
1/27

January 7, 2021

Meet Oski Stealer: An In-depth Analysis of the Popular
Credential Stealer

cyberark.com/resources/threat-research-blog/meet-oski-stealer-an-in-depth-analysis-of-the-popular-credential-stealer

Meet Oski Stealer: An In-depth Analysis of the Popular Credential Stealer

Credential theft malware continues to be one of the most prevalent types of malware used in
cyber attacks. The main objective of nearly all credential theft malware is to gather as much
confidential and sensitive information, like user credentials and financial information, as
possible.

The Oski stealer is a malicious information stealer, which was first introduced in November
2019. As the name implies, the Oski stealer steals personal and sensitive information from
its target. “Oski” is derived from an old Nordic word meaning Viking warrior, which is quite
fitting considering this popular info-stealer is extremely effective at pillaging privileged
information from its victims.

In this blog, we provide an in-depth analysis of an Oski stealer sample.

Background

As noted above, the Oski stealer is a classic information stealer that is being sold on Russian
underground hacking forums at a low price of $70-$100.

https://www.cyberark.com/resources/threat-research-blog/meet-oski-stealer-an-in-depth-analysis-of-the-popular-credential-stealer

2/27

Figure 1: Forum thread for selling Oski Stealer

The stealer is written in C++ and has all the typical features of credential theft malware. Oski
targets sensitive information including:

Login credentials from different applications
Browser information (cookies, autofill data and credit cards)
Crypto wallets
System information
Screenshots
Different user files

Beyond these, the stealer can function as a Downloader to download a second-stage
malware.

Every infection involving three parties:

1. Malware authors
2. Malware customers
3. Malware victims

The “customers,” also known as the attackers, contact Oski authors on underground forums
to purchase the malware and, once purchased, they configure it and distribute it to their
victims.

Oski has a very strong reputation within the underground community, with many of its
“customers” regularly providing positive feedback and reviews about the functionality of the
malware.

And, even we have to admit that Oski’s functionality works pretty well. From setting up and
checking the environment to stealing information by application type, Oski’s code is written
with purpose and care. The code is neat and clean, without any presence of useless code
lines, however it does lack sophisticated anti-analysis tricks like anti-debugging and dynamic
anti-analysis tricks.

3/27

Figure 2: Malware Flow

In-depth Analysis

The sample of Oski stealer analyzed in this blog post is:
aa33731aa48e2ea6d1eaab7c425f9001182c0e73e0226eb01145d6b78d7cb9eb.

4/27

As soon as we opened the Oski stealer sample in IDA, we noticed that it was packed. In our
case, the packer used a self-injection technique to pack Oski’s payload. It then unpacks the
payload and writes it to a new memory region – making it easy to notice the new memory
region and dump it from memory.

Looking at the TimeDataStamp from the file header of the unpacked PE reveals the
compilation time – 0x5EDFAA70 (compiled on 9 Jun 2020). The latest version for Oski
stealer v9.1 was released on 19 June 2020, and version v9 was released on 3 Jun 2020,
which means that our sample of Oski is Oski stealer v9.

Before diving into the stealer’s capabilities, it’s important to note that the malware uses two
obfuscation techniques:

Strings encryption
Dynamic loading of DLLs and functions

To be able to start reverse-engineering the sample statically, we have to decrypt the strings
and resolve the loaded functions and DLLs.

Strings Setup

The first function Oski calls from Main is stringsSetup – the function responsible for
decrypting all the strings for the malware and saving them in memory. The function holds
several Base64 strings and a decryption key.

5/27

Figure 3: stringSetup function

The function decryptB64 (figure 3) gets the decryption key (which in our case is
110151472500104935) and the base64 string.

decryptB64 decodes the base64 string and decrypts the decoded information by using RC4.
Finally, the function returns the decrypted string to the string’s setup function, which saved
the decrypted string within memory (Figure 3).

TIP: RC4 is a pretty common cipher that’s used by malware developers. When trying to
figure out which decryption/encryption routine is used in malware, the standard process we
tend to follow is to first start by finding any constant (“magic”) values to help reveal the

6/27

decryption/encryption routine. For RC4, there are no constant values – in fact, it’s the most
popular algorithm that doesn’t use constant values.

Function Setup

The second function Oski calls for after setting up all the strings in memory is procsSetup,
which is responsible for loading different DLLs, resolving function addresses and saving the
addresses within memory.

