
1/14

February 3, 2021

Backdoored Browser Extensions Hid Malicious Traffic in Analytics Requests
decoded.avast.io/janvojtesek/backdoored-browser-extensions-hid-malicious-traffic-in-analytics-requests/

by Jan Vojtěšek and Jan RubínFebruary 3, 202119 min read

Chances are you are reading this blog post using your web browser. Chances also are your web browser has various extensions that provide
additional functionality. We usually trust that the extensions installed from official browser stores are safe. But that is not always the case as
we recently found.

This blog post brings more technical details on CacheFlow: a threat that we first reported about in December 2020. We described a huge
campaign composed of dozens of malicious Chrome and Edge browser extensions with more than three million installations in total. We
alerted both Google and Microsoft about the presence of these malicious extensions on their respective extension stores and are happy to
announce that both companies have since taken all of them down as of December 18, 2020.

CacheFlow was notable in particular for the way that the malicious extensions would try to hide their command and control traffic in a covert
channel using the Cache-Control HTTP header of their analytics requests. We believe this is a new technique. In addition, it appears to us
that the Google Analytics-style traffic was added not just to hide the malicious commands, but that the extension authors were also interested
in the analytics requests themselves. We believe they tried to solve two problems, command and control and getting analytics information,
with one solution.

We found that CacheFlow would carry out its attack in the following sequence:

https://decoded.avast.io/janvojtesek/backdoored-browser-extensions-hid-malicious-traffic-in-analytics-requests/
https://decoded.avast.io/category/pc/
https://blog.avast.com/malicious-browser-extensions-avast

2/14

High-level overview of the CacheFlow malware
Based on our telemetry, the top three countries where Avast users downloaded and installed the CacheFlow extensions were Brazil, Ukraine,
and France.

Distribution of Avast users that installed one of the malicious extensions
We initially learned about this campaign by reading a Czech blog post by Edvard Rejthar from CZ.NIC. He discovered that the Chrome
extension “Video Downloader for FaceBook™” (ID pfnmibjifkhhblmdmaocfohebdpfppkf) was stealthily loading an obfuscated piece of
JavaScript that had nothing to do with the extension’s advertised functionality. Continuing from his findings, we managed to find many other
extensions that were doing the same thing. These other extensions offered various legitimate functionality, with many of them being video
downloaders for popular social media platforms. After reverse engineering the obfuscated JavaScript, we found that the main malicious
payload delivered by these extensions was responsible for malicious browser redirects. Not only that, but the cybercriminals were also
collecting quite a lot of data about the users of the malicious extensions, such as all of their search engine queries or information about
everything they clicked on.

https://blog.nic.cz/2020/11/19/hledani-skodliveho-kodu-mezi-doplnky/

3/14

The extensions exhibited quite a high level of sneakiness by employing many tricks to lower the chances of detection. First of all, they
avoided infecting users who were likely to be web developers. They determined this either through the extensions the user had installed or by
checking if the user accessed locally-hosted websites. Furthermore, the extensions delayed their malicious activity for at least three days
after installation to avoid raising red flags early on. When the malware detected that the browser developer tools were opened, it would
immediately deactivate its malicious functionality. CacheFlow also checked every Google search query and if the user was googling for one of
the malware’s command and control (C&C) domains, it reported this to its C&C server and could deactivate itself as well.

According to user reviews on the Chrome Web Store, it seems that CacheFlow was active since at least October 2017. All of the stealthiness
described above could explain why it stayed undetected for so long.

User review

on the Chrome Web Store from October 2017 that mentions modification of Google search results

The covert channel

First, we’ll show the hidden backdoor that the extensions used to download and execute arbitrary JavaScript. Specifically, we’ll describe the
backdoor from the Chrome extension “Downloader for Instagram” v5.7.3 (ID olkpikmlhoaojbbmmpejnimiglejmboe), but this analysis
applies to the other extensions as well, since the malicious code hidden in them is very similar in functionality.

“Downloader for Instagram” page on the Chrome Web Store
It is generally a good idea to start the analysis of unknown Chrome extensions from the manifest.json file. The manifest of “Downloader
for Instagram” gives us some interesting pieces of information.

4/14

First of all, the content_security_policy is defined in such a way that it is possible to use the infamous eval function to load additional
JavaScript. However, looking for the string eval in the extension’s source code did not yield any interesting results. As we’ll show later, the
extension does use the eval function quite a lot, but it hides its usage, so it is not immediately apparent.

