
1/11

What's Different About the TrickBoot Version?
securityintelligence.com/posts/trickbot-survival-instinct-trickboot-version/

Home / Data Protection
TrickBot’s Survival Instinct Prevails — What’s Different About the TrickBoot Version?

Data Protection January 26, 2021
By Nir Shwarts 9 min read

https://securityintelligence.com/posts/trickbot-survival-instinct-trickboot-version/
https://securityintelligence.com/
https://securityintelligence.com/category/topics/data-protection/
https://securityintelligence.com/category/topics/data-protection/
https://securityintelligence.com/author/nir-shwarts/

2/11

October 2020 saw the TrickBot Trojan, a prominent cybercrime gang’s tool of choice, suffer a
takedown attempt by security vendors and law enforcement. Unfortunately, the takedown
was not effective, and beyond coming back to life shortly after, TrickBot’s operators released
a new and more persistent version of the malware.

In this post, IBM Trusteer examines the new TrickBot version versus its precedent and looks
into the components its developers kept or modified.

TrickBot Returns

What can be said about the TrickBot banking malware and botnet that has not been covered
yet by the security community? After it emerged in 2016, built upon the ruins of the Dyre
Trojan, TrickBot’s developers have not laid down their cyber-arms. Looking back at the past
two years, not only has TrickBot continued to plague the online banking applications that
cater to businesses, it has also ventured into collaborations with other elite cybercrime
gangs. Additionally, it has worked with Ryuk and other ransomware on big game hunting
attacks, deployed cryptominers and was a concerning factor in election interference in 2020.

Like many other botnets, TrickBot has garnered a lot of attention from law enforcement and
suffered a takedown attempt in October 2020. Unfortunately, despite losing a large
proportion of its infrastructure, TrickBot not only re-emerged, but it also launched a new, and
more persistent version than ever, using a UEFI/BIOS bootkit to help it remain undetected on
infected devices. This bootkit was dubbed TrickBoot by those who first analyzed and
reported about it.

Our team at IBM Trusteer research examined what changed between the two most recent
versions of the TrickBot malware. Let’s take a closer look at some of the components that
keep TrickBot persistent and stealthy over time.

Compared Components

This comparison will look into a few major components from previous versions 1000512 and
1000513 versus the newer version 100003. Unusually, the version number jumped
backward.

Persistence mechanism
Injection technique
Bot configuration with a random twist
Mutex naming concept
Compromise check

Persistence Mechanism – Modified in New Version

https://www.zdnet.com/article/microsoft-says-it-took-down-94-of-trickbots-command-and-control-servers/
https://securityintelligence.com/news/trickbot-using-bazarbackdoor-to-gain-full-access-to-targeted-networks/
https://www.zdnet.com/article/trickbot-botnet-survives-takedown-attempt-but-microsoft-sets-new-legal-precedent/
https://eclypsium.com/2020/12/03/trickbot-now-offers-trickboot-persist-brick-profit/

3/11

Most malicious software developers implement some sort of persistence mechanism to
ensure the malware is not wiped from the device on reboot. TrickBot’s long-standing
persistence method uses a scheduled task that is set to run on set time lapses. This tactic
was modified in the newer version.

In the previous version, the scheduled task appeared under the name Clean Master.

Figure 1: TrickBot’s scheduled task created under the task directory

This task’s executable file’s path is directly in the ‘Programs’ menu:

Figure 2: Task’s executable location

The malware further copies itself into a new subdirectory as part of its stealth tactics, thereby
making Clean Master appear as yet another legitimate program and not suspicious at first
sight.

In the new version, although TrickBot maintained the persistence mechanism of using the
Windows Task Scheduler as the way to reload the malware, the task’s destination is now
changed to a batch file. This is a stealthier choice by TrickBot’s developers, helping the
malware evade scans by antivirus and security tools that typically look for malicious
executables in the autorun and task scheduler.

Figure 3: Autorun snippet of the new task

A quick look into the batch file location exposes TrickBot’s executable, named ‘newb’ in this
case.

4/11

Figure 4: TrickBot’s batch file along its executable

Further in the batch file, we also see an obfuscated script:

Figure 5: A part of TrickBot’s obfuscated batch file

De-obfuscating the script reveals its more obvious purpose as running the TrickBot
executable (newb.exe) from the following patch:

start C:\Users\[name here]\AppData\Roaming\Identities1793959193\newb.exe

Choice of Injection Mechanism – Retained

The injection of malicious code into legitimate Windows processes is one of the most
common tactics malware developers use. The code injection can take different forms, but a
highly popular way to implement code injection is process hollowing, in which legitimate
content is removed and replaced by the attacker’s code.