The names of the functions and DLLs are encrypted, therefore we must first decrypt the
strings and then we will be able to determine which functions and DLLs are loaded.

Oski gets the address for the functions LoadLibraryA and GetProcAddress from memory.
This part of the code is written as a Position-Independent code (PIC).

There are two operations Oski performs in order to get the functions from memory:

Find the base address of dll from the PEB structure of the process
Resolve the address of the functions from the export table of kernel32.dll by parsing
the PE within memory

The next part describes these methods and how Oski stealer implemented them.

If you are already familiar with these techniques, you can skip ahead to Back to Functions
Setup>.

Find kernel32.dll

In x86 programs, the FS segment register holds the Thread Information Block (_TEB struct)
for the current thread.

The _TEB structure holds a pointer within offset 0x30 to the Process Environment Block
(_PEB), which contains information about the running process in the form of several data
structures and many different fields.

One of those structures is a pointer to _PEB_LDR_DATA within offset 0x0c from the start of
the PEB.

The _PEB_LDR_DATA struct provides information about the DLLs that are loaded into the
process.

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block

7/27

Figure 4: _PEB_LDR_DATA structure

The _PEB_LDR_DATA holds 3 pointers to 3 doubly linked lists – InLoadOrderModuleList,
InMemoryOrderModuleList and InInitializationOrderModuleList. All provide information about
the loaded DLLs in the process, however the second and the third lists are good for finding
the desired DLL.

The list InMemoryOrderModuleList holds the DLLs loaded by the process sorted by their
order in memory, and the list InInitializationOrderModuleList holds the DLLs by their order
of initialization.
The entry within all three lists is LDR module (_LDR_DATA_TABLE_ENTRY) for the current
DLL in the list.

Figure 5: _LDR_DATA_TABLE_ENTRY structure

8/27

The _LDR_DATA_TABLE_ENTRY contains information about the loaded DLL. From offset
0x18 from the address of _LDR_DATA_TABLE_ENTRY, we can obtain the DllBase, which is
a pointer to the DLL base address in memory.

After explaining the theory for getting the modules base address independently, we will
check how Oski implements this technique.

Figure 6: Oski function for getting kernel32.dll base address

Oski gets the base address of kernel32.dll from memory, which is the third entry within the
LIST_ENTRY in InLoadOrderModuleList (The first entry is a pointer for the executable and
the second is for ntdll.dll).

Oski’s next steps are to get the address of LoadLibraryA and GetProcAddress; both
functions are exported by kernel32.dll.

Find Exported Functions

Once Oski gets the base address of kernel32.dll, it parses the PE file and loops over the
exported functions of the DLL to get the address of the desired functions.

To do so, it needs to traverse serval headers of the DLL.

9/27

10/27

Figure 7: how to get the EXPORT_DIRECTORY

After getting the Export Table, Oski must find the desired function by looking for the function
name. The process is as follows:

The AddressOfNames is a pointer to an array of the exported functions names, so
Oski loops through the array and compares each function name to the desired function,
while counting the position of the string in the array.
Oski gets the ordinal number for the function from the Ordinal Table. Each entry in the
table is 2 bytes, therefore, it must multiply the position of the function name by 2.
Finally, Oski calculates the address for the function from the Address Table. Each entry
in the table is 4 bytes, therefore, it must multiply the ordinal number by 4.

Back to Functions Setup

Oski uses a function that implements this technique for getting the function’s address from
memory. The function GetProcAddrPIC (figure 8) gets a pointer to the DLL base address and
a name for an exported function.

Figure 8: Oski get the address for LoadLibraryA and GetProcAddress

Finally, after getting the address of those APIs, Oski can start loading DLLs and resolving
function addresses. As we mentioned earlier, all the strings are encrypted, so we have to
decrypt them first to be able to understand statically which functions and DLLs Oski uses.

GetProcAddress and LoadLibraryA are being called many times in order to load different
DLLs and resolve functions.

11/27

To make our analysis easier, we made an IDA Python script that automates Oski setup
stages and deobfuscates the code.

Oski Deobfuscator: An IDA Python Script

The script automates all the analysis of the setup stages for Oski stealer (v9+) and defeats
its obfuscation to make the static analysis easier and more convenient.

Strings Setup

Find the decryption key
Decrypt all the strings (B64, RC4)
Give meaningful names (IDA)
Add comments with the full decrypted string

Functions Setup

Find LoadLibraryA and GetProcAddress
Resolve the loaded DLLs and functions
Give meaningful names to functions and DLLs (IDA)

Figure 9: Before and after using oski_ida.py

12/27

The script decrypted 380 strings, resolved 107 functions, and 11 DLLs.
In addition, the script dumps the addresses and the full decrypted strings to a JSON file.

