security researchers
Soyeon Park and Wen Xu. Three months later, in February 2020, Sergei Glazunov of Project
Zero discovered that it was exploited in-the-wild, and may have been exploited as a 0-day
prior to the patch. When Sergei realized it had already been patched, he decided to look a
little closer at the patch. That’s when he realized that the patch didn’t fix all of the paths to
trigger the vulnerability. To read about the vulnerability and the subsequent patches in
greater detail, check out Sergei’s blog post, “Chrome Infinity Bug”.

To summarize, the vulnerability is a type confusion in Chrome’s v8 Javascript engine. The
issue is in the function that is designed to compute the type of induction variables, the
variable that gets increased or decreased by a fixed amount in each iteration of a loop, such
as a for loop. The algorithm works only on v8’s integer type though. The integer type in v8
includes a few special values, +Infinity and -Infinity. -0 and NaN do not belong to the integer
type though. Another interesting aspect to v8’s integer type is that it is not closed under
addition meaning that adding two integers doesn’t always result in an integer. An example of
this is +Infinity + -Infinity = NaN.

https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2020-0968
https://chromereleases.googleblog.com/2019/12/stable-channel-update-for-desktop.html
https://chromium.googlesource.com/v8/v8/+/b8b6075021ade0969c6b8de9459cd34163f7dbe1
https://bugs.chromium.org/p/chromium/issues/detail?id=1028863
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html

18/20

Therefore, the following line is sufficient to trigger CVE-2019-13674. Note that this line will
not show any observable crash effects and the road to making this vulnerability exploitable is
quite long, check out this blog post if you’re interested!

for (var i = -Infinity; i < 0; i += Infinity) { }

The patch that Chrome released for this vulnerability added an explicit check for the
NaN case. But the patch made an assumption that leads to it being insufficient: that the loop
variable can only become NaN if the sum or difference of the initial value of the variable and
the increment is NaN. The issue is that the value of the increment can change inside the loop
body. Therefore the following trigger would still work even after the patch was applied.

var increment = -Infinity;

var k = 0;

// The initial loop value is 0 and the increment is -Infinity.

// This is permissible because 0 + -Infinity = -Infinity, an integer.

for (var i = 0; i < 1; i += increment) {

 if (i == -Infinity) {

 // Once the initial variable equals -Infinity (one loop through)

 // the increment is changed to +Infinity. -Infinity + +Infinity = NaN

 increment = +Infinity;

 }

 if (++k > 10) {

 break;

 }

}

To “revive” the entire exploit, the attacker only needed to change a couple of lines in the
trigger to have another working 0-day. This incomplete fix was reported to Chrome in
February 2020. This patch was more conservative: it bailed as soon as the type detected
that increment can be +Infinity or -Infinity.

https://googleprojectzero.blogspot.com/
https://chromium.googlesource.com/v8/v8.git/+/b8b6075021ade0969c6b8de9459cd34163f7dbe1
https://bugs.chromium.org/p/chromium/issues/detail?id=1051017
https://chromium.googlesource.com/v8/v8.git/+/a2e971c56d1c46f7c71ccaf33057057308cc8484

19/20

Unfortunately, this patch introduced an additional security vulnerability, which allowed for a
wider choice of possible “type confusions”. Again, check out Sergei’s blog post if you’re
interested in more details.

This is an example where the exploit is found after the bug was initially reported by security
researchers. As an aside, I think this shows why it’s important to work towards “correct &
comprehensive” patches in general, not just vulnerabilities known to be exploited in-the-wild.
The security industry knows there is a detection gap in our ability to detect 0-days exploited
in-the-wild. We don’t find and detect all exploited 0-days and we certainly don’t find them all
in a timely manner.

Windows splwow64 CVE-2020-0986

This vulnerability has already been discussed in the previous section on variants. After
Kaspersky reported that CVE-2020-0986 was actively exploited as a 0-day, I began
performing root cause analysis and variant analysis on the vulnerability. The vulnerability was
patched in June 2020, but it was only disclosed as exploited in-the-wild in August 2020.

Microsoft’s patch for CVE-2020-0986 replaced the raw pointers that an attacker could
previously send through the LPC message, with offsets. This didn’t fix the root cause
vulnerability, just changed how an attacker would trigger the vulnerability. This issue was
reported to Microsoft in September 2020, including a working trigger. Microsoft released a
more complete patch for the vulnerability in January 2021, four months later. This new patch
checks that all memcpy operations are only reading from and copying into the buffer of the
message.

Correct and comprehensive patches

We’ve detailed how six 0-days that were exploited in-the-wild in 2020 were closely related to
vulnerabilities that had been seen previously. We also showed how three vulnerabilities that
were exploited in-the-wild were either not fixed correctly or not fixed comprehensively when
patched this year.

When 0-day exploits are detected in-the-wild, it’s the failure case for an attacker. It’s a gift for
us security defenders to learn as much as we can and take actions to ensure that that vector
can’t be used again. The goal is to force attackers to start from scratch each time we detect
one of their exploits: they’re forced to discover a whole new vulnerability, they have to invest
the time in learning and analyzing a new attack surface, they must develop a brand new
exploitation method. To do that, we need correct and comprehensive fixes.

Being able to correctly and comprehensively patch isn't just flicking a switch: it requires
investment, prioritization, and planning. It also requires developing a patching process that
balances both protecting users quickly and ensuring it is comprehensive, which can at times

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://securelist.com/operation-powerfall-cve-2020-0986-and-variants/98329/
https://securelist.com/ie-and-windows-zero-day-operation-powerfall/97976/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2096

20/20

be in tension. While we expect that none of this will come as a surprise to security teams in
an organization, this analysis is a good reminder that there is still more work to be done.

Exactly what investments are likely required depends on each unique situation, but we see
some common themes around staffing/resourcing, incentive structures, process maturity,
automation/testing, release cadence, and partnerships.

While the aim is that one day all vulnerabilities will be fixed correctly and comprehensively,
each step we take in that direction will make it harder for attackers to exploit 0-days.

In 2021, Project Zero will continue completing root cause and variant analyses for
vulnerabilities reported as in-the-wild. We will also be looking over the patches for these
exploited vulnerabilities with more scrutiny. We hope to also expand our work into variant
analysis work on other vulnerabilities as well. We hope more researchers will join us in this
work. (If you’re an aspiring vulnerability researcher, variant analysis could be a great way to
begin building your skills! Here are two conference talks on the topic: my talk at BluehatIL
2020 and Ki Chan Ahn at OffensiveCon 2020.)

In addition, we would really like to work more closely with vendors on patches and
mitigations prior to the patch being released. We often have ideas of how issues can be
addressed. Early collaboration and offering feedback during the patch design and
implementation process is good for everyone. Researchers and vendors alike can save time,
resources, and energy by working together, rather than patch diffing a binary after release
and realizing the vulnerability was not completely fixed.

https://www.youtube.com/watch?v=mC1Pwsdy814
https://www.youtube.com/watch?v=fTNzylTMYks