Content Security Policy definition from the manifest.json file
Secondly, the extension asks for quite a lot of permissions and it is not immediately clear why these permissions would be needed to
download videos from Instagram. Especially interesting is the management permission, which allows the extension to control other
extensions. The combination of the webRequest and the <all_urls> permissions is also interesting. Together, these two permissions
make it possible for the extension to intercept pretty much any web request coming from the browser.

Permissions requested by the malicious extensions

Finally, the manifest defines two background scripts: js/jquery.js and js/background.js . These scripts are persistent, which means
that they will keep running unless the extension gets disabled.

Background scripts declared in the manifest.json file

One of these background scripts, background.js , is where the suspicious webRequest API is used. This script accesses the HTTP
response headers of all intercepted web requests and stores their values in localStorage.

CacheFlow saves the values of all

sufficiently long HTTP response headers into localStorage.
The content of localStorage is then read by the other persistent malicious background script: jquery.js . While this script appears at first
glance to be the legitimate jQuery library, some additional functions were inserted into it. One of those additional functions is misleadingly
named parseRelative , while all it does is return the window.localStorage object.

Misleadingly named parseRelative function hidden inside jquery.js

Another inserted and misleadingly named function is initAjax .

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval#never_use_eval!
https://jquery.com/

5/14

initAjax function decodes the content of localStorage['cache-control'] and stores decoded values in the window object.
This function is particularly interested in the content of localStorage['cache-control'] , which should at this point be set to the value of
the last received Cache-Control HTTP response header. The function splits the content of this header with a comma and attempts to
decrypt each part using a custom function named strrevsstr , before finally parsing it out as a JSON string.

strrevsstr function used by the extension to decrypt strings
The obvious question now is why would the extension expect to intercept requests that contain an encrypted JSON string in the Cache-
Control response header?

The answer is that the threat actors are using the content of the Cache-Control header as a covert channel to send hidden commands to
the malicious extension.

As a part of the malicious extension’s regular functionality, analytics requests about some events are sent to https://stats.script-
protection[.]com/__utm.gif . These are standard analytics requests that bear resemblance to Google Analytics. The catch is, that the
server used by this extension might respond to the analytics requests with a specially formed Cache-Control header, which the client will
decrypt, parse out and execute.

6/14

Flow of the covert channel
To see what the commands could look like, we simulated the extension and sent a fake analytics HTTP request to https://stats.script-
protection[.]com/__utm.gif . After a couple of attempts, we received a specially crafted Cache-Control header.

Fiddler capture of a seemingly innocent analytics request that

contains a hidden command in the Cache-Control response header
Note that the response will contain the encoded command only when some conditions are met. First of all, the GET parameter it has to be
set at least three days into the past. Since this parameter contains the time when the extension was installed, this effectively ensures that the
extension will not exhibit any malicious behavior during the first three days. There is also a check based on the IP address, since we
repeatedly did not receive any commands from one source IP address, even though we did receive a command for the same GET request
from another IP address. As the logic behind these checks is safely hidden on the C&C server, there might be additional checks that we are
not aware of.

When the content of the received Cache-Control header is decoded using the custom strrevsstr function as outlined above, we get the
command in the following JSON. As was seen in the initAjax function, all of the attributes from this JSON get stored in the global
window object.

https://github.com/avast/ioc/blob/master/CacheFlow/extras/decryptor_strrevsstr.py

7/14

Command decoded from the Cache-Control

response header
Upon receiving such a command, the extension downloads the second stage from command['uu'] in a function named siblingAfter ,
which is also hidden inside jquery.js . The dollar sign from command['jj'] here represents the jQuery object, so the function uses the
jQuery.get function to download the next stage from command['uu'] and to store it in localStorage.dataDefault .

Code snippet that downloads the next stage

from the URL specified in command['uu']
Finally, there is yet another function hidden in jquery.js , which executes the downloaded JavaScript using the eval function from
command['ee'] .

Code snippet that uses the eval

function on the downloaded JavaScript
The downloaded JavaScript is an obfuscated intermediary downloader. Its purpose is to download the third-stage payload from
ulkon.johnoil[.]com using an XHR request. Unfortunately, because the server will only send the next stage under certain conditions,

getting a response containing the third stage can be quite tricky. If it gets successfully downloaded, it is encrypted and stored persistently in
localStorage. It then gets executed whenever a tab is updated using the chrome.tabs.onUpdated listener.

Intermediary downloader

serves as the second stage of the malware.

The payload

The payload starts out by testing if it can make use of eval and localStorage . If either of those two is not working properly, CacheFlow
would not be able to perform most of its malicious functionality.

