
1/3

SANS ISC: InfoSec Handlers Diary Blog - SANS Internet
Storm Center SANS Site Network Current Site SANS
Internet Storm Center Other SANS Sites Help Graduate
Degree Programs Security Training Security Certification
Security Awareness Training Penetration Testing
Industrial Control Systems Cyber Defense Foundations
DFIR Software Security Government OnSite Training
InfoSec Handlers Diary Blog

isc.sans.edu/diary/rss/27036

Emotet vs. Windows Attack Surface Reduction

Published: 2021-01-28
 Last Updated: 2021-01-28 00:02:31 UTC

 by Daniel Wesemann (Version: 1)
 0 comment(s)

Emotet malware in the form of malicious Word documents continued to make the rounds
over the past weeks, and the samples initially often had pretty poor anti-virus coverage
(Virustotal) .The encoding used by the maldoc is very similar to what Didier Stevens
analyzed in his recent diary, and the same method can be used to extract the mal-code from
the current Emotet docs.

With the de-obfuscation reasonably straight forward, I proceeded to look into how the
malware crooks accomplish execution from within the Word doc, and in particular, why
Microsoft's "Attack Surface Reduction Rules" do not seem to help much.

But first, let's take a quick detour into what Attack Surface Reduction (ASR) promises to do
on modern Windows devices. ASR is a somewhat clunky set of additional protections in
Microsoft Defender Antivirus that can be turned on to log or intercept (block) some common
attack scenarios. Microsoft's web site offers meager documentation, including a marginally
helpful list of GUIDs that can be used to activate the feature.

One rule, "Block all Office Applications from creating child processes" (GUID D4F940AB-
401B-4EFC-AADC-AD5F3C50688A) is supposed to prevent a Word document from
launching any other task. Therefore, when this rule is configured, we would expect that the
current Emotet and its execution chain of Word-Doc -> cmd.exe -> Powershell should not be
successful. But it is.
Closer inspection of the Defender Event Log gives a hint "why": 

https://isc.sans.edu/diary/rss/27036
https://isc.sans.edu/forums/diary/Emotet+vs+Windows+Attack+Surface+Reduction/27036/
https://isc.sans.edu/handler_list.html#daniel-wesemann
https://isc.sans.edu/forums/diary/Emotet+vs+Windows+Attack+Surface+Reduction/27036/#comments
https://www.virustotal.com/gui/file/81f2ba7fd695aeccb81089e2eef8feb88e6dd460a95bdffb4c43ec226e4ffbdc/detection
https://isc.sans.edu/forums/diary/Maldoc+Analysis+With+CyberChef/26968/
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/overview-attack-surface-reduction
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction#attack-surface-reduction-rules


2/3

The only ASR rule that we see firing when the Emotet Doc is being opened is the one with ID
d1e49aac-8f56-4280-b9ba-993a6d77406c, corresponding to "Block process creations
originating from PSExec and WMI commands". Yes, the Emotet VBA Macro is using a WMI
(windows management instrumentation) call to launch the subsequent attack code. For such
WMI invocation via the Win32 Process class, the parent process of "cmd" ends up being
WmiPrvSe.exe, which in turn is launched from "svchost". Therefore, "cmd" is not a child
process of Word, and the ASR block rule to prevent child processes of Word consequently
doesn't trigger. Bah!

In corporate environments, remote management of user devices often uses tools like SCCM
or Endpoint Manager, which in turn rely on WMI to function. Therefore, setting the ASR Rule
for WMI/PSExec to "block" will likely break device management, and cause a huge mess.
Chances are, the Emotet crooks were fully aware of this, and that's exactly why they chose
this particular execution method for their attack code.

If you have Microsoft ATP, you can also use a hunting rule like this to search for WMI
process creation
DeviceEvents

 | where ActionType == "ProcessCreatedUsingWmiQuery"
 | project Timestamp, DeviceName, ActionType, FileName, SHA1, FolderPath,

InitiatingProcessCommandLine, ProcessCommandLine
 | sort by Timestamp desc

You might have to add a couple of exclusions to cover your management instrumentation or
software distribution tools, but with a bit of tuning, you should see any current Emotet-like
WMI attempts in your environment. The ProcessCommandLine in these cases will be long



3/3

(>600chars) and contain Base64 encoded Powershell, and the InitiatingProcess is Winword.

In the meantime, the probably best bet to protect your Windows users against Emotet and
similar malware remains to quarantine password protected zips or Office documents with
macros on your email gateway, or to disable macros within Office outright if you can get
away with it.

Maybe, in a decade or three, Microsoft will get to the point where malware introduced via
Office documents really no longer is a concern and prevalent problem. Until then, I guess we
have to kinda hope that today's international raid by law enforcement against the Emotet
gang really got the right guys, and got them good.
Keywords: Emotet WMI word
0 comment(s)
Join us at SANS! Attend with Daniel Wesemann in starting

Top of page
×

Diary Archives

https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://isc.sans.edu/tag.html?tag=Emotet
https://isc.sans.edu/tag.html?tag=WMI
https://isc.sans.edu/tag.html?tag=word
https://isc.sans.edu/forums/diary/Emotet+vs+Windows+Attack+Surface+Reduction/27036/
https://isc.sans.edu/diary/rss/27036
https://www.sans.org/course/defending-web-applications-security-essentials
https://isc.sans.edu/diaryarchive.html

