
1/40

A detailed analysis of ELMER Backdoor used by APT16
cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/

Summary

In this blog post, we’re presenting a detailed analysis of a backdoor known as ELMER that
was used by the Chinese actor identified as APT16. This group targeted Japanese and
Taiwanese organizations in industries such as high-tech, government services, media and
financial services.

The malware is encrypted with a custom algorithm and it’s written in Delphi. This sample is
capable of detecting proxy settings on the local machine and exfiltrating information such as
the hostname and IP address of the machine to the Command and Control server. The
process uses a custom decryption algorithm that consists of AND, XOR, and ADD operations
in order to decrypt relevant strings during runtime. It implements 8 different commands
depending on the response from the C2 server, including: file uploads and downloads,
process execution, exfiltration of file names/sizes and directory names, exfiltration of
processes/process IDs. Data exfiltration is performed using an HTML document that contains
the information encoded using the NOT operator.

This sample is using a custom encryption algorithm, that we will describe below. For this
analysis, we have also created a python script that can be used to facilitate the decryption
process, which can be found at
https://github.com/Rackedydig/string_decode_algorithm_apt16.

Technical analysis

SHA256:
BED00A7B59EF2BD703098DA6D523A498C8FDA05DCE931F028E8F16FF434DC89E

It’s important to mention that a part of the malicious code is encrypted, and we’ll explain
using a step-by-step approach how to decrypt it. The process is scanning the memory in
order to find the magic number “MZ” which corresponds to EXEs (DLLs), and then it’s
extracting the first word of the PE header and compares it with “PE” as follows:

https://cybergeeks.tech/a-detailed-analysis-of-elmer-backdoor-used-by-apt16/
https://github.com/Rackedydig/string_decode_algorithm_apt16

2/40

Figure 1
The following picture contains a part of the bytes that will be transformed as we’ll see in the
next paragraphs:

Figure

2

3/40

The first 16 bytes are reordered as follows: [byte1, byte5, byte9, byte13], [byte2, byte6,
byte10, byte14], [byte3, byte7, byte11, byte15], [byte4, byte8, byte12, byte16]:

Figure 3

Now there is a buffer of 16 bytes, which represents a “key” in the upcoming operations:

Figure 4

An XOR operation is performed between the corresponding positions of the 2 buffers
mentioned above:

Figure 5

The first 4 bytes of the buffer remain in their current positions, however, the last 12 bytes are
reordered, as shown in figure 6:

Figure 6

Each byte is replaced by a byte that can be found at the position 0x671911EC+current_byte,
as explained in the next figure:

4/40

Figure 7
After this transformation, the buffer becomes the following one:

Figure 8

There is a second XOR decryption step, but this time the key is changing:

Figure 9

After the XOR operation is complete, the current buffer has been changed, as shown below:

Figure 10

5/40

A few more operations will be performed, including shl cl, 1 (shift left by 1) and xor cl, 1B (xor
with 0x1B). Let’s take, for example, byte 0x90 from the buffer which is left shifted by 1 (0x20)
and then XORed with 0x1B -> 0x3B. Byte 0x3B is left shifted by 1 and becomes 0x76 (no
XOR is performed) and one more time, 0x76 is left shifted by 1 and becomes 0xEC. The
confirmation that all of these operations are accurate:

Figure 11

Now the values from this buffer are XORed together (0x90 XOR 0x76) XOR 0xEC and then
the result (0xa) is XORed with other results from similar operations. After all operations are
done, the buffer will be the following:

Figure 12

The sample performs the steps presented above 10 times, and the buffer looks like in the
next figure:

Figure 13

The buffer is reordered and copied in the location displayed in figure 2, as follows:

Figure 14

The algorithm applied for the first 16 bytes is repeated 2078 times. The new buffer is the
decrypted version of the first one:

6/40

Figure 15

The malicious process loads multiple DLLs and retrieves the address of export functions
using LoadLibraryA and GetProcAddress APIs:

7/40

Figure 16
The list of DLLs to be loaded + the export functions:

kernel32.dll

DeleteCriticalSection, LeaveCriticalSection, EnterCriticalSection, InitializeCriticalSection,
VirtualFree, VirtualAlloc, LocalFree, LocalAlloc, GetTickCount, QueryPerformanceCounter,
GetVersion, , GetCurrentThreadId, GetThreadLocale, GetStartupInfoA, GetLocaleInfoA,
GetLastError, GetCommandLineA, FreeLibrary, ExitProcess, WriteFile,
UnhandledExceptionFilter, SetEndOfFile, RtlUnwind, RaiseException, GetStdHandle,
GetFileSize, GetFileType, CreateFileA, CloseHandle, TlsSetValue, TlsGetValue,
GetModuleHandleA, lstrcmpiA, WaitForSingleObject, Sleep, SetFilePointer, ReadFile,