8/14

Deobfuscated snippet of the payload which tests if the eval function works by adding

two random numbers
Additionally, the payload periodically checks if developer tools are opened. If they are, it deactivates itself in an attempt to avoid detection.
The check for developer tools is also performed whenever the current window gets resized, which might be because the user just opened
developer tools.

Deobfuscated snippet of code that checks

if the developer tools are opened
As was already mentioned, the malware authors have gone to extreme lengths to make sure that the hidden malicious payloads do not get
discovered. We believe they were not satisfied with the previous check and decided to further profile the victim in order to avoid infecting
users who seemed more tech-savvy. One of the ways they did this was by enumerating the other extensions installed by the victim and
checking them against a hardcoded list of extension IDs. Each extension on the list was assigned a score and if the sum of scores of installed
extensions exceeded a certain threshold, the list of extensions would be sent to the C&C server, which could then command the malicious
payload to deactivate. Examples of the extensions on the list were “Chrome extension source viewer”, “Link Redirect Trace”, or “JWT
Debugger”. We believe this “weighting” system helped to better differentiate actual developer systems which would have several of these
extensions and a higher score from casual users who would have fewer extensions and thus a lower score.

https://github.com/avast/ioc/blob/master/CacheFlow/extras/developer_extensions.txt
https://chrome.google.com/webstore/detail/chrome-extension-source-v/jifpbeccnghkjeaalbbjmodiffmgedin
https://chrome.google.com/webstore/detail/link-redirect-trace/nnpljppamoaalgkieeciijbcccohlpoh
https://chrome.google.com/webstore/detail/jwt-debugger/ppmmlchacdbknfphdeafcbmklcghghmd

9/14

Deobfuscated snippet of code that enumerates other extensions

installed by the victim
Another way to profile the potential victim was to check the URLs they were browsing. Whenever the victim navigated to a URL identified by
an IP address from one of the private IPv4 ranges or to a URL with a TLD .dev , .local , or .localhost , the malware would send the
visited URL to its C&C server. The malware also checked all Google (and only Google) queries against a regular expression that matched its
C&C domains and internal identifiers. This way, it would know that somebody was taking a deeper look into the extension and could take
actions to hide itself. Interestingly, the domains were not fully specified in the regular expressions, with some characters being represented as
the dot special character. We assume that this was an attempt to make it harder to create a domain blocklist based on the regular expression.

Regular expression used to detect if the victim is googling one of the malware’s C&C domains
At this point, the malware also attempted to gather information about the victim. This information included birth dates, email addresses,
geolocation, and device activity. For instance, the birth dates were retrieved from the personal information entered into the victim’s Google
account. Once again, the attackers focused only on Google: we did not see any similar attempts to get Microsoft account information. To
retrieve the birthday, CacheFlow made an XHR request to https://myaccount.google.com/birthday and parsed out the birth date from the
response.

Deobfuscated

snippet of code where the malware attempts to obtain the birth date of the victim
Note that while it may seem that making such a cross-origin request would not be allowed by the browser, this is all perfectly possible under
the extension security model since the extension has the <all_urls> permission. This permission gives the extension access to all hosts,
so it can make arbitrary cross-site requests.

https://myaccount.google.com/birthday

10/14

In order to make it harder for Google to realize that CacheFlow was abusing its services to gather personal information, it also registered a
special chrome.webRequest.onBeforeSendHeaders listener. This listener removes the referer request header from all the relevant XHR
requests, so Google would not easily know who is actually making the request.

Deobfuscated snippet of code where the malware removes the referer

from requests to Google
Finally, to perform its main malicious functionality, the payload injects another piece of JavaScript into each tab using the
chrome.tabs.executeScript function.

The injected script

The injected script implements two pieces of functionality. The first one is about hijacking clicks. When the victim clicks on a link, the
extension sends information about the click to orgun.johnoil[.]com and might receive back a command to redirect the victim to a
different URL. The second functionality concerns search engine results. When the victim is on a search engine page, the extension gathers
the search query and results. This information is then sent to the C&C server, which might respond with a command to redirect some of the
search results.

Link hijacking

The link hijacking is implemented by registering an onclick listener over the whole document .

Deobfuscated snippet of code showing the registration of the onclick

listener
The listener is then only interested in main button presses (usually “left clicks”) and clicks on elements with the tag name a or area . If the
click meets all the criteria, an XHR request to https://orgun.johnoil[.]com/link/ is sent. This request contains one GET parameter,
a , which holds concatenated information about the click and is encrypted using the custom strsstr function. This information includes

the current location, the target URL, various identifiers, and more.

