
1/6

SolarWinds: How Sunburst Sends Data Back to the
Attackers

symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-sunburst-sending-data

Threat Hunter TeamSymantec

In the fourth of a series of follow-up analysis on the SolarWinds
attacks, we detail how data is sent to the attackers.

In our previous blog we described how the attackers controlled the Sunburst malware, and
detailed a variety of commands that will result in data being sent to the threat actors. The
next technique to discuss is how Sunburst sends this data to the attackers.

If data is being sent to the attacker as a result of a command, instead of performing a
HTTP(S) GET request, something we described in our last blog, Sunburst initiates a
HTTP(S) POST request.

Sunburst uses randomly generated URL paths for HTTP(S) POST requests that are different
from HTTP(S) GET requests.

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-sunburst-sending-data
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-sunburst-command-control


2/6

If the data to send is greater than 10,000 bytes, the URL path will be as follows:

/pki/crl/{0}{1}-{2}.crl
element 0 is a number between 100 and 10,000
element 1 is optionally one of the following:

-root
-cert
-universal_ca
-ca
-primary_ca
-timestamp
-global
-secureca

element 2 is the last error code

A Content-Type header is set to application/octet-stream and the POST data follows. The
POST data consists of the data to send UTF8 encoded, concatenated with the last error
code, concatenated with the userid, and subsequently compressed. Every byte of the
compressed blob is then summed and the lowest byte of the sum value is used as a key. The
compressed blob is XOR’d by the key byte and the key byte is prepended to the encrypted
data.

Figure 1. Structure of Sunburst POST data
If the data to send is less than, or equal to, 10,000 bytes, the URL path will take one of two
forms as follows:



3/6

/fonts/woff/{0}-{1}-{2}-webfont{3}.woff2
element 0 is a random number between 100 and 10,000
element 1 is "opensans" or “noto”
element 2 is one of the following:

bold
bolditalic
extrabold
extrabolditalic
italic
light
lightitalic
regular
semibold
semibolditalic

element 3 is the last error code
or /fonts/woff/{0}-{1}-{2}{3}.woff2

element 0 is a random number between 100 and 10,000
element 1 is one of the following:

freefont
SourceCodePro
SourceSerifPro
SourceHanSans
SourceHanSerif

element 2 is one of the following:
Bold
BoldItalic
ExtraBold
ExtraBoldItalic
Italic
Light
LightItalic
Regular
SemiBold
SemiBoldItalic

element 3 is the last error code

Further, instead of sending the encrypted data directly, as when the data is greater than
10,000 bytes, the data is steganographically sent in a faux JSON blob. 

The JSON blob contains the following fields:

userId - contains the userid obfuscated into a GUID
sessionId - a randomly generated GUID per HTTP session



4/6

Timestamp - milliseconds since 1970/1/1 minus five minutes plus a random value
between 0-512 with the second bit normally set to 1
Index - an incrementing value
EventType - set to Orion
EventName - set to EventManager
DurationMs - the same random value between 0-512 used in the Timestamp
Succeeded - set to true
Message - a chunk of Base64 encoded data

The encrypted data to send is broken into multiple variable sized chunks. The size of each
chunk is randomly determined, but generally will go from smaller to larger. If the randomly
chosen size is 0, a random chunk between 16 and 28 bytes is generated instead and the
Timestamp value is AND’d with the value 18446744073709551613, which more importantly
sets the second bit to 0. Each chunk is then encoded and added to the JSON blob and sent
as the HTTP(S) POST data with a Content-Type header set to application/json.

Figure 2. A contrived example of a JSON file that would be sent by Sunburst
On receipt, the attacker will need to decode and concatenate all the Message chunks,
skipping junk chunks where the Timestamp second bit is not set.



5/6

This blog is the final installment of our analysis series concerning the command and control
(C&C) process used by the actors behind the SolarWinds attacks. Previous entries have
covered how the attackers used Sunburst to disable security software and avoid detection,
the malware's use of a rare domain generation algorithm (DGA) to generate domain names
to contact for C&C purposes, and Sunburst's control flow and use of IP address values as
commands. This final blog, detailing how the malware sends data back to the attackers,
rounds out a comprehensive overview of Sunburst’s C&C processes.

Protection/Mitigation

Tools associated with these attacks will be detected and blocked on machines running
Symantec Endpoint products.

File-based protection:

Backdoor.Raindrop
Backdoor.Teardrop
Backdoor.Sunburst
Backdoor.Sunburst!gen1
Backdoor.SuperNova

Network-based protection:

System Infected: Sunburst Malware Activity

For the latest protection updates, please visit the Symantec Protection Bulletin.

About the Author

Threat Hunter Team

Symantec

The Threat Hunter Team is a group of security experts within Symantec whose mission is to
investigate targeted attacks, drive enhanced protection in Symantec products, and offer
analysis that helps customers respond to attacks.

Want to comment on this post?

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-attacks-stealthy-attackers-attempted-evade-detection
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-unique-dga
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-sunburst-command-control
https://www.broadcom.com/support/security-center/protection-bulletin


6/6


