Cyber Threat Intelligence Research

'}(threatconnect.com/blog/crimsonias-listening-for-an-3v1l-user/

January 27, 2021

Executive Summary

CrimsonlAS is a Delphi-written backdoor dating back to at least 2017 that enables operators to run command line tools, exfiltrate files, and
upload files to the infected machine. CrimsonlAS is notable as it listens for incoming connections only; making it different from typical Windows
backdoors that beacons out. The characteristics found in CrimsonlAS’s execution flow suggest a connection to Mustang Panda (aka BRONZE
PRESIDENT, RedDelta) PlugX samples. Based on those non-unique characteristics, ThreatConnect assesses with low confidence that
CrimsonlAS is an additional tool in Mustang Panda’s repertoire. Industry reporting assesses with varying levels of confidence that Mustang
Panda is a Chinese espionage actor that has conducted operations in Mongolia, Vietnam, and Hong Kong among other locations. According
to fellow researchers, Mustang Panda targets non-government organizations (NGOs), law enforcement organizations, and political entities.

Discovery

ThreatConnect identified CrimsonlAS while hunting for XOR encrypted PlugX binaries. The CrimsonlAS backdoor is encrypted similarly to
recent MustangPanda PlugX samples, which piqued our interest.

Encrypted SHA256: acfd58369c0a7dbc866ad4ca9cb0fe69d017587af88297f1eaf62a9a8b1b74b4

Decrypted SHA256: 891ece4c40a7bf31f414200c8c2c31192fd159¢1316012724f3013bd0ab2a68e

CrimsonlAS Analysis

The developers behind CrimsonlAS wrote this backdoor using Delphi. They also added some features that changed the normal execution flow
starting with shell code embedded in the MZ header. Windows executables are not designed to execute code from the MZ header; they have a
dedicated section (outside of the MZ header) for executable code. The actor is able to work around this design choice to start execution in the
MZ header based on how we suspect the binary is loaded. This shell code calls a reflective loader function which resolves additional library
functions needed before jumping to the malware’s actual entrypoint. The binary was also XOR encrypted with a 10 byte XOR key prepended to
the binary (T1140: Deobfuscate/Decode Files or Information). All of these are also seen in Mustang Panda’s PlugX samples.

Executable \
The encrypted version of

Side Loads CrimsonlAS will gain
execution when swapped
in for the encrypted Plugk

DLL payload. No extra payload
binary modification
needed.

1. Decrypts the payload using the prepended —
XOR Key
2. Starts payload execution

Payload: Decrypted PlugX
|
Execution starts with the

Shell Code at offset 0x0

which jumps to the

Exported Loader Function
|
that reflectively loads the binary and jumps to
the
[Malware's Entry Point]

Figure 1: Binary Loading Sequence

This backdoor spins up a listener and awaits the operator’s commands to run command line tools, exfiltrate files, and upload files to the
infected machine. Prior to spinning up the network listener, CrimsonlAS launches netsh.exe to open a port on the local machine (T1562.004:
Impair Defenses: Disable or Modify System Firewall). This sample opens port 80.

1/8

https://threatconnect.com/blog/crimsonias-listening-for-an-3v1l-user/
https://app.threatconnect.com/auth/threat/threat.xhtml?threat=4628848921#/
https://threatconnect.com/blog/research-roundup-mustang-panda-and-reddelta-plugx-using-same-c2/
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-june-mustang-panda/
https://www.avira.com/en/blog/new-wave-of-plugx-targets-hong-kong
https://www.secureworks.com/research/bronze-president-targets-ngos
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1562/004/

push sax ; format_string
80

.0
lea adx, [ebp+FrmStr Args]
mov ecx, 1 ; Args_High specifies the index of the last element
mov wax, offset aNetshExeAdvfir ; netsh.exe advfirewall firewall add rule name="Internet Remote Help id Services" protocol=TCP dir=in localport=id acticn=allow

call FORMAT STR

Figure 2: netsh command construction

Command and Control

When receiving network traffic, the listener’s handler first checks for the presence of the marker 0x33669966 (T1205: Traffic Signaling). If it
matches, then the handler proceeds to parse the first 24 bytes.

) 55
cmp [edi+COMMAND_HEADER.command_marker], 33669966h
jnz short loc_41C78C

Figure 3: Marker Check

The first 24 bytes make up the command header; however, only the first three DWORDs appear to be used.

