
1/20

A Deep Dive into Lokibot Infection Chain
blog.talosintelligence.com/2021/01/a-deep-dive-into-lokibot-infection-chain.html

By Irshad Muhammad, with contributions from Holger Unterbrink.

News summary

Lokibot is one of the most well-known information stealers on the malware landscape.
In this post, we'll provide a technical breakdown of one of the latest Lokibot campaigns.
Talos also has a new script to unpack the dropper's third stage.

https://blog.talosintelligence.com/2021/01/a-deep-dive-into-lokibot-infection-chain.html
https://1.bp.blogspot.com/-UtUpKsCXAAs/X_XGdUOX_MI/AAAAAAAAB28/uCJ594MhrVgoaKED-o31JSCYxuidI01uACLcBGAsYHQ/s1001/image1.png
https://blog.talosintelligence.com/2020/07/current-events-lures.html

2/20

The actors behind Lokibot usually have the ability to steal multiple types of credentials
and other sensitive information. This new campaign utilizes a complex, multi-stage,
multi-layered dropper to execute Lokibot on the victim machine.

What's new?

This sample is using the known technique of blurring images in documents to encourage
users to enable macros. While quite simple this is fairly common and effective against users.
This write up is intended to be a deep dive for reverse engineers into the latest tricks Lokibot
is using to infect user machines.

How did it work?

The attack starts with a malicious XLS attachment, sent in a phishing email, containing an
obfuscated macro that downloads a heavily packed second-stage downloader. The second
stage fetches the encrypted third-stage, which includes three layered encrypted Lokibot.
After a privilege escalation, the third stage deploys Lokibot. The Image below shows the
infection chain.

So what?

Defenders need to be constantly vigilant and monitor the behavior of systems within their
network. This blog provides a detailed overview of how complex the infection chain is for
Lokibot and which tricks the adversaries are using to bypass common security features and
tools of modern operating systems.

https://1.bp.blogspot.com/-KLZmf9Jt5vc/X_WNfNLae5I/AAAAAAAABxk/kyOSJWewQBwyOIgdFu1LVMuRffDe5DlrACLcBGAsYHQ/s1999/image16.jpg

3/20

First-stage analysis

When the user opens the phishing email, it presents a Spanish social engineering message
("Payment: Find scheduled payment dates attached"). The figure below shows a screenshot
of one of the emails we looked at.

The Excel sheet uses another common social engineering technique by showing a blurred-
out image of a table with the text "Changing the size of this document, please wait," in
Spanish. If the victim clicks the "Enable Content" button, thinking it will make the image
visible, a malicious macro is executed.

The macro is mainly obfuscated by using long hexadecimal variable names. The screenshot
below shows a portion of the `Workbook_Open` function of this macro.

https://1.bp.blogspot.com/-evpb97E-0Ag/X_WNotZyc9I/AAAAAAAABxo/5GabIahVv34Biv751z28IvwKrDifvSxZwCLcBGAsYHQ/s1033/image13.png
https://1.bp.blogspot.com/-lXQNvTdvc8o/X_WNxKyUQwI/AAAAAAAABxw/p2j-TXUYrGsPe1Yn3ICe2bNhcEIMZTVEACLcBGAsYHQ/s1999/image12.png

4/20

The deobfuscated macro is shown below.

It decrypts the URL for the second-stage from hardcoded bytes, saves it to the "Templates"
folder, and executes it. The traffic generated from the macro is shown below.

https://1.bp.blogspot.com/-bwj40LCWOuM/X_WN8pB09iI/AAAAAAAABx4/bjJc3pH0WA0CCzAQ3wXbPCS8U-9j2TMxACLcBGAsYHQ/s698/image20.png
https://1.bp.blogspot.com/-HtARqsrslXE/X_WOCgjaChI/AAAAAAAAByA/bF2QCVCMb0wHSNhHkNUwvlw4MWhDT78ewCLcBGAsYHQ/s985/image4.png

5/20

Second-stage analysis

The second-stage executable is packed with a Delphi-based packer.

Packer analysis

The packer contains a timer `xvv` timer under `Form_main`, which unpacks the payload. The
timer and its handler code are shown below.