8/40

GetProcAddress, GetModuleFileNameA, GetFileAttributesA, GetCurrentDirectoryA,
FindNextFileA, FindFirstFileA, FindClose, FileTimeToLocalFileTime, CreateThread,
CreateProcessA

user32.dll

GetKeyboardType, MessageBoxA

advapi32.dll

RegQueryValueExA, RegOpenKeyExA, RegCloseKey

oleaut32.dll

SysFreeString, SysReAllocStringLen

ws2_32.dll

WSAGetLastError, gethostname, gethostbyname, socket, setsockopt, send, recv, inet_ntoa,
inet_addr, htons, connect, closesocket, WSACleanup, WSAStartup

dnsapi.dll

DnsRecordListFree, DnsQuery_A

The process passes the execution flow to the unencrypted code as illustrated in the next
figure:

Figure 17

In order to also perform static analysis on the binary, we have to dump the memory of this
process using OllyDumpEx plugin of x32dbg debugger:

9/40

Figure 18
The problem is that the IAT (Import address table) hasn’t been populated as expected and
contains only 2 functions that were also present in the original binary:

Figure 19
We have to use another plugin of x32dbg called Scylla. This plugin is used to find the IAT
entries in the process memory, and then it can fix our dropped binary:

10/40

Figure 20

We’ve successfully fixed the IAT in our dropped binary, and this operation is useful because
it reveals different API calls which have to be analyzed:

11/40

Figure 21
Now we will analyze the decrypted binary. It initiates the use of Winsock DLL by calling the
WSAStartup function:

Figure 22
During the entire execution, the process decrypts relevant strings by using a custom
algorithm that can be described shortly: If m is the encrypted buffer and key is the decryption
key, the result of the algorithm is (m[i] AND 0xF) XOR (key[i] AND 0xF) + (m[i] AND 0xF0),
as presented below:

12/40

Figure 23
After these operations are finished, the result represents the C2 server and the
corresponding port number:

Figure 24
The malware opens the “Software\Microsoft\Windows\CurrentVersion\Internet Settings”
registry key by calling the RegOpenKeyExA API:

Figure 25

13/40

The “ProxyEnable” value is extracted using the RegQueryValueExA function, and it’s
compared with 1. This action has the purpose of verifying if the current machine is using a
proxy for network communications:

Figure 26
If “ProxyEnable” is equal to 1, the malware proceeds and extracts the value of “ProxyServer”
(hostnames/IPs of the proxy server on the network), as displayed in the next figure:

Figure 27
The gethostname function is used to retrieve the host name for the local machine:

Figure 28
The function result from above is used as a parameter for the gethostbyname function, which
can be used to retrieve host information corresponding to the local machine, as shown in
figure 29:

14/40

Figure 29
The inet_ntoa function is utilized to convert the IP address of the host into an ASCII string
(dotted-decimal format):

Figure 30
There is some sort of reverse operation done by the malware because it’s using the
inet_addr function to convert the string representation of the IP address into a proper
address for the IN_ADDR structure:

Figure 31
The hostname and the IP address of the machine represented as a decimal number are
combined into a string that will be used in the upcoming network communications with the C2
server:

Figure 32

The malicious process uses the same decryption algorithm described before in order to
decrypt important strings. The function is highlighted in the next picture:

15/40

Figure 33

An example of how the algorithm performs is displayed below, where EAX represents the
encrypted string and the key is moved into the EDX register:

16/40

Figure 34
By placing a breakpoint after the operation is supposed to end, we can observe that the
string was successfully decrypted:

Figure 35

After a few more operations are performed, we can distinguish other interesting strings, like
the User Agent that will be used in the communications with the Command and Control
server:

17/40

Figure 36

The sample builds an HTML document that contains the infected hostname and the IP
address corresponding to the local machine. This form will be used in a POST request as
we’ll see later on:

Figure 37

The socket function is used to create a socket, and the following parameters are passed to
the function call: 0x2 (AF_INET – IPv4 address family), 0x1 (SOCK_STREAM – provides
sequenced, reliable, two-way streams with an OOB data transmission mechanism) and 0
(the protocol is not specified). The function call is shown below:

Figure 38
The setsockopt API is used to set a socket option. The following parameters can be
highlighted – 0xFFFF (SOL_SOCKET – socket layer), 0x8 (SO_KEEPALIVE – enable keep-
alive packets for a socket connection):

18/40

Figure 39
The second setsockopt call has different parameters – 0xFFFF (SOL_SOCKET – socket
layer), 0x1006 (SO_RCVTIMEO – receive timeout), 0x15f90 = 90000ms = 90s (optval
parameter):

Figure 40
The third setsockopt call is different than the second one because it sets the send timeout to
90 seconds:

Figure 41
The port number 0x1BB is converted from TCP/IP network byte order to host byte order
(little-endian on Intel processors) by using a ntohs function call:

19/40

Figure 42
The malware is using the inet_addr function to transform the C2 IP address into a proper
address for the IN_ADDR structure:

Figure 43
There is a network connection established to the C2 server using the connect function. The
following elements can be highlighted in the sockaddr structure: 0x2 (AF_INET – IPv4
address family), 0x1BB = 443 (port number), 0x797FF94A (the C2 server represented as a
hex value). The function call is represented in the next figure:

Figure 44
The sample performs a GET request to the C2 server with the user agent that was decrypted
earlier: “User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1)”. The data is
sent using the send function:

20/40

Figure 45
The malware reads the response from the server using the recv function, byte-by-byte (the
length parameter is 1). It stops when the result contains “\x0d\x0a\x0d\x0a” (2 new lines
characters in Windows) and it checks to see if the response contains “200 OK”, which means
that the connection was successfully established:

Figure 46
There is also a second comparison between the response and the “!!” string (if the result
doesn’t contain “!!”, then the process performs a closesocket API call):

21/40

Figure 47
The hostname and the IP address of the local machine are exfiltrated to the C2 server using
a POST request. The SessionID parameter is randomly generated:

Figure 48
As before, there are multiple recv function calls following the POST request, and the process
expects the response to contain “200 OK” and “Success”. If it doesn’t, then there is a Sleep
call for 90 seconds and it tries again. A new thread is created using the CreateThread

22/40

function:

Figure 49
Thread activity

Some parameters used in the network communications like “id” and “SessionID” are
generated by a function called “Randomize”:

Figure 50
It’s important to mention that some HTTP headers are just decrypted before the network
communication is performed using the algorithm described in the first paragraphs. The
sample performs another GET request using the send function:

23/40

Figure 51
The file reads the response from the server using the recv function, byte-by-byte. It expects
again a “200 OK” string and as opposed to before, it expects the response not to contain “!!”
(if it does, the malware exits):

Figure 52
The process parses the response from the C2 server for an integer corresponding to a
command that has to be executed. It implements 8 different commands, as shown in figure
53:

24/40

Figure 53
Case 1 – EAX = 0

The process sends a POST request to the server that contains a similar HTML document,
however the exfiltrated information is different. The following bytes can be highlighted: CF 83
CD 83 CF 83, on which we can apply a NOT operation and obtain 30 7C 32 7C 30 7C
(0|2|0|):

25/40

Figure 54
The reponse from the server is received using the recv function. If the connection was
successful, the process expects a “200 OK” string and also “Success”, as shown below:

Figure 55
There is another GET request to the CnC server performed by the malicious process:

26/40

Figure 56
The response from the server is expected to be larger this time (0x1000 = 4096 bytes):

Figure 57
The response from the server is written to a file specified by a handle transmitted by the C2
server (in our case, this was 0 because we’re trying to emulate the C2 server
communications). The WriteFile API call is presented below:

27/40

Figure 58
The process announces the C2 server that the write operation was successful by issuing a
POST request (NOT (CF 83 CE 83 CF 83) = 30 7C 31 7C 30 7C = “0|1|0|”):

Figure 59

28/40

If the write operation failed, the request is changing (NOT (CF 83 CF 83 CF 83) = 30 7C 30
7C 30 7C = “0|0|0|”):

Figure 60
An identical GET request, as presented before, is sent to the server and the malware jumps
back to the switch statement (this applies to each case).