You can find the script oski_ida.py on our repo

Finally, after setting up the names for the strings and functions, we can move to analyzing
the sample statically.

Environment Checks

CIS Check
 Oski checks the user language to determine if it’s part of the Commonwealth of

Independent States (CIS) countries. This behavior is popular, especially within crimeware
tools that are sold on Russian underground forums.

Figure 10: cisDetection function

Oski gets the user language ID by using GetUserDefaultLangID and it compares the user
language ID to:

0x423

Language ID Language-tag Location

0x43F kk-KZ Kazakhstan

0x443 Us-Latb-US Uzbekistan

0x82C Az-Cyrl-AZ Azerbaijan

0x419 Ru-RU Russia

https://github.com/cyberark/malware-research/blob/master/OskiStealer/Oski_deobfuscator/oski_ida.py

13/27

0x422 uk-UA Ukraine

Be-BY Belarus

If the user language ID matches one of the IDs above, the stealer will exit.

Anti-Emulation Check
 The second check is an anti-emulation check for Windows Defender Antivirus. The malware

calls to GetComputerNameA and compares the computer name to HAL9TH. In addition, it
checks if the username is JohnDoe by calling to GetUserNameA. Those two parameters are
being used by the Windows Defender emulator.

The Stealer’s Main Functionality

Oski steals confidential and sensitive data from ~60 different applications, including
browsers, email clients, and crypto wallets. Among its stealing features, it can also function
as a Grabber and Loader.

Before stealing credentials from different applications, Oski sets up its “working
environment.” However, in order to steal data by different methods from different
applications, Oski has to download serval DLLs.

Oski downloads 7 DLLs from the C&C server and saves them in the ProgramData folder.

sqlite3.dll
freebl3.dll
mozglue.dll
msvcp140.dll
nss3.dll
softokn3.dll
vcruntime140.dll

14/27

Figure 11: Oski downloads dependencies (7 DLLs)

Each DLL has its own URL address. In the Oski version we sampled, the URL for the DLL is
the DLL’s name – evil.cc/sqlite3.dll.

In some other versions, Oski makes the requests to evil.cc/1.jpeg, evil.cc/2.jpeg and so on,
to download the DLLs.

(1.jpeg = sqlite3.dll, 2.jpeg = freebl3.dll, 3.jpeg = mozglue.dll, 4.jpeg = msvcp140.dll, 5.jpeg =
nss3.dll, 6.jpeg = softokn3.dll, 7.jpeg = vcruntime140.dll)

Because Oski makes those seven requests to the C&C server to download its
dependencies, it is not very stealthy.

Oski creates its working folder which is named with a 15 digits randomly generated string
within ProgramData like C:\ProgramData\234378117851778, for example. This folder will
contain all the stolen logs and data. In addition, it creates four folders inside the working
folder:

15/27

autofill – autofill data from browsers
cc – credit card data
cookies – browsers cookies
crypto – cryptocurrency wallets

Browsers and Email Clients

Oski steals login credentials, cookies, credit card and autofill information from 30+
different browsers using well-known and familiar stealing methods.

It has four different methods to steal data from different types of browses, like Mozilla based
applications, Opera, Internet Explorer and Chromium-based browsers.

It’s worth mentioning that Oski updated its stealing technique regarding Chromium-based
browsers and now supports the new method (v80+) by Chromium for encrypting credentials
and cookies with a global AES key that is stored within
%localappdata%\Google\Chrome\User Data\Local State and encrypted by using DPAPI.
Prior to version 80 of Chromium, the credentials and cookies were simply encrypted by
DPAPI instead that AES key.

Furthermore, Oski collects information about the connected Outlook accounts from the
registry like passwords and confidential data about the IMAP and SMTP servers and it
dumps all the data to file named outlook.txt.

16/27

Figure 12: stealing data from Outlook registry profiles

We won’t cover Oski’s stealing techniques as they aren’t terribly innovative and have been
reviewed many times, but you can find an explanation about most of these techniques in this
whitepaper on the Raccoon stealer.

