
1/12

January 27, 2021

How We Escaped Docker in Azure Functions
intezer.com/blog/research/how-we-hacked-azure-functions-and-escaped-docker/

Written by Paul Litvak - 27 January 2021

Get Free Account

Join Now

Top Blogs

Elephant Framework Delivered in Phishing Attacks Against Ukrainian Organizations

A recently developed malware framework called Elephant is being delivered in targeted
spear phishing campaigns... Read more

Make your First Malware Honeypot in Under 20 Minutes

A “honeypot” is a metaphor that references using honey as bait for a lure or... Read more

Detection Rules for Sysjoker (and How to Make Them With Osquery)

https://www.intezer.com/blog/research/how-we-hacked-azure-functions-and-escaped-docker/
https://analyze.intezer.com/
https://www.intezer.com/blog/research/elephant-malware-targeting-ukrainian-orgs/
https://www.intezer.com/blog/research/elephant-malware-targeting-ukrainian-orgs/
https://www.intezer.com/blog/malware-analysis/how-to-make-malware-honeypot/
https://www.intezer.com/blog/malware-analysis/how-to-make-malware-honeypot/
https://www.intezer.com/blog/incident-response/detection-rules-sysjoker-osquery/

2/12

On January 11, 2022, we released a blog post on a new malware called SysJoker.... Read
more

Summary of Findings
 What is Azure Functions?

 Technical Analysis
 Proof of Concept

 Why Does this Matter?

Summary of Findings

In previous months we identified vulnerabilities in Microsoft Azure Network Watcher and
Azure App Services, leading us to investigate other types of Azure compute infrastructure.
We found a new vulnerability in Azure Functions, which would allow an attacker to
escalate privileges and escape the Azure Functions Docker container to the Docker
host.

We reported the vulnerability to Microsoft’s security team. They have determined the issue
has no security impact on Azure Functions users. Although it is possible to escape from the
function to the host, the Docker host itself is protected by a Hyper-V boundary. Based on
our findings Microsoft has made changes to block /etc and /sys directories since this
change has already been deployed.

Instances like this underscore that vulnerabilities are sometimes out of the cloud user’s
control. Attackers can find a way inside through vulnerable third-party software. While you
should focus on reducing the attack surface as much as possible, you also need to prioritize
the runtime environment to make sure you don’t have any malicious code lurking in your
systems.

What is Azure Functions?

Azure Functions is a serverless compute service that allows users to run code without
having to provision or manage infrastructure. Azure Functions is Microsoft’s equivalent to
Amazon Web Services’ well-known Lambda service.

Azure Functions can be triggered by HTTP requests and are meant to run for only a few
minutes in order to handle the event. Behind the scenes, the user’s code is run on an
Azure-managed container and served without requiring the user to manage their own
infrastructure. In other words, if the user wants to take a shortcut they can, since it’s
expected that Microsoft will do it for them. This code is segmented securely and is not
intended to escape from its confined environment. However, we will soon demonstrate
why this is not the case.

https://www.intezer.com/blog/incident-response/detection-rules-sysjoker-osquery/
https://www.intezer.com/blog/cloud-security/cve-2020-16995-microsoft-azure-network-watcher-linux-extension/
https://www.intezer.com/blog/cloud-security/kud-i-enter-your-server-new-vulnerabilities-in-microsoft-azure/
https://azure.microsoft.com/en-us/services/functions/
https://aws.amazon.com/lambda/

3/12

We created a demonstration of the vulnerability—mimicking an attacker having execution
on Azure Functions and escalating privileges to achieve a full escape to the Docker host.
Check it out below.

Watch Video At:

https://youtu.be/YXIf3Xl1eZ8

Technical Analysis

An Azure function requires no infrastructure management. It’s triggered by a user merely
uploading their code, which enables seamlessly calling the Function. In our example, it’s
invoked via HTTP: https://test11114117.azurewebsites.net

 Figure 1: Example

Azure Function handler code
 As the user can upload any code of their choice, we abused this to gain a foothold over the

Function container and further understand its internals. We wrote a reverse shell to connect
to our control server once the Function was executed, so that we could operate an
interactive shell.

https://youtu.be/YXIf3Xl1eZ8
https://test11114117.azurewebsites.net/

4/12

Figure 2: Azure Function reverse shell
Once the shell was on our Function we noticed that we were running as a unprivileged ‘app’
user in an endpoint with a ‘SandboxHost’ hostname:

 Figure 3:

Connecting to the Function reverse shell
The environment was mostly sterile from utilities, so we added several useful tools—most
notably nmap—to our Function directory and then reuploaded the new Function package.

