Catching Debuggers with Section Hashing

malwareandstuff.com/catching-debuggers-with-section-hashing/

January 24, 2021

Seqme vissions: Read/Execute
_text segment para public 'CODE’' used2
assume c8: text
yorg BO4BOBOR
assume es:nothing, ss:mothing, ds: data, fs:nothing, gs:nothing

§ Attributes: noreturn

public start

start proc near

mov eax, 4

mov ebx, 1 ; fd

mov ecx;, offset awelcomeToRootM ; “Welcome te Root-Me Challenges\r\nPass: ~
mov adx, 26h

int B0h } LINUX = sys_write

mov eax, 3

mov ecx: :?:su unkjﬂ::ll! ; addr Set eax = Start Of -text
mov edx, 33h

int  mon ; LINUX - sys _read set ebx = end of .text
section_hash generates hash of
section, result is in edx

v S affems unk-soisies loop uses .text hash to influence flag
edx, 1 .
mov al, [eax+ecx-1) generatlon

if a software breakpoint was set, this
will not generate the valid password
=]

bl ; ta -

ecx, offset gSuccessMessage ; addr mov eax, 4

edx, 26h mow ebx, 1 j fd

80h j LINUX - sys_write| (mov ecx, offset gFailMessage ; addr

short lec_804810C mov edx, 0Bh

int #0h 3 LINUX - sys_write

| - ]

Published by hackingump on January 24, 2021

As a Reverse Engineer, you will always have to deal with various anti analysis measures.
The amount of possibilities to hamper our work is endless. Not only you will have to deal with
code obfuscation to hinder your static analysis, but also tricks to prevent you from debugging
the software you want to dig deeper into. | want to present you Section Hashing today.

| will begin by explaining how software breakpoints work internally and then give you an
example of a Section Hashing implementation.

Debuggers — How software breakpoints work

When you set a breakpoint in your favourite debugger at a specific instruction, the debugger
software will replace it temporarily with another instruction, which causes a fault or an
interrupt. On x86, this is very often the INT 3 instruction, which is the opcode oxcc . We
can examine how this looks like in RAM.

1/5


https://malwareandstuff.com/catching-debuggers-with-section-hashing/
https://malwareandstuff.com/author/klopsch/

We open x32dbg.exe and debug a 32 bit PE and set a breakpoint near the entry point.

55 PUSH EEP
8BEC MOV EBP, ESP
83EC10  SUBESPR 10
33 C0 XOR EAX, EAX

.
Encryfoint
3130 |
e 7¢ axio. 4619311
1300 NOF 8%, B4R
09 BF000000 Imp aio. 401994
339 NOF &L, BCK
T4 D4 Je axip. 400919
130 NOF £8%; EAK
= IR TH inp axio. 401¥04
ES15 BOIZ4000 mov edx,dword ptr ds: [<bloadCursords] |edwiEntryFoint
| g;;r;ja@w '-}vhﬁju}(ﬂ PEF Os: [400 1, e ad EnTryPoint D bl
a0 T pus| 0aC

00 sh Isassembply
FF15 BC334000 E&ll dword ptr -C!.:[-IDG-!I]
B5C0 TEST #ax, sax

| Td o Je axio. 401934
X HOF E#ax, 2

|I - EB S& Imp axio. 401554

€745 FC FC304000
CT4E FO 04000000

LA R B R B L AL LR L LN R REEREELRLELLELLLEN..

BREAKPOINT ON Ox401906

view of debugged program

When setting a breakpoint, you will see the original instruction instead of the patched one in

myy dword pEr Ss:febp-4], axia. $030FC 4030FCILTCEN TP C T PCL T
mov dword ptr ss:febp-10§,1

myy #ax,dword pre ds:[ FENTer] Tews]

mov dword ptr ssrffebp-C],eax

push

push B0

push 3

push

push 3

mov ecx,dword ptr ss:|[ebp-10]

push ecx

mov edx, dword ptr ss: |[ebp-4) et EntryPoint

the debugger. However, we can examine the same memory page in RAM with

ProcessHacker.

2/5



Gerarsl | Sossancs | Pertewarce | Thissds | Token | Hodues Moy | Evarpnment | imnckes | Commant |

) e Haie e ey

o del 30 40 0D &% Od 04 30 40 30 ba 31 30 24 &
PI00ET0 Og L IL L
Ll 1]

3 a% Td 0 33 o0 &b Th db 1F kO
0 33 40 00 #8 1o 10 30 30 & 90

T 4B £0 01 00 90 90 wl a0 32 40
0 &8 A0 00 00 90 €a 33 da 90 da
b 55 fo &I £ 55 £4 29 45 W 23
% of &b 1F 33 20 &b 4¢ 35 G4 &9 &

S 24 14 30 40 00 &b 30 €8 42 fe
I 40 00 &3 B &8 B4 23 S8 &6 &8 &2 &2 &

00a20 55 JE 81 ma ac £3 04 00 29 55 fH al I8

A0 BB ab T 04 33 20 &b S 27 45 Mo fo M 49 B
fa B9 45 04

00a30 Eb 40 3c ad ol 33 40 30 7 43 «f 3c o1 &0 0 7 .
COnDa4l 42 fc 01 OO0 OO 00U =l ac 33 40 00 29 43 &0 A L E.
DO00aSD OO0 40 OD 85 i 74 dw 7 35 od 13 40 20 04 40 43 ..