Cryptocurrency Wallets

https://lp.cyberark.com/rs/316-CZP-275/images/CyberArk-Labs-Racoon-Malware-wp.pdf

17/27

Oski also steals wallets and confidential files that are related to crypto wallet applications. It
targets 28 crypto wallet applications, which store sensitive data in files. An example is the
most known file- wallet.dat which contains the confidential data about the wallet including
private keys, public keys, etc.

The stealer checks for the default wallet file location in AppData and copies it to the working
folder.

Figure 13: Oski stealing from crypto wallets apps

18/27

The configuration for this module:

App Name App Folder Regex
(sensitive file)

Anoncoin \Anoncoin\ *wal*.dat

BBQCoin \BBQCoin\ *wal*.dat

Bitcoin \Bitcoin\ *wal*.dat

DashCore \DashCore\ *wal*.dat

devcoin \devcoin\ *wal*.dat

digitalcoin \digitalcoin\ *wal*.dat

ElectronCash \ElectronCash\wallets\ default_wallet

Electrum \Electrum\wallets\ default_wallet

Electrum-LTC \Electrum- LTC\wallets\ default_wallet

Ethereum \Ethereum\ keystore

Exodus \Exodus\ exodus.conf.json
window-
state.json

Exodus \Exodus\exodus.wallet\ passphrase.json
seed.seco
info.seco

Florincoin \Florincoin\ *wal*.dat

Franko \Franko\ *wal*.dat

Freicoin \Freicoin\ *wal*.dat

GoldCoinGLD \GoldCoin (GLD)\ *wal*.dat

Infinitecoin \Infinitecoin\ *wal*.dat

IOCoin \IOCoin\ *wal*.dat

Ixcoin \Ixcoin\ *wal*.dat

jaxx \com.liberty.jaxx\IndexedDB\file__0.indexeddb.leveldb\ *

Litecoin \Litecoin\ *wal*.dat

19/27

Megacoin \Megacoin\ *wal*.dat

Mincoin \Mincoin\ *wal*.dat

MultiDoge \MultiDoge\ *wal*.dat

Namecoin \Namecoin\ *wal*.dat

Primecoin \Primecoin\ *wal*.dat

Terracoin \Terracoin\ *wal*.dat

YACoin \YACoin\ *wal*.dat

Zcash \Zcash\ *wal*.dat

Collect System Information

Similar to other classic stealers, Oski gathers information about the system and takes a
screenshot of the user’s desktop. It then writes the information to system.txt and saves the
screenshot to screenshot.jpg.

System
 Windows version, computer architecture, username, computer name, system

language, Machine ID, GUID, domain name and Workgroup name.
Hardware

 Processor type, number of processors, video card type, display resolution, RAM size,
and checks if the computer is a laptop or desktop. Oski checks if the computer is a
laptop by calling to GetSystemPowerStatus – the function retrieves information about
the power status of the system. The returned struct contains a one-byte flag named
batteryFlag, which can indicate if the system has a battery or not.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/ns-winbase-system_power_status

20/27

Figure 14: checkLaptop function

Local time
Network

 Oski has hardcoded values for this section, so the log will always contain unknown
values – IP: IP? and Country: Country?

21/27

Figure 15: Oski writes the useless values

Installed Software
Get the installed applications on the machine and its version. Oski has a typo in this
section, the title is Installed Softwrare, instead of “Software,” so this typo is unique for
Oski logs.

22/27

Figure 16: Oski system log

Screenshot

Grabber Module

Oski also has a recursive grabber that collects particular files from the victim’s computer.
 The module is configurable, allowing the attacker to decide whether to enable this module

and if so, which files to collect from the user.

Oski creates a POST request to main.php in the C&C. In our case, the URL is
http://sl9XA73g7u3EO07WT42n7f4vIn5fZH[.]biz/main.php. The response from the C&C
contains the configuration for the grabber.

The first part of the Grabber function is parsing the response data. The parsing function uses
strtok function while passing the delimiter “;” and the response data from the C&C.

It extracts the first three tokens from the configuration and passes them to the “main
function” of the grabber. After the first three tokens, the parsing function takes the next three
tokens, and so on.

In this way, we can figure out that the structure of the configuration has three parts
(parameters) and that the configuration can hold several tasks.

Let’s focus on mainGrabber function. This function gets three arguments, which are the three
tokens from the configuration, each call to mainGrabber is called “task.”

The task structure has three fields (parameters):

1. A name for the zip file – will contain all the stolen files that related to the current task.
Oski concatenates to this name an underscore at the beginning, so the name for the
zip will be _%name%.zip.