Field Size Offset
Command Marker DWORD 0x0
Command Code DWORD Ox4
Command Buffer Size DWORD 0x8

The command buffer starts at offset 24 (0x18) and its content differs based upon the command code specified.

The three command codes are:

e 0x6600 : Run Command (T1059.003: Command and Scripting_Interpreter: Windows Command Shell)
e 0x7701 : Receive File (T1105: Ingress Tool Transfer)
e 0x7702 : Send File (T1041: Exfiltration Over C2 Channel)

sub son, &800

maw wox, [edusCOMMAND_HEADER command_cods]
00k
32 short les _A1C6FE

s Ea ez =
= ahort loc_41CTOB)
COMMAND_WEADER command_code == 7703(lec_sicerr: COMMAND_NEADER . command_cods == 7701

loe_41C6F8: : COMMAND_WEADER . command_code == 8600 1oe_41CT08: 3 " F
oall BACKDOOR_CMD_run_oomman: oall BACKDOOR_CMD_TClisntSocket_SsndFils oall BACKDOOR_OMD_TClisntSockst _RecsiveFils
= short loc_81C708 1 e short loe 41C70B

Figure 4: Command Switch Table

A null preserving XOR encryption algorithm is used to hide the buffer’s contents (T1573.001: Encrypted Channel: Symmetric Cryptography).
All of the samples found use the same single byte XOR key 0x85.

2/8

https://attack.mitre.org/techniques/T1205/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1573/001/

; int _ stdeall CRYPTO_xor_85h()
CRYPTO_xor_85h proc near
push esi
mov ecx, eax ; ecx = Buffer
mov esi, edx ; esi = Length
dec esi ; sub 1 from length
test esi, esi ; check to see if length is now 0
jl short loc_41BOFA ; skip routine if esi
; is less than zero
S)
|l i =
ine esi ; add 1 back to length
Xor eax, eax ; Set eax to 0
; used as the offset
; into the buffer
i
™
loc_41BOE5: ; dl = buffer + offset
VEX edx, byte ptr [ecx+teax]
test dl, d1 ; Check to see if buffer
; at offset is 0
jz short loc_41BOF6 ; Skip XOR operation if so
L‘I
" EE]
cmp dl, 85h ; '..' ; Check to see if dl is 0x85
jz short loc_41BO0F6 ; Skip if dl is 0x85

L

Xor byte ptr [ecx+eax], 85h ; xor wvalue at buffer + offset

fiv

loc_41BOF6: ; add 1 to the offset wvalue
inec eax
dec esi ; subtract 1 from the length
jnz short loc_41B0OE5 ; Repeat until esi (buffer length) equals 0
= T
" T=IE]
loc_41BOFA:
PopP esi
retn

CRYPTO_xor_85h endp

Flgure 5: XOR Encryption

Command and Control Recreation

After reversing the backdoor’s network byte parser, we recreated parts of the command and control (C2) server to elicit responses from it. Here

the backdoor responds to our command telling it to execute “net user evil 3v1l /add’.

00PPEOOe 66 99 66 33 00 66 00 O 56 00 GO OO OO0 PO OO OO
00EPEOE10 0O 00 OO B0 0O B0 00 PO e6 B0 bf OO d9 0O d2 0O
00000020 ec 00 eb 00 el 00 ea 00 f2 00 f6 00 d9 0O d6 GO

00000030 fc 00 6 00 f1 00 €0 00 €8 00 b6 00 b7 00 d9 00
00000040 eb 00 e0 00 f1 @0 a5 0@ fO 00 f6 00 e® 0O f7 @O coac

00000050 a5 00 e0 00 f3 00 ec 00 €9 00 a5 00 b6 00 f3 00
POEPEE6EO b4 0D e9 PO a5 00 aa PO e4 OO el 0O el 0O

0OPEEOEE 66 99 66 33 1 66 GO GO0 54 00 OO OO0 OO OO OO 0O

0000EE10 0O 00 G0 G0 0O 00 00 G0 d5 60 00 00 d1 00 ed 0O
00000020 €0 00 a5 00 e6 00 ea G0 eB 00 e8 00 e4 00 eb @O
00000030 el 00 a5 00 e6 00 ea G0 e8 00 f5 00 e9 0O e0 0O
00000040 f1 00 ed 00 el 00 a5 00 f6 00 f© 0O e6 0O e6 0O
00000050 €0 00 f6 GO f6 00 e3 GO fO OO €9 0O €9 00 fc 00O
00000E60 ab 00 88 00 8f 0O 88 GO 8f 00 00 00

00EEEE6C 66 99 66 33 02 66 G0 OO0 0O OO0 GO GO OO0 GO 0O 0O
000PEE7C 00 00 00 00 00 00 00 00

Figure 6: Communication Capture

Notice both the sent and received responses start with 0x33669966 (0x66996633 on the network); enabling fingerprinting of the network traffic.