The unpacking function performs the following steps:

1. Loads the image resource with name `T__6541957882` into memory.
2. Finds the anchor `WWEX` and copies data following to the new buffer.

https://1.bp.blogspot.com/--70CaKOTDB0/X_WOMadU4-I/AAAAAAAAByI/fISwui0w0k4ejFf1JHzWebHPIwoUKCxHwCLcBGAsYHQ/s572/image26.png
https://1.bp.blogspot.com/-imNfc7-Ffjo/X_WOjlAEsMI/AAAAAAAAByU/qWrjmqYSjOo4VFxM5W0jAZKGi-XOmTMqACLcBGAsYHQ/s771/image23.png

6/20

3. Adds `0xEE` to the bytes to decode the DLL.
4. Reflectively loads decoded DLL into memory and executes it.

The figure below shows the resource image that contains the encoded executable.

The following image shows the location of the embedded executable following anchor
`WWEX`.

https://1.bp.blogspot.com/-zudPRMPgGPQ/X_WOuykcYSI/AAAAAAAAByY/33tvde_EEfQbT2eHVLWys0FUeDJjVpwPgCLcBGAsYHQ/s733/image25.png
https://1.bp.blogspot.com/-hdd3GJ5cbFA/X_WPEx-YFkI/AAAAAAAAByo/eL6CNV60bkcf_le1HSDl3zdZlsTt-QHIgCLcBGAsYHQ/s603/image34.png

7/20

The following code shows the code and decoded DLL.

Unpacked DLL analysis

The unpacked DLL is also written in Delphi. It fetches the third payload from the hardcoded
URL.

 The DLL sets a timer, as shown below, which will execute the downloader function
periodically.

https://1.bp.blogspot.com/-nbF5-WAjkmg/X_WPLaQd6_I/AAAAAAAAByw/3So3nyS3dg4Wm965XlolCxGypWivinBHACLcBGAsYHQ/s708/image27.png

8/20

The `Download3rdStage` will first decode `https://discord.com` and try to connect to it. Then,
it performs a time-based anti-debug check, as shown in the code below. If any of these
checks fail, the DLL will not download the third stage.

Once the checks have passed, DLL will decrypt the hardcoded third-stage URL, as shown in
the code below, and send the HTTP request.

https://1.bp.blogspot.com/-OnhCgL9QRBE/X_WPaacSEwI/AAAAAAAABy8/WfVEO8q9a9g6Y_amlkwcLNLWgVVs4KPwQCLcBGAsYHQ/s420/image11.png
https://1.bp.blogspot.com/-SqUvko9W6hA/X_WPtMaueMI/AAAAAAAABzM/xvMJPgpfVCcr9al-ZylgoHpJidSZTWwiQCLcBGAsYHQ/s322/image33.png

9/20

In response to the request, the server sends a ~618KB long hex string, as shown below.

The DLL decodes the hex string using the following steps:

1. Reverse the hex string.
2. Convert hexadecimal digits to bytes (unhexlify).
3. XOR decode with hardcoded key "ZKkz8PH0".

We have written a small Python script to decrypt the third stage. The same decryption
method was also used to decrypt the hardcoded command and control (C2).The resulting file
is also a DLL, which the second stage reflectively loads.

https://1.bp.blogspot.com/-IVaeLC0elOk/X_WP1AKl-YI/AAAAAAAABzU/XFZD7r2pktsoHOFYu2HNcdmFgQ5DeAteQCLcBGAsYHQ/s907/image18.png
https://1.bp.blogspot.com/-JVR4PURkfvw/X_WP_AfqDFI/AAAAAAAABzc/qTI9uSa0BVcgCdRhTxAzsSxmlMkWmxnTQCLcBGAsYHQ/s667/image14.png
https://gist.github.com/irshadqemu/68a4db9b3f8f4f205e17f6050ffbb652#file-unpack_3rdstage_lokibot-py

10/20

Third-stage analysis

The third stage is also written in Delphi. At the start, it loads a sizable binary resource named
`DVCLAL` into memory. It then generates the key `7x21zoom8675309` from hard coded
bytes. The key is then used to decrypt the resource data using a custom encryption
algorithm. The malware then recovers the configuration structure from decrypted resource
data. The structure fields are delimited by string `*()%@5YT!@#G__T@#$%^&*
()__#@$#57$#!@`.