23/27

2. An environment variable name and folder name – a starting point for the
recursiveGrabber.

3. A regex list – contains multiply parameters that are separated by “,” each one of them
is a regex that represents a file type.

The recursiveGrabber gets those three “task” parameters.

Figure 17: calling to recursiveGrabber and loop of the regex list

While doing this research, we extracted several configurations from other C&Cs, so the
grabber configuration looks like:

 Documents;USERPROFILE\Documents;*.jpg,*.img,*.json,*.txt;
 desktop;USERPROFILE\Desktop;*.jpg,*.img,*.json,*.txt;

 For this C&C, the attacker created two tasks to collect jpg, img, json and txt files from the
user Desktop and Documents. Oski will save those files in 2 separate zip files named
_Documents.zip and _deksop.zip.

From reviewing the extracted configurations from other C&C servers, we understand that
other attackers have intents to collect different files, like 2fa files, wallet files from different
locations or even personal documents.

The extracted configuration for other C&C servers can be found in our IoCs page: IoCs.pdf

Downloader

https://github.com/cyberark/malware-research/blob/master/OskiStealer/IoCs.pdf

24/27

After stealing the sensitive data from the user and grabbing the files, Oski adds the stolen
files to a new zip file whose name of the contains the 10 characters from the working folder
name and an underscore at the beginning.

Figure 18: zip file content

After sending the zip file, the C&C server should send within the response the domain for
the downloader. The response might be empty if the feature isn’t enabled.

Oski downloads the next malware from the given domain and executes it.

The stealer creates a random file name with a .exe extension and sets the stream
Zone.Identifier of the file to [ZoneTransfer] ZoneId=2, which indicates that the file has been
downloaded from a trusted site.

25/27

Figure 19: Loader function

Self-Removal

Oski removes its traces from the machine and deletes all the files, logs, DLLs, etc. from the
disk.

 In addition, it creates a new process of cmd.exe while the parameters for cmd.exe are /c
/taskkill /pid <pid> & erase <path> & RD /S /Q <working_folder>* & exit to kill the malware
process and delete other files.

26/27

Conclusion

Although Oski stealer doesn’t target as many types of software as other stealers, it is still
effective, continues to be updated and improved and maintains a strong reputation in the
underground community.

The unique characteristic of credential theft malware is that they don’t require any special
permissions. Because of this, they are a popular resource for attacks and ultimately can
cause significant damage – especially as attackers continue to seek out privileged
credentials and look for opportunities to escalate their privileges for massive data theft or
business disruption.

To combat against credential theft malware like Oski, we recommend the following:

Be aware – avoiding clicking suspicious URLs, opening unknown attachments, or
downloading and running unfamiliar applications.
Deploy MFA – using multi-factor authentication where applicable.
Use strong and unique passwords – don’t use the same passwords for all the
services and replace them on a regular cadence.
Leverage credential protection solutions – A credential protection solution can
defend against the fundamental nature of credential stealers and protect credentials
from getting harvested by attackers.

Appendix

YARA Rule

Oski_Stealer.yara

Targeted Applications

Browsers
 Internet Explorer

 Google Chrome, Chromium, Kometa, Amigo, Torch, Orbitum, Comodo Dragon, Nichrome,
Maxthon, Sputnik, Epic Privacy Browser, Vivaldi, CocCoc Browser, Uran Browser, QIP Surf,
Cent, Elements Browser, TorBro, Microsoft Edge, CryptoTab, Brave

 Opera
 Mozilla Firefox, Pale Moon, Waterfox, Cyberfox, BlackHawk, IceCat, KMeleon

Email Clients
 Thunderbird

 Outlook

https://github.com/cyberark/malware-research/blob/master/OskiStealer/Oski_Stealer.yara

27/27

Crypto Wallets
Anoncoin, BBQCoin, Bitcoin, DashCore, ElectronCash, Electrum, Electrum-LTC, Ethereum,
Exodus, Florincoin, Franko, Freicoin, GoldCoinGLD, IOCoin, Infinitecoin, Ixcoin, Litecoin,
Megacoin, Mincoin, MultiDoge, Namecoin, Primecoin, Terracoin, YACoin, Zcash, devcoin,
digitalcoin, jaxx

IoCs

IoCs.pdf

[1] Basics of Windows shellcode writing

https://github.com/cyberark/malware-research/blob/master/OskiStealer/IoCs.pdf
https://idafchev.github.io/exploit/2017/09/26/writing_windows_shellcode.html