The response buffer reads: “The command completed successfully.”

Operator issued
command

-~ Responses

3/8

Mustang Panda Connection

We assess with low confidence that CrimsonlAS is associated with Mustang Panda. The similarities with how the binary was packaged along

with how it’s launched are the basis for this connection.

Inspecting Mustang_Panda PlugX samples identified last year, we observed these three pertinent characteristics:

1 — Encrypted with a 10 byte XOR key prepended to the encrypted binary

Mustang Panda PlugX

CrimsonlAS

0 ey WNDpaDEn g

¢
a2 54 4d 6a 56 51 62 73 79 42| 00[27 Be a5 6a 56|
51 62 28 2b 07 3f df al eb 95 68 73 73 79 bd b9
Figure 7: Prepended XOR Key
(35a46bdd2f1788fe2a66b1adfe1b21361ebfc3fb5972932e6a00
94422637fa48)

Tnmy Null Byte Deli*miter Start of MZ File
la4 48 47 46 56 de 74 61 66 41]00[09 12 af 46 56/
de 74 3a 34 84 11 c3 ab c7 95 f3 cb 60 66 be 97

Figure 8: Prepended XOR Key

(acfd58369c0a7dbcB866ad4cal9chb0fe69d017587af88297f1eafb

2a%9a8b1b74b4)

Figure 7 and 8 show a prepended XOR key separated by a null byte from the encrypted payload. Over the past 8 months we’ve been
monitoring this technique and, outside of this one CrimsonlAS sample, all the other uploaded samples have been the PlugX associated with
Mustang Panda. We acknowledge during the last two months of 2020 that two samples deviated from the 10 byte XOR key length; however,

the overwhelming majority used a 10 byte prepended XOR key.

2 — Matching shell code at the start of the MZ header (minus the offset value)

Mustang Panda PlugX

CrimsonlAS

Figure 9: MZ Header Shell Code
(D92AT4EC57E53D449E0F0D4053F8ADBEE1BB6CA3
39284E1E0045D416FCD022A6)

Figure 10: MZ Header Shell Code
(891ecedc40a7bf31f414200c8c2c31192fd159¢1316012724f30
13bd0ab2a68e)

Shell code in the MZ header is not exclusive to Mustang Panda, as tools like Cobalt Strike make use of this; however this set of bytes (shown
in figures 9 and 10) we’ve only seen in files related to Mustang Panda over the past few months.

3 — Exported Loader function

CrimsonlAS

Mustang Panda PlugX
Exports
Name Address Ordinal
Loader 10001D40 1

“ DIEntryPoint 1001604B

Figure 11: DLL Exports
(D92A74EC57E53D449E0F0D4053F8ADB6E1BB6CA339284
E1E0045D416FCD022A6)

[main entry]

Exports
Name Address Ordinal
> dbkFCallWrapperAddr 0042662C 1

» _dbk_Ffcall wrapper 0040BB34 2

0041CBC4 3
00420558 [main entry]

Loader

DIIEntryPoint
Figure 12: DLL Exports
(891eced4c40a7bf31f414200c8c2¢31192fd159¢c1316012724130
13bd0ab2a68e)

4/8

https://app.threatconnect.com/auth/threat/threat.xhtml?threat=3385723985#/
https://www.virustotal.com/gui/search/content%253A%257B4d%25205a%2520e8%252000%252000%252000%252000%25205B%252052%252045%252055%25208B%2520EC%252081%2520C3%2520%253F%253F%2520%253F%253F%2520%253F%253F%2520%253F%253F%2520FF%2520D3%2520C9%2520C3%2520%257D%25400/files

Both samples also make use of a reflective loader technique which they export under the name Loader. Searching VTI for this exported
function leads to a fair number of results not tied to Mustang Panda samples; so the presence of this export is not unique enough.