Case 2 – EAX = 1

In this case, we have 2 subcases depending on the response from the server. In the first
one, the only thing that is exfiltrated to the CnC server is the current directory, which can be
obtained by applying a NOT operation:

29/40

Figure 61
In the second subcase, the malware scans the current directory using the FindFirstFileA and
FindNextFileA functions:

Figure 62
Each file time is extracted and converted to a local file time by using the
FileTimeToLocalFileTime API:

30/40

Figure 63
The process constructs the next buffer for every file: 1|File name|dwHighDateTime (high-
order 32 bits of the file time) in decimal|File size in decimal|. An example of such buffer is
presented in the next picture:

Figure 64
After the process succeeds in applying the algorithm for every file in the current directory, the
final buffer looks like the following:

Figure 65

The buffer is encoded using the NOT operator and is exfiltrated to the C2 server via a POST
request:

31/40

Figure 66
Case 3 – EAX = 2

By parsing the response from the server to obtain the command line to be executed, there is
a new process created using the CreateProcessA function:

32/40

Figure 67
If the new process was successfully created, the following request is made to the CnC server
(NOT (CD 83 CE 83 CF 83) = 32 7C 31 7C 30 7C = “2|1|0|”):

Figure 68

33/40

Whether any error occurred during the process creation, the POST request is different (NOT
(CD 83 CF 83 CF 83) = 32 7C 30 7C 30 7C = “2|0|0|”):

Figure 69
Case 4 – EAX = 3

We have only observed a POST request performed by the malware (NOT (CC 83 CE 83 CF
83) = 33 7C 31 7C 30 7C = “3|1|0|”):

34/40

Figure 70
Case 5 – EAX = 4

The server provides a file name to be opened by the malicious process. This action might
indicate that the attacker tries to exfiltrate the content of targeted files:

Figure 71
A POST request is performed by the file, the user agent is the same as in every network
communication:

35/40

Figure 72
The process reads the content of the specified file by using a ReadFile function call:

Figure 73
The content of the targeted file is exfiltrated to the CnC server using the send function:

Figure 74
Case 6 – EAX = 5

36/40

We believe that this command is responsible for downloading other malware payloads.
There is only a GET request to the same C2 server:

Figure 75
Case 7 – EAX = 6

The CreateToolhelp32Snapshot API is utilized to take a snapshot of the processes, the first
parameter being 0x2 (TH32CS_SNAPPROCESS – all processes in the system):

Figure 76
All running processes on the system are retrieved by using the Process32First and
Process32Next functions:

37/40

Figure 77
The list of processes is exfiltrated to the CnC server. By decoding the encoded information,
we can observe the following string in the beginning “6|1|System Idle
Process|0|System|4|smss.exe|500|csrss.exe|604|” (note the process name and the process
ID in the buffer):

38/40

Figure 78
Case 8 – EAX = 7

The GetFileAttributesA API is used to retrieve file system attributes for the current directory,
as shown in figure 79:

Figure 79
The current directory name is sent to the CnC server in the following form “7|1|Directory
name|”:

39/40

Figure 80
If EAX > 7, the process performs a few recv function calls and jumps back to the switch
instruction.

References

Decryption algorithm: https://github.com/Rackedydig/string_decode_algorithm_apt16

FireEye APT groups: https://www.fireeye.com/current-threats/apt-groups.html

FireEye report: https://www.fireeye.com/blog/threat-research/2015/12/the-eps-awakens-part-
two.html

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

Fakenet: https://github.com/fireeye/flare-fakenet-ng

VirusTotal:
https://www.virustotal.com/gui/file/bed00a7b59ef2bd703098da6d523a498c8fda05dce931f02
8e8f16ff434dc89e/detection

INDICATORS OF COMPROMISE

C2 IP address: 121.127.249.74

https://github.com/Rackedydig/string_decode_algorithm_apt16
https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/blog/threat-research/2015/12/the-eps-awakens-part-two.html
https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/fireeye/flare-fakenet-ng
https://www.virustotal.com/gui/file/bed00a7b59ef2bd703098da6d523a498c8fda05dce931f028e8f16ff434dc89e/detection

40/40

SHA256:
BED00A7B59EF2BD703098DA6D523A498C8FDA05DCE931F028E8F16FF434DC89E

SHA256:
44DD6A777F50E22EC295FEAE2DDEFFFF1849F8307F50DA4435584200A2BA6AF0

URLs: https[:]//121.127.249.74/cxpid/submit.php?SessionID=<decimal number>

https[:]//121.127.249.74/send.php?id=<decimal number>

https[:]//121.127.249.74/query.php?id=<decimal number>

https[:]//121.127.249.74/cxgid/<Hostname>/<IP address in decimal>/<IP address in
decimal>0/index.php

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