TrickBot uses process hollowing as its code injection tactic, and that has remained the same
in the previous and current versions of the malware. This method has a couple of
advantages:

Allows for the termination of the main suspicious process
Presents the malware’s operations as being performed by legitimate processes

Here’s what TrickBot’s process hollowing does:

1. Creates process wermgr.exe in suspend mode using CreateProcessInternalW. This
Windows process is inherently responsible for handling errors.

2. Allocates memory for its payload shellcode using NtAllocateVirtualMemory

https://securityintelligence.com/dridexs-cold-war-enter-atombombing/

5/11

3. Writes into memory using NtWriteVirtualMemory
4. Reads remote process’s Process Environment Block (PEB) using

NtQueryInformationProcess
5. Reads first module wermgr.exe’s address using the PEB structure
6. Goes to the 0xF0+0x28=0x118 offset in the wermgr.exe address to find its entry point:

Figure 6: Wermgr’s entry-point address

1. Writes a trampoline to the entry point 0x80F0 and the module’s base address to jump
to the shellcode using NtWriteVirtualMemory. A trampoline is a small piece of code
which is constructed on the fly on the stack when the address of a nested function is
taken.

2. Calls NtResumeThread to resume the thread.

Figure 7: Example of TrickBot’s trampoline

Bot Configuration Receives Randomization Twist

Bot configuration is the way the malware configures its own file on initial setup when a new
machine is infected or when it is updated on infected devices. The initial configuration
contains data such as encryption keys, IDs, credentials, URLs and communication patterns it
will use to send information to its botmaster.

Bot configurations are easy to modify and are changed by malware operators in their various
campaigns and attacks, offering agility and stealth.

TrickBot’s initial configuration elements are traditionally split between its embedded XML
‘mcconf’ configuration file and Base64 encrypted strings stored within the unpacked TrickBot
core. The ‘mcconf’ file contains a list of C2 server IP addresses, along with the TrickBot
version number, Bot ID and default modules. Remaining configuration elements such as
install directory and scheduled task name are stored as custom Base64 encoded strings.

TrickBot retained the same bot configuration scheme from its previous versions and
continued to use the same one in current versions, only this time, it added some
randomization to data inside the file to delay detection and analysis.

When we looked at the details, we saw that only task names have been modified, but all the
data and purposes remain the same. We will come back to task names later.

https://en.wikipedia.org/wiki/Trampoline_(computing)#:~:text=The%20trampoline%20is%20a%20small,variables%20of%20the%20enclosing%20function.

6/11

Figure 8: TrickBot configuration elements from decrypted base64 strings — excerpt
comparison from previous and current versions

TrickBot’s configuration is embedded within the unpacked TrickBot core binaries. The
extraction process takes place as follows:

1. Upon execution, TrickBot is unpacked. TrickBot makes use of a variety of different
packing techniques; in this case, the malware is stored as a resource of the parent
executable and decrypted using a modified implementation of the RC4 cipher with a
hardcoded key embedded within the file. This technique is also commonly used by
Emotet.

The only difference between the standard RC4 and this modified version is the change of the
standard RC4 constant value from 256 to 1147.

1. The resulting binary is the TrickBot Loader. This is a highly obfuscated binary that
decrypts its other functions and payloads as required using a XOR operation. This
loader is responsible for decrypting and loading the TrickBot core binaries. The loader
decrypts the appropriate 32/64 bit core binary using XOR and decompresses it using
an LZO algorithm.

2. Within the TrickBot core binary, the ‘mcconf’ configuration file is embedded and
encrypted using AES and XOR. The binary also contains a list of custom base64
encoded strings separated by the NULL byte ‘\x00’.

7/11

Figure 9: Part of the encoded TrickBot configuration, separated by NULL bytes

1. The last string is picked to become a custom Base64 encoding index.
2. When required, every string the malware calls is then pushed to a Base64 decoding

function that uses the custom index to decode the configuration. This way, the specific
configuration is in plaintext only when it’s used, which can make both dynamic and
static analysis by outsiders take longer.

The Base64 binary data encoding uses an index table of 64 characters, which typically
includes basic characters such as:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

With TrickBot’s configuration, the index table used in our sample was:

3GjYRHFAKkzMws2IuZpiJOqamWgSBh14nE0N8x9LbXQt5yUPvedVcl6ofTD/+rC7

A closer look revealed that TrickBot’s encryption methods are customized by its developers.
For example, Trickbot uses different implementation for the RC4 cipher and a modified
Base64 decoding algorithm, incorporating a custom table in order to make analysis more
difficult. These choices are likely there since most crypto detection scripts are not likely to
find such functions automatically.

Bot Configuration Changes

In the beginning of this section, we mentioned that only task names in the bot configuration
were modified. These names change frequently and, in the newer samples, task names are
appended a randomized 10-digit number that modifies the name each time. For example, for
the task name ‘identities’ we will now see a string like ‘Identities1793959193’. The developer
likely uses this random twist to eliminate the ability to search for constants with detection
tools.