Finally, we successfully launched CrimsonlAS by taking a Mustang Panda PlugX archive (complete with the DLL sideloading executable and
the sideloaded DLL) and swapping out the encrypted PlugX DLL with the encrypted CrimsonIAS DLL (T1574.002: Hijack Execution Flow: DLL
Side-Loading).

Grouping these characteristics together is the basis for the CrimsonlAS connection with Mustang Panda. The reasoning behind the low
confidence is the fact that the first two techniques should be trivial to implement/copy and that the third is not unique to Mustang Panda;
increasing the likelihood it could be a copycat, false flag, or inadvertent consistency. Additional information on organizations targeted, affected
regions, the complete payload, inbound communications, or any associated incidents would potentially help us reassess our confidence in
CrimsonlAS’ association to Mustang Panda.

Evolution

VirusTotal shows that the first sample was uploaded back in 2018.

Compile VT First DLL (
SHA256 Time Submission Name Exports F
3bc96b4cce0dd550eeb3a563f7ef203614e36fbbbf990726e1afd5d3dcec33e 1511835471 2018-05-29 DIlLdll 0x42662c: €
(2017-11-28 08:35:59 dbkFCallWrapperAddr
02:17:51) 1)
0x40bb34:

__dbk_fcall_wrapper
(2)

0x41d100:
ServiceMain (3)
0x41d224: CPIApplet

(4)

bde63cd5c3aefed249d2610ca2ee834bde0c0ec06193119363972e3761fb3c63 1527218355 2019-04-28 DIldil 0x42662c: €
(2018-05-25 07:50:41 dbkFCallWrapperAddr
03:19:15) ™)
0x40bb34:

__dbk_fcall_wrapper
(2)

0x41d108:
ServiceMain (3)
0x41d22c: CPIApplet
4)

194c0f6c5001b929080d700362e8d8e8009973c82d9409094af2a7ad33506228 1527218355 2018-12-11 DIlLdIl 0x42662c: 1
(2018-05-25 03:16:46 dbkFCallWrapperAddr
03:19:15) (1)
0x40bb34:

__dbk_fcall_wrapper
(2)

0x41d108:
ServiceMain (3)
0x41d22c: CPIApplet
“4)

5021a19f439d31946e61b7529f8e930ebc9829b1ab1f2274b281b23124113cb1 1527218355 2018-07-23 DIl.dIl 0x42662c: £
(2018-05-25 01:02:09 dbkFCallWrapperAddr
03:19:15) 1)
0x40bb34:

__dbk_fcall_wrapper
(2)

0x41d108:
ServiceMain (3)
0x41d22c: CPIApplet
4

306175ffc59091515a8a0b211c356843f09fch65395decd9fe72c9807¢17288a 1528707090 2019-05-16 DILdIl 0x42662c: 1
(2018-06-11 10:21:16 dbkFCallWrapperAddr
08:51:30))
0x40bb34:

__dbk_fcall_wrapper
(2)

0x41d108:
ServiceMain (3)
0x41d22c: CPIApplet
(4)

5/8

https://attack.mitre.org/techniques/T1574/002/

Compile VT First DLL (
SHA256 Time Submission Name Exports F
63e144fbe0377e0c365c126d2c03ee5da215db275c5376e78187f0611234c9b0 1531455240 2018-08-04 Dll.dll 0x42562c: 1
(2018-07-13 07:57:02 dbkFCallWrapperAddr
04:14:00) (1)
0x40bb34:
__dbk_fcall_wrapper
(2)
0x41cb80: CPIApplet
(3)
b19fea36cb7ea1cf1663d59b6dcf51a14e207918c228b8b76f9a79ff3a8de36¢ 1539848755 2019-03-30 DIl.dIl 0x42662c: €
(2018-10-18 13:00:05 dbkFCallWrapperAddr
07:45:55) (1)
0x40bb34:
__dbk_fcall_wrapper
(2)
0x41ccc8:
ServiceMain (3)
0x41cdec: CPIApplet
4
891ece4c40a7bf31f414200c8c2c¢31192fd159¢1316012724f3013bd0ab2a68e 1582792200 2020-08-09 DIl.dll 0x42662c: ¢
(2020-02-27 06:29:04 dbkFCallWrapperAddr
08:30:00) (1)

0x40bb34:
__dbk_fcall_wrapper
(2)

0x41cbc4: Loader (3)

The earliest compile time found suggests this backdoor has been around since at least 2017. The three samples with the compile time 2018-
05-25 03:19:15 are the same sample with just the listen on port number changed; probably after compilation.