DI0DakD fo J6 04 4B

Reread | | W

DI00aED OO0 ob 03 wb el c7 23 b4 fo £7 £ 00 40 00 00
LI00aTD 55 JE &b 42 50 &0 43 fc &b Od 3® 30 40 00 03 4d D.
30 40 00 b 42 £7 da B9 S b fe £F @

I o B Il:ibﬂupnrln- -

Bune sk I ypm | o | Protect... | e |
B Qw100 Magpeed LR Feap {0 3 L L]
H a2 Pl 44 AN Ak Ll
H g0 Frivaris 44 AW L Ll
H G Irege AR WO o oy S I e o L -] EL -}
FH s Froatn F=o T Sumck (Hwesd 17000 1568 1568
H awx) el L LEzAEE A Sk 2481 (e 3000 [FL ] (-1 -]
L ERL ] Mg W R (L] (L -
2L ER T PO e kL kL
LR ] PO HIFL L e {0 1 E-L F-L -}
H T PR LEZveE A Fear 12400 1) mEp Ll
FH e N apred e R kgt s o e ik L& Lamia
[SLER L] by T WO e i b e o e b ey L] L} ol
L ] Vet | et A8 B b bt e F Do b s £ AR RL:]
Y I ] G- - s s ke o h el 4 Al
ot 30 (e ] 48 R R Al e T M s £t ARl A
L b Pyt | et Al R e e e T D g £e Al Ll
000 Vst et e R e e F Db s £ (+L ] (5L
[UETES ~o ] LA R sl 4
LTS e i R Faag 134k (D 3 1358 =1 ]
i 734
. 2 FRl )
preey (=1 | il
(w1 | 10 1

b @ 51 &8 3T 00 00 30 a3 30 30 40 @40 &l ¥ 0.
O 00 @b 48 L& @3 44 £¢ &5 35 Ee &9 13 00 30
U al OO 30 40 90 ad a4 37 40 20 2 X< 11 00 .
{» B ba fB fF IF 23 o4 34 2B 4% Ffc 2B &9 34 a
OD0SeD 55 §b ec 81 ec 50 01 00 30 4l ad 32 40 00 B9 48 Do P20
DODDEED £4 fa OD £F 55 £4 al 28 30 40 00 26 Od 48 M) 40 .5..T =l
dQ00aDD OO0 §3 a® 01 25 O0d 48 30 40 30 26 13 <0 33 40 OO .....

f00al0 &l JE 30 &0 OO0 &4 8c 10 ac £3 34 00 29 44 £ Bb . OB

M 43 03 D.

e ..

- S
| =

| T e twel g

Examining executable
executable memoaory

section in RAM during debug session
In volatile memory, the byte 33 changed to ccC , which will cause the program to halt when
reached. This software interrupt will then be handled by the debugger and the code will be

replaced again.

55

88 EC
B3 EC10
cc

PUSH EBP
MOV EBP, ESP
SUE ESP, 10
INT 3

Catching Breakpoints with Section Hashing

Code

After explaining how software breakpoints work, I'll get to the real topic of this article now. We
will move to the Linux world now for this example.

A software breakpoint is actually nothing else than a code modification of the executable
memory section in RAM. Once a breakpoint is set, the .text section will be modified. A
very known technique to catch such breakpoints in RAM is called Section Hashing .

3/5



Authors can embed the hash of the .text section in the binary. Upon execution, they use the
same algorithm to generate a new hash from the .text section. If a software breakpoint is set,
the hash will differ from the embedded hash. An example implementation can look like this:

s 5

taxt segmant pars public ‘CODE  usedd
mai

assume cE: i

aasuss sscnothing, ss:sothing, de: dats, fa:inothing, gecaothing

1 p fd

?:Elﬂ: wiis | comaTokootM

Mh o 7 LINUE - mym write
wax, 3

= Setast m_beiginn § maar set eax = start of .text
o ) LINE - uyn_read set ebx = end of .text
section_hash generates hash of

section, result is in edx

mov
oy
o
o
ist
=
b ks
=
mew
int T
b N, SCK
FIT, TTTEE

e  ntim ekt 18 loop uses .text hash to influence flag
i, 1 .

v sl [sasveene1] generation

=S e

;'n: al, d1 <——
- if a software breakpoint was set, this

will not generate the valid password

4

1 §

Offest GEOITSABNEELIGE | BSIT
T

e

ik P B - mys_writs
short loc B0AN1DC

l
Example implementation of Section Hashing
In this case, a hash of the .text section is generated. Afterwards it is used to influence the
generation of the flag. If a software breakpoint is set during execution, a wrong hash will be
generated.

This is a simple example of Section Hashing . In combination with code obfuscation and
other anti analysis measurements, it can be very hard to spot this technique. It is also
occasionally used by commercial packers.

Defeating Section Hashing

There are multiple ways to defeat this technique, some of them could be:

e Patching instructions
¢ Using hardware breakpoints

Instead of modifying the code in Random Access Memory, in x86 hardware breakpoints use
dedicated registers to halt the execution. Hardware Breakpoints are still detectable.

4/5



In Windows, the program can fetch the CONTEXT via GetThreadContext to see if the
debugging registers are used. A great example on how this is implemented can be found
here[1]. If you are interested in trying to defeat it by yourself, you can try to beat the
Section Hashing technique by yourself at root-me.org[2].

5/5


https://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide
https://www.root-me.org/