The randomization itself is achieved by a couple of additional calculations and XOR
operations on two values that TrickBot fetches. In this case, it uses the result that is
produced at that moment from the computer’s processor’s read time-stamp counter
command (RDTSC) and the result from the Windows GetTickCount function.

Fully Randomized Mutex Naming – Retained

The mutex — the mutual exclusion object that synchronizes access to a resource — is very
commonly used by malware developers. As a result, mutexes are part of the indicators of
compromise to look for when trying to determine if a device has been infected by specific
malware. Searching for mutexes is also something malware does to ensure it does not re-
infect a device and cause instability, or to kill the processes of a rival malware.

[1] [2]

8/11

TrickBot uses a mutex naming algorithm to create random, unique mutexes across infected
devices that it manages to control. Since mutexes are a definitive indicator of compromise,
TrickBot’s developers were creative in creating the algorithm used here, staying away from
relying on system artifacts that can be more easily figured out.

In current versions, TrickBot’s mutexes are created as fully randomized 32-digits consisting
of a 16- byte globally unique identifier (GUID).

Figure 10: An example of a TrickBot mutex name

In the process of creating the mutex name, ‘get_random’, TrickBot splits it into two parts:

1. Random [8 Random bytes]
2. Related [8 Related bytes]

To randomize the strings, TrickBot uses the GetTickCount function and the RDTSC assembly
instruction.

Figure 11: TrickBot’s simple get_random function

The second part, or ‘related part’, is built upon the first. It’s a combination of some XORing
operations of the first, ‘random part’ with the computer’s volume C serial number. Finally, the
Windows StringFromCLSID function is used to give the mutex its GUID form.

What’s important in the mutex name here is not the value, but the correlation between its first
and second halves.

Previous Version Checks

Before the TrickBot malware infects a device, it runs a detection process to ensure that
device has not already been infected.

This detection takes us back to TrickBot’s mutex, which is what it looks for on the device.
Since mutex names are randomized, it cannot directly look for a name. Rather, it examines
the relation between the first half and the second half of the mutex, and then infers whether

[3]

9/11

the resulting GUID has or has not been generated in the past.

Let’s take a closer look at the mutex enumeration process that TrickBot performs:

1. It. begins by enumerating all system handles. In Windows-based devices, a handle is a
pointer to an object, such as a mutex, a file, etc. The malware does that by calling the
ZwQueryInformation Native API with SYSTEM_HANDLE_INFORMATION (0x10) as
the parameter.

2. Next, it uses the NtQueryObject function it queries for information about each object,
and in our case each handle, to search mutex names.

3. Then it uses the OpenProcess function to open the process the mutex handle belongs
to.

4. Lastly, it uses the DuplicateHandle function to duplicate the handle to that mutex so it
can access it.

Note that the first two functions are Windows Native APIs belonging to the NTDLL.dll library.
Usually, when calling a Windows API function from the KERNEL32.dll, it calls its Windows
Native API counterpart function in NTDLL.dll that address the Windows kernel.

At this point, if the device is deemed infected, TrickBot initiates an ExitProcess to abandon a
second installation of the malware.

TrickBot Lives On – A Reminder to Stay Vigilant

As we kick off 2021, the TrickBot Trojan and the cybercrime syndicate around it are in full
swing, operating on the bank fraud front as well as high-stakes ransomware attacks.

If your security team detects TrickBot on networked devices, those should become high
priority to clean or reimage as needed. This malware can be a foot in the door for a number
of attacks, the worst of which can be an all-out ransomware and extortion operation against
your organization.

IBM Trusteer fights threats like TrickBot and has been helping customers mitigate attacks
since 2006. Our fraud detection and advanced risk-based authentication help banks protect
consumers and businesses, and our research team is pivotal in detecting highly modular,
modern-day malware like TrickBot and its components.

To learn more about IBM Trusteer, visit www.ibm.com/security/fraud-protection/trusteer.

[1] RDTSC loads the current value of the processor’s time-stamp counter into the EDX:EAX
registers.

[2] Retrieves the number of milliseconds that have elapsed since the system was started, up
to 49.7 days.

[4]

https://www.ibm.com/security/fraud-protection/trusteer

10/11

[3] The StringFromCLSID function converts a CLSID into a string of printable characters.
Different CLSIDs will convert to different strings.

[4] The Native API is a lightweight application programming interface (API) used by Windows
NT and user mode applications.

Malware | TrickBot | Trojan
Nir Shwarts
Malware Research-Reverse Engineering, IBM Security

Nir Shwarts is a contributor for SecurityIntelligence.

https://securityintelligence.com/tag/malware/
https://securityintelligence.com/tag/trickbot/
https://securityintelligence.com/tag/trojan/
https://securityintelligence.com/author/nir-shwarts/
https://www.ibm.com/events/think%20

11/11

https://www.ibm.com/events/think%20