The decryption algorithm is shown below.

https://1.bp.blogspot.com/-yGowvtZoMk0/X_WQKsASoAI/AAAAAAAABzk/ZMEwn9UJfas6yTUVvfNFXVrB6PHWtjVzACLcBGAsYHQ/s1750/image2.png

11/20

The hex dump below shows a structure field highlighted separated by delimiters.

The configuration structure layout is shown below.

https://1.bp.blogspot.com/-0tkm9L9nxnk/X_WQkXc6U_I/AAAAAAAABzw/_Aak8kIohKkIKiUaUAvMJCIKxdIMJpl_gCLcBGAsYHQ/s655/image10.png
https://1.bp.blogspot.com/-ezM1PkQ6uCM/X_WQz2ipmkI/AAAAAAAAB0A/U7XzkJGa2kwzXGfjiUQw38Aj0zeOz9gegCLcBGAsYHQ/s730/image30.png

12/20

Injecting malicious DLL to Notepad.exe

Then, the malware will check if `InjectDLLToNotepadFlag` is set and `reverse_str(FileName)
+ ".url"` (mheX.url) file doesn't exist in C:\Users\<username>\AppData\Local\`. If yes, it will
inject malicious DLL into Notepad.exe using the following steps:

 1. Launch a Notepad.exe in the suspended state (dwCreationFlag =
CREATE_SUSPENDED).

2. Get the imported DLL name from the malicious DLL's import table (the first one is
"kernel32.dll") and write to the suspended process.

3. Write the following 12-byte structure containing addresses of kernel32: LoadLibrary,
kernel32.sleep, and DLL string.

https://1.bp.blogspot.com/-zjr_QXlGatE/X_WQ9Is9Y5I/AAAAAAAAB0I/bo6bmIB7V_YcUJE8TZrNemGAqlWA4d_xwCLcBGAsYHQ/s1458/image31.jpg
https://1.bp.blogspot.com/-E9kMDjRBy28/X_WRMdk6XYI/AAAAAAAAB0Q/TmpDK7EcLIQTS3xKhvt6vWtcn9qyYscsACLcBGAsYHQ/s387/image32.png

13/20

4. Write a 210-bytes shellcode to Notepad.exe.

5. Execute this shellcode in Notepad.exe using `CreateRemoteThread` and pass the

pointer to the 12-byte structure shown above. This shellcode loads the DLL
("kernel32.dll") and then goes into an infinite sleep loop.

6. Write DLL ("kernel32.dll") string again to notepad.exe.
7. Write the 20-byte structure to Notepad.exe containing pointers to important APIs and

two strings: imported DLL name and imported API name.

8.
Write 144 bytes of shellcode to Notepad.exe.

9. Execute this shellcode in Notepad.exe using `CreateRemoteThread` and pass the

pointer to the 20-byte structure from step 7 as param. This shellcode will resolve the
import pointed by the last variable of the structure in step 7, and then exits using
`RtlExistUserThread`.

10. Repeat Steps 2 - 9 for all of the imported DLLs and imported functions in the malicious
DLL's import table.

11. Write malicious DLL to Notepad.exe.

https://1.bp.blogspot.com/-78MFMIQUiEg/X_WRVLHFncI/AAAAAAAAB0Y/6VUrc6V0fBAg8o6YZIhIkG3IpFzYHlZcwCLcBGAsYHQ/s522/image5.png
https://1.bp.blogspot.com/-uR2hiPnKKS4/X_WReznxPzI/AAAAAAAAB0c/EOjbqo7giy49z6NNpIJcc93y0GaljKNcwCLcBGAsYHQ/s440/image17.png
https://1.bp.blogspot.com/-Tm-rds4N2tI/X_WRsVzBHEI/AAAAAAAAB0k/JrVxHiItI84IArKYbNrmuQdkPZQ9pq-cwCLcBGAsYHQ/s526/image28.png

14/20

12. Write an eight-byte structure to Notepad.exe containing Malicious DLL base address
and entry point.

13. Write 122 bytes of shellcode to notepad.exe.

14. Execute the shellcode in Notepad.exe using `CreateRemoteThread` by passing the

pointer to structure from step 12 as param. The shellcode calls the entry-point point of
the malicious DLL.