Overall CrimsonlAS’s primary functionality remains consistent over the years. The primary difference lies in how the malicious code is
executed. The earlier samples relied on calling the exported function CPIApplet that would register and launch a Windows service that then

executes the backdoor functionality (T1569.002: System Services: Service Execution). The file

63e144fbe0377e0c365¢126d2c03ee5da215db275c5376e78187f0611234c9b0 is an exception as the exported function CPIApplet does not

create a service but it immediately starts up the backdoor.

Processes Services Network Disk

Loé\al... Remote address

PID Name Local address Rem... Prot.. State Owner
[#] 7.. swchostexe 0000 53] Tcp
(8] 7. svchostexa -

W) 7. svchost |Elrl'e'.l-'."mdc.\rs' SysWOWB6B4\svchost.exe -k netsvcs
(85912 svchos C:AWindows\SysWOW64\svchost.exe

[#51912 svchosi Host Process for Windows Services 10.0.18362.1
@) 4 System| Microsoft Corporation

. Service group name:

i 4 System netsvecs

5] 4 System|[Services:

] 4 System) las (Internet Authentication Service)

=7 Notes:

(#5] 4 System

— d Signer: Microsoft Windows Publisher

(8=l 4 System Console application: services.exe (624)

5] 4 System| Process is 32-bit (WOW64),

Figure 13: Service Running (SHA256: 5021a19f439d31946e61b7529f8e930ebc9829b1ab1f2274b281b23124113cb1)

6/8

https://attack.mitre.org/techniques/T1569/002/

alas_0: ; DATA XREF: CPlApplet+4Eto
CPlApplet+67to
text "UTF-16LE", ['Ias'|,0
dd 204B0h, OFFFFFFFFh, 2Ch

aSystemrootSyst: ; DATA XREF: CPlApplet+58to
text "UTF—lSLE",|'%SystemRoot%\SystemBZ\svchost.exe -k netsvcsﬂ,o
align 4
aInternetAuthen: ; DATA XREF: CPlApplet+5Dto
text "UTF-16LE", PInternet Authentication Service (IAS) servers'LU
aInternetAuthen_0: ; DATA XREF: CPlApplet+62to

text "UTF-16LE", [Internet Authentication Service'|,0
Figure 14: Strings in the Binary (SHA256: 5021a19f439d31946e61b7529f8e930ebc9829b1ab1f2274b281b23124113cb1)

The latest sample moved away from this technique and it now makes use of a reflective loader technique that is seen across different malware
families. This change along with the prepended XOR key and the shellcode provide hints to who might be behind this backdoor.

Conclusion

ThreatConnect believes that Mustang Panda will continue to be active and adapt their toolset as needed to meet their objectives against
largely near-abroad targets. The backdoor, CrimsonlAS, passively awaits commands, implying that the actor has some means of
proxying/accessing the target’s network or, more likely, that the machine targeted is exposed to the public Internet. We encourage entities who
think they might have been targeted by Mustang Panda to check for the presence of programs listening for external inbound connections and
inspect further if something is found. Verify carefully as the presence of programs listening for inbound connections does not necessarily mean
that the machine is compromised.

Naming Convention Note

We generally abstain from adding a new name for malware and threats where other industry reporting has already done so. Two exceptions
where we may use our own naming convention:

* When we are unsure whether our findings are consistent with activity sets other organizations have described and named. In this case,
we will attempt to describe the overlap and differences between those previously named sets and the activity we're describing.
* When we are describing a previously unnamed malware or threat.

The latter is the case here. Our naming convention is intended to help describe the assessed origin of the threat or malware, along with
another identifier that is specific to the entity. In this case, we are using Crimson to refer to the malware’s assessed Chinese origin, and /AS to
refer to the Internet Authentication Service (IAS) binary string previously described.

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can
block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to
accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to
opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are
not able to show or modify cookies from other domains. You can check these in your browser security settings.

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to
enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of
cookies may impact your experience on our websites and the services we are able to offer.

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect
personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and
appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:
Google Map Settings:

Google reCaptcha Settings:

7/8

Vimeo and Youtube video embeds:
CrimsonlAS: Listening for an 3v1l User
By ThreatConnect Research Team

ThreatConnect | Risk-Threat-Response

Cookie and Privacy Settings

How we use cookies

Essential Website Cookies

Other external services

8/8