Using nmap, we scanned localhost to familiarize ourselves with the server. As a result we
spotted multiple open ports:

5/12

Figure 4: Running nmap on an Azure Function

Escalating Privileges

Since our goal was to find an elevation of privilege vulnerability, it was important that we
find sockets belonging to processes associated with root. After interrogating network-related
/proc files, we were able to map the ports to their corresponding processes:

Figure 5: Mapping each open port to the process that owns it

6/12

We found three privileged processes with an open port. The first was NGINX, a thoroughly
tested open-source project. The local NGINX version had no known vulnerabilities so this
wouldn’t have helped us.

The MSI and Mesh processes offered better chances at finding potential problems as they
are close-sourced, undocumented Microsoft processes. As such, we were confident that
they had been less thoroughly tested.

MSI, Managed Service Identity, a feature of the serverless model, eliminates the user’s
need to manage identities, easing development by letting Azure handle it instead.

As for the Mesh binary, we couldn’t find much information (it’s unrelated to Azure’s Fabric
Mesh service which has a similar name).

Unfortunately, the binaries belonging to the two processes reside in root-owned directories
(e.g. /root/mesh/init) and we didn’t have access to them.

The Mesh process seemed to be less documented and also very relevant for our purposes,
so we focused our efforts on finding out what this component does.

After searching for references to the Mesh binary in Google, we found the questioned
“/root/mesh/init” path in the build log of a public Docker image in Docker Hub belonging to a
Microsoft employee (we deduced this was public on purpose because it’s used internally
somehow).

We downloaded the image, created a container with it and extracted the Mesh Init binary.
The binary was compiled from a Go codebase and conveniently for our purposes wasn’t
stripped.

Immediately as we opened the binary in IDA we noticed some interesting functions:

https://www.nginx.com/
https://docs.microsoft.com/en-us/azure/service-fabric-mesh/service-fabric-mesh-overview
https://hub.docker.com/layers/balag0/km/2/images/sha256-69b1fa875e4e67232364c8b25b3f803633fc82226a1ae65b61a5ce3530dc0625?context=explore

7/12

 Figure 6: Mesh binary

mount functions
Performing a mount is a privileged operation and should our unprivileged user access this
functionality through the HTTP server, it could result in privilege escalation.

With this goal in mind and after some reverse engineering, we found the HTTP paths and
variables that would allow us to invoke these functions. The server expected an HTTP
variable to specify an operation to invoke:

At first we attempted to use the mount_RunCifs and mount_RunZip commands, however,
we had no success as the system was lacking binaries for these functions to actually work.
We had hoped that the third time would be the charm as we looked at mount_RunSquash:

8/12

 Figure 7:

mount_RunSquash function disassembly
The RunSquash function would simply invoke squashfuse_ll (in the
init_server_pkg_mount_runSquashInternal function) to mount the given squashfs image in
the path supplied by “filePath” HTTP variable onto the path specified by the “targetPath”
HTTP variable.

With this information, we built our own squashfs filesystem containing only a single file that
would grant our unprivileged app user root permissions using the sudoers mechanism.

 Figure 8: Creating the

sudoers file on our own server

https://github.com/vasi/squashfuse
https://tldp.org/HOWTO/SquashFS-HOWTO/whatis.html
https://linux.die.net/man/5/sudoers

9/12

Figure 9: Creating the squashfs image on our own server for the exploit
 We included this file in our new Function image and instructed the server to mount our evil

squashfs image over /etc/sudoers.d. This granted root to our unprivileged user:

Figure 10: Escalating to root

Escaping Docker

We were able to escalate to root! However, we were still confined to our container. This new
freedom was still somewhat limiting but nonetheless an upgrade to a bigger “cage.”