Injected DLL analysis (UAC bypass using two techniques)

It checks if `C:\Windows\Finex` exists. If not, it will drop the following file at path
`C:\Users\Public\cde.bat`:

https://1.bp.blogspot.com/-r-9zXrQzUhI/X_WRzAjybxI/AAAAAAAAB0s/J2u1S3XV5IMhIPq8Zf4vMrvNjbT6JXv6wCLcBGAsYHQ/s277/image19.png
https://1.bp.blogspot.com/-A5YCJUwyyIM/X_WR8VXds1I/AAAAAAAAB00/YxQp9HFBh28b7cQ-_yGS9HT2NpexviGYwCLcBGAsYHQ/s526/image8.png
https://1.bp.blogspot.com/-gfF4Rv1JtLI/X_WSDOcWZdI/AAAAAAAAB08/d0ZpzJh0qI0EAUYSpodj1jyqE20K2LtAwCLcBGAsYHQ/s635/image3.png

15/20

Then, it drops C:\Users\Public\x.bat containing the following content.

Then, it drops C:\Users\Public\x.vbs.

https://1.bp.blogspot.com/-eoVv9VzN5V8/X_WSLSyAhBI/AAAAAAAAB1A/E1ZykEOsJGguXVsHaIIdIC50MEaHpM8GQCLcBGAsYHQ/s1750/image7.png
https://1.bp.blogspot.com/-nmTPrQ_Et6w/X_WSS5XnAMI/AAAAAAAAB1M/LbKA8XzapE4rdRx5hg5bXI3tekELcZd-QCLcBGAsYHQ/s1750/image22.png
https://1.bp.blogspot.com/-etv7g9kbVg4/X_WSuhRNCYI/AAAAAAAAB1Y/h2CkKgljJL08R_AEvL9QXqP_GsQjA9HOQCLcBGAsYHQ/s1174/image9.png

16/20

Then it drops, C:\Users\Public\Natso.bat.

Then, it executes `Natso.bat`, which is a "fileless" UAC bypass found by James Forshaw.
More details here.

If C:\Windows\Finex still doesn't exist (which means the UAC bypass failed), it will update the
Nasto.bat and execute it using the code shown below.

This is another UAC bypass technique based on fodhelper.exe. More details here. On our

https://1.bp.blogspot.com/-eRXriUfjNgk/X_WS2u64gwI/AAAAAAAAB1c/6WLewFJu-cE9fkNReOffZawwVNMgxNfBQCLcBGAsYHQ/s1750/image24.png
https://twitter.com/tiraniddo
https://www.tiraniddo.dev/2017/05/exploiting-environment-variables-in.html
https://1.bp.blogspot.com/-yAywEjLyFNA/X_WS-GvtxxI/AAAAAAAAB1g/Jh5cSxYRTbApTorzmQvKwCgreWmYKPiBwCLcBGAsYHQ/s1750/image29.png
https://gist.github.com/netbiosX/a114f8822eb20b115e33db55deee6692

17/20

test machine, the last bypass was successful, and `C:\Windows\Finex` was successfully
created. After that, the DLL deletes the dropped file and exits.

Decrypting and executing Lokibot

After attempting to bypass the UAC, the third-stage DLL will check if `AutoRunKeyFlag` is
set. For this DLL, it is not set. It will then jump to code that decrypts the Lokibot executable
using decryption keys from the configuration structure. The first two layers are decrypted
using `DecryptionKeyA` and `DecryptionKeyB`, and reverses all the data. After that, the final
layer is decrypted using the same decryption method used to decrypt resource data at the
start of the third stage.