We simulated a fake request about a click to a link leading to https://facebook[.]com and received the following response:

ayiudvh3jk6lNjkzMTQ0eAgYGAQRFhNYTVxbE04IBlFDFgEEHBtYQV0HThdXEwJRBANSUVBEDghQCgNOWUMXAhskaiohB3Z4YQlvSU8oaygLZkhBYCJlAW

Upon receiving such a response, the malware first makes sure that it starts with a certain randomly generated string and ends with the same
string, but in reverse. This string (ayiudvh3jk6l highlighted in the example above) was generated by the extension and was also included
in the a parameter that was sent in the XHR request. The extension then takes the middle portion of the response and decrypts it using the
strrevsstr function (which is the inversion of strsstr). This yields the following string:

ayiudvh3jk6lhttps://go.lnkam[.]com/link/r?
u=https%3A%2F%2Fwww.facebook[.]com%2F&campaign_id=b7YMMAqMdAL7wyzNe5m3wz&source=uvm3rdsqc9zo69l6kj3hvduiya

Once again, the malware checks the beginning and the end of the decrypted string for the same randomly generated string as used before
and extracts the middle portion of it. If it begins with the substring http , the malware proceeds to perform the link hijack. It does this by
temporarily changing the href attribute of the element that the user clicked on and executing the click method on it to simulate a mouse
click. As a fallback mechanism, the malware just simply sets window.location['href'] to the link hijack URL.

11/14

Deobfuscated snippet of code that shows how the malware hijacks the

victim’s clicks

Modification of search results

The second functionality is performed only if the victim is currently on a Google, Bing, or Yahoo search page. If they are, the malware first
gathers the search query string and the results. The way this is performed varies based on the search engine. For Google, the search query
string is found as the value of the first element named q . If that somehow fails, the malware alternatively tries to get the search query from
the q GET parameter.

Deobfuscated

snippet of code that shows how the malware obtains the search query
The search results on Google are obtained by searching for elements with the class name rc and then iterating over their child a
elements.

Deobfuscated snippet of code that shows how the malware obtains

the search results
Once gathered, the search query and results are sent in an XHR request to servscrpt[.]de . A salted MD5 checksum of the results is
included in the request as well, we believe in an attempt to discover fake requests (but this check can obviously be trivially bypassed by
recomputing the MD5 checksum). The XHR response contains a list of domains whose links the malware should hijack. The hijack itself is
performed by registering an onmousedown listener on the a element. Once fired, the listener calls the preventDefault function on the
event and then window.open to redirect the user to the malicious URL.

Interestingly, CacheFlow also modifies some of the hijacked search results by adding a clickable logo to them. We believe this is done in
order to make those results stand out and thus increase the chances of the victim clicking on them. However, the position of the logo is not
aligned well, which makes the search result look odd and suspicious, since Google, Microsoft, or Yahoo would probably put a bit more effort
into formatting it.

12/14

Comparison of the original Google search result (top) with the result that was modified by the malware (bottom)
The logo is added by creating a brand new div element which holds an img element. Once created and formatted, this element is inserted
into the DOM, so that it appears to the left of the original search result. The logo is obtained from the serviceimg[.]de domain, which
serves a unique 90×45 logo per domain.

Deobfuscated

snippet of code where the malware creates an element with the added logo

Conclusion

In this blog post, we provided technical details about CacheFlow: a huge network of malicious browser extensions that infected millions of
users worldwide. We described how the malicious extensions were hijacking their victims’ clicks and modifying their search engine results.
Since CacheFlow was well capable of hiding itself, we covered in detail the techniques it was using to hide the fact that it was executing
malicious code in the background. We believe that understanding how these techniques work will help other malware researchers in
discovering and analyzing similar threats in the future.

Indicators of Compromise

The full list of IoCs is available at https://github.com/avast/ioc/tree/master/CacheFlow.

Name Hash

manifest.json 2bc86c14609928183bf3d94e1b6f082a07e6ce0e80b1dffc48d3356b6942c051

background.js bdd2ec1f2e5cc0ba3980f7f96cba5bf795a6e012120db9cab0d8981af3fa7f20

jquery.js 3dad00763b7f97c27d481242bafa510a89fed19ba60c9487a65fa4e86dcf970d

Intermediary downloader 4e236104f6e155cfe65179e7646bdb825078a9fea39463498c5b8cd99d409e7a