Escalating to root within a container is a remarkable achievement, yet escalating privileges
within containers is not the final destination for an attacker. Compromising the Docker host
would give them much more control, allowing them to break away from the container which
might be monitored and moving to the Docker host which is often neglected in terms of
security. Containers are often scraped for unnecessary items which the attacker might find
interesting, so escalating to the Docker host could allow them to gather more compromising
leads to incite further damage.

It’s a known bad practice to host containers with the ––privileged flag, or to grant them non-
default capabilities, since this nullifies Docker’s security features. Seeing as Azure
Functions’ core is its container, the first thing we did once we had execution over the

https://containerjournal.com/topics/container-security/why-running-a-privileged-container-is-not-a-good-idea/

10/12

Function was to check what capabilities our container had been granted. This can be
achieved by reading a process’s status file in the /proc directory:

Figure 11: Azure Function process capabilities
 The Cap fields relate to a Linux capability mechanism. We won’t go into detail but decoding

the Cap bitmap allows us to list the process’s capabilities, which all processes in the
container share:

Figure 12: Decoding Function process capabilities
 We were very surprised to discover that Azure Functions ran with several extra capabilities.

With these extra capabilities it was clear that the container was run with the ––privileged
flag.

This by itself would not have helped us initially, since we only had access to an unprivileged
user, and the Docker escape techniques available in this scenario required root. This all
changed once we found the Privilege Escalation vulnerability.

Using a known Docker escape technique we ran ‘ps’ on the Docker host:

https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/

11/12

Figure 13: Running `ps` on the Docker Host
In a nutshell, the technique we used—discovered by Felix Wilhem—abuses a feature within
cgroups and allows calling a binary on the Docker host (only with the SYS_ADMIN
capability as given by the ––privileged flag). In our PoC, we instructed the system to run the
‘ps’ command and redirect its output to our containerized filesystem.

Once we have achieved execution on the Docker host we reported our findings to Microsoft.
After assessment they have decided not to fix the bug, as they claim it does not impact
security. The reason for this is because the Docker host is not the final host by itself. This
“host” was managed by HyperV (Virtual Machine Manager) and protected by its sandbox,
therefore our container was essentially a box within a box. This Docker host only contains
our own Docker container, and it’s this real host that manages shared infrastructure
between different Azure Functions belonging to various Azure customers, which we were
not able to access.

Proof of Concept

To make reproduction easier for those who would like to probe the Docker host
environment, we’ve created an easy to run PoC. It contains instructions on how to upload
an Azure Function with a reverse shell so that you can probe the Docker host yourself and
perhaps find some use out of it. It’s available on GitHub.

https://twitter.com/_fel1x/status/1151487051986087936
https://github.com/tsarpaul/Azure-Functions-EoP-PoC

12/12

Why Does this Matter?

No matter how hard you work to secure your own code, sometimes vulnerabilities are out of
your control. It’s critical that you have protection measures in place to detect and terminate
when the attacker executes unauthorized code in your production environment. This Zero
Trust mentality is even echoed by Microsoft.

Try our Free Community Edition

Cloud Workload Protection Platforms (CWPP) like Intezer Protect monitor the runtime
environment to detect and terminate any unauthorized code execution following a
vulnerability exploitation or other attack vector.

Intezer Protect defends the cloud-native stack—including VMs, containers and container
orchestration platforms—against the latest threats. You’ll want to know what code is running
in your production environments at all times. The community edition is a quick way to get
this visibility.

Get Started for Free

If you’re not ready to deploy, we also have a lab environment where you can simulate
attacks such as backdoors, malware, and Living off the Land (LotL) threats. Contact us to
access this environment.

Paul Litvak
Paul is a malware analyst and reverse engineer at Intezer. He previously served as a
developer in the Israel Defense Force (IDF) Intelligence Corps for three years.

https://thehackernews.com/2021/01/heres-how-solarwinds-hackers-stayed.html
https://www.intezer.com/
http://protect.intezer.com/signup
http://protect.intezer.com/signup
https://www.intezer.com/contact-us/