The DLL contains multiple ways to execute a PE file. The execution method is decided
based on the values of ExecutionFlag A, B, C. Their values will lead to the following code for
the current configuration, which will decrypt the shellcode from the configuration using
DecryptionKeyB, pass it three parameters: pointer to decrypted Lokibot .exe, a pointer to an
array of string and a pointer to current command line.

https://1.bp.blogspot.com/-E055snfPwGg/X_WTGolJjXI/AAAAAAAAB1o/oLHabhoL3RMo1gI0Y4tvuwot81pD0LeHQCLcBGAsYHQ/s726/image21.png

18/20

The shellcode will create a suspended process using the third parameter as a command line
command and injects Lokibot into it using process hollowing.

Conclusion

Threat actors are getting more sophisticated when it comes to hiding their final payload. This
dropper uses three stages and three layers of encryption to hide its final payload. The
dropper also injects code into a suspended process to bypass UAC and uses process
hollowing to execute its final payload. The majority of malware is getting more and more
sophisticated. They are constantly improving their social engineering techniques to trick the
user into opening malicious attachments and running malicious code. The malware code and
its infection techniques is also improving constantly like we have described in this blog. The

https://1.bp.blogspot.com/-4imXkzV7mh8/X_WTPStRFEI/AAAAAAAAB1w/cRnib3Ip-Ks3_L3ex8ziv7HcgyHhdiydQCLcBGAsYHQ/s864/image15.png
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/analyzing-malware-hollow-processes/

19/20

adversaries combine clever techniques to make detection harder. More than ever it is
important to have a multi layered security architecture in place to detect these kinds of
attacks. It isn't unlikely that the adversaries will manage to bypass one or the other security
measures, but it is much harder for them to bypass all of them. These campaigns and the
refinement of the TTPs being used will likely continue for the foreseeable future.

Coverage

Ways our customers can detect and block this threat are listed below.

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware detailed in this post. Below is a screenshot showing how AMP can protect
customers from this threat. Try AMP for free here.

 Cisco Cloud Web Security (CWS) or Web Security Appliance (WSA) web scanning
prevents access to malicious websites and detects malware used in these attacks.

 Network Security appliances such as Next-Generation Firewall (NGFW), Next-Generation
Intrusion Prevention System (NGIPS), and Meraki MX can detect malicious activity
associated with this threat.

Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs, and URLs, whether users are on or off the corporate network.

Additional protections with context to your specific environment and threat data are available
from the Firepower Management Center.

https://1.bp.blogspot.com/-NC3pjGMpVKU/X_Wg4mOF4nI/AAAAAAAAB2o/6M4VxWm1QMApa81rqzG8_eHB1THfyHBJQCLcBGAsYHQ/s1999/image6.jpg
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection
https://cisco.com/go/tryamp
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.cisco.com/c/en/us/products/security/firepower-management-center/index.html

20/20

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.The following SIDs have been released
to detect this threat: 56578 and 56577.

IOC

Hashes

d5a68a111c359a22965206e7ac7d602d92789dd1aa3f0e0c8d89412fc84e24a5 (First stage
XLS file)

 6b53ba14172f0094a00edfef96887aab01e8b1c49bdc6b1f34d7f2e32f88d172 (2nd stage
packed downloader)

 b36d914ae8e43c6001483dfc206b08dd1b0fbc5299082ea2fba154df35e7d649 (2nd stage
unpacked DLL)

 93ec3c23149c3d5245adf5d8a38c85e32cda24e23f8c4df2e19e1423739908b7 (3rd Stage
DLL)

 21e23350b05a4b84cdf5c93044d780558e6baf81b2148fdda4583930ab7cb836 (DLL used to
bypass UAC)

 c9038e31f798119d9e93e7eafbdd3e0f215e24ee2200fcd2a3ba460d549894ab (Lokibot)

URL

hxxp://millsmiltinon[.]com/ojHYhkfkmofwendkfptktnbjgmfkgtdeitobregvdgetyhsk/Xehmigm.exe

Domains

millsmiltinon.com (Hosts 2nd and 3rd Stage)

IP

104.223.143[.]132 (Lokibot C2)

https://www.snort.org/products