Payload ebf6ca39894fc7d0e634bd6747131efbbd0d736e65e68dcc940e3294d3c93df4

Injected script 0f99ec8031d482d3cefa979fbd61416558e03a5079f43c2d31aaf4ea20ce28a0

Chrome Extension Name Extension ID

Direct Message for Instagram mdpgppkombninhkfhaggckdmencplhmg

DM for Instagram fgaapohcdolaiaijobecfleiohcfhdfb

Invisible mode for Instagram Direct Message iibnodnghffmdcebaglfgnfkgemcbchf

Downloader for Instagram olkpikmlhoaojbbmmpejnimiglejmboe

App Phone for Instagram bhfoemlllidnfefgkeaeocnageepbael

Stories for Instagram nilbfjdbacfdodpbdondbbkmoigehodg

Universal Video Downloader eikbfklcjampfnmclhjeifbmfkpkfpbn

Video Downloader for FaceBook™ pfnmibjifkhhblmdmaocfohebdpfppkf

Vimeo™ Video Downloader cgpbghdbejagejmciefmekcklikpoeel

Zoomer for Instagram and FaceBook klejifgmmnkgejbhgmpgajemhlnijlib

VK UnBlock. Works fast. ceoldlgkhdbnnmojajjgfapagjccblib

Odnoklassniki UnBlock. Works quickly. mnafnfdagggclnaggnjajohakfbppaih

Upload photo to Instagram™ oknpgmaeedlbdichgaghebhiknmghffa

Spotify Music Downloader pcaaejaejpolbbchlmbdjfiggojefllp

The New York Times News lmcajpniijhhhpcnhleibgiehhicjlnk

FORBES lgjogljbnbfjcaigalbhiagkboajmkkj

Скачать фото и видео из Instagram akdbogfpgohikflhccclloneidjkogog

Edge Extension Name Extension ID

https://github.com/avast/ioc/tree/master/CacheFlow

13/14

Direct Message for Instagram™ lnocaphbapmclliacmbbggnfnjojbjgf

Instagram Download Video & Image bhcpgfhiobcpokfpdahijhnipenkplji

App Phone for Instagram dambkkeeabmnhelekdekfmabnckghdih

Universal Video Downloader dgjmdlifhbljhmgkjbojeejmeeplapej

Video Downloader for FaceBook™ emechknidkghbpiodihlodkhnljplpjm

Vimeo™ Video Downloader hajlccgbgjdcjaommiffaphjdndpjcio

Volume Controller dljdbmkffjijepjnkonndbdiakjfdcic

Stories for Instagram cjmpdadldchjmljhkigoeejegmghaabp

Upload photo to Instagram™ jlkfgpiicpnlbmmmpkpdjkkdolgomhmb

Pretty Kitty, The Cat Pet njdkgjbjmdceaibhngelkkloceihelle

Video Downloader for YouTube phoehhafolaebdpimmbmlofmeibdkckp

SoundCloud Music Downloader pccfaccnfkjmdlkollpiaialndbieibj

Instagram App with Direct Message DM fbhbpnjkpcdmcgcpfilooccjgemlkinn

Downloader for Instagram aemaecahdckfllfldhgimjhdgiaahean

URL

abuse-extensions[.]com

ampliacion[.]xyz

a.xfreeservice[.]com

b.xfreeservice[.]com

c.xfreeservice[.]com

browser-stat[.]com

check-stat[.]com

check4.scamprotection[.]net

connecting-to-the[.]net

cornewus[.]com

downloader-ig[.]com

exstats[.]com

ext-feedback[.]com

extstatistics[.]com

figures-analysis[.]com

huffily.mydiaconal[.]com

jastats[.]com

jokopinter[.]com

limbo-urg[.]com

mydiaconal[.]com

notification-stat[.]com

orgun.johnoil[.]com

outstole.my-sins[.]com

peta-line[.]com

root.s-i-z[.]com

s3.amazonaws[.]com/directcdn/j6dle93f17c30.js

s3.amazonaws[.]com/wwwjs/ga9anf7c53390.js

14/14

s3.amazonaws[.]com/wwwjs/hc8e0ccd7266c.js

s3.amazonaws[.]com/protectscript/instagram-downloader.js

safenewtab[.]com

script-protection[.]com

server-status[.]xyz

serviceimg[.]de

servscrpt[.]de

stats.script-protection[.]com

statslight[.]com

ulkon.johnoil[.]com

user-experience[.]space

user-feedbacks[.]com

user.ampliacion[.]xyz

xf.gdprvalidate[.]de/partner/8otb939m/index.php

Tagged asanalysis, browser extension, CacheFlow, covert channel, evasion, malware

https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/browser-extension/
https://decoded.avast.io/tag/cacheflow/
https://decoded.avast.io/tag/covert-channel/
https://decoded.avast.io/tag/evasion/
https://decoded.avast.io/tag/malware/

