Spoofing JARM signatures. | am the Cobalt Strike server
now!

m grimminck.medium.com/spoofing-jarm-signatures-i-am-the-cobalt-strike-server-now-a27bd549fc6b

Stefan Grimminck December 25, 2020

.Ste
fan
Stefan Grimminck

Dec 25, 2020

3 min read

TL;DR: JARM is very useful fingerprinting tool, but can be deceived by replaying server hello’s
from other services.

1/7


https://grimminck.medium.com/spoofing-jarm-signatures-i-am-the-cobalt-strike-server-now-a27bd549fc6b
https://grimminck.medium.com/?source=post_page-----a27bd549fc6b--------------------------------
https://grimminck.medium.com/?source=post_page-----a27bd549fc6b--------------------------------

L

The JARM scanner created by @SalesforceEng is quite an effective tool for system
fingerprinting. It uses the Server Hello responses from a TLS handshake to generate a
signature. These can then be used to find similar software or services. Ideal for finding C2 or
other malicious servers that implement TLS. So, It doesn’t come as a surprise that Shodan.io
uses this fingerprinting mechanism in their scanners. Read the Salesforce post for more
information about the JARM library, scanner and its uses.

The question, then, arises: Is it possible to spoof these JARM signatures? Let’s find out!
Salesforce stated in their post that scanning a Cobalt Strike server would result in the following
sighature 07d14d16d21d21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fbl

2/7


https://medium.com/u/41ea9b1cdc2b?source=post_page-----a27bd549fc6b--------------------------------
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.shodan.io/
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a?gi=64f20df2d111

That this signature isn’t Cobalt Strike specific, was revealed in the Cobalt Strike blog. Let’s still
use it as a starting point anyway.

First | used the list of addresses published by Salesforce to find a server with a matching hash.
| scanned it using jarmscan and created a packet capture of the response. The ssl handshake

(filter: ssl.handshake.type == 1) filter in Wireshark will display all TLS client hello’s sent by
the scanner.

| %

L

Wireshark capture of 10 TLS Client Hello’s

And in turn the “Cobalt Strike” server will return its Server Hello’s. These are used by jarmscan
to generate a unique signature (filter: ssl.handshake.type == 2 ).

3/7


https://blog.cobaltstrike.com/2020/12/08/a-red-teamer-plays-with-jarm/amp/
https://github.com/RumbleDiscovery/jarm-go

L

Wireshark capture of 10 TLS Server Hello’s

These Server Hello’s are the packets we want to replay. This can easily be done by setting up a
TCP server listening for the specific Client Hello’s, then replaying their corresponding Server
Hello’s captured from the alleged Cobalt Strike server. A rather lazy, but effective approach.

| scanned the server on three separate occasions and found the duplicate bytes for every
request. | used these bytes to identify each specific Client Hello.

Luckily Wireshark has an option to display packets as C Arrays. This made it pretty easy to get
the Server Hello’s working in my Golang spoofing application.

47



L

By replaying these responses, slowly but steadily the fingerprint can be rebuilt.

if bytes.Contains(request, [] byte { 0x00, Ox8c, Oxla, Oxla, Ox00, 0x16, Ox00, 0x33,
0x00, 0x67, OxcO, 0x9%e, OxcO, Oxa2, 0x00, Ox9%e, 0x00, 0x39, 0x00, Ox6b, 0xcoO,
Ox9f, 0xcO, 0xa3, 0x00, Ox9f, 0x00, Ox45, 0x00, Oxbe, 0x00, O0x88, O0x00, Oxc4, 0x00,
0x9a, N D I fmt.Println("replaying: tlsi2Forward") conn.Write([]
byte { 0x16, 0x03, 0x03, 0x00, 0x5a, 0x02, O0x00, 0x00, 0x56, 0x03, 0x03,
0x17, Oxa6, Oxa3, 0Ox84, 0x80, Ox0b, Oxda, Oxbb, 0x3d, 0xe9, 0x3e, 0x92, 0x65,
Ox9a, 0x68, 0x7d, Ox70, Oxda, Ox00, Oxe9, 0Ox7c, }) 3

A full signature can be faked after implementing a reply for all ten different requests.

5/7



L

(Mis)usage of spoofed signatures

You're probably thinking: So what? What is the use of spoofed TLS fingerprints? They could be
used by malicious actors to hide their applications when tools like JARM scanners are deployed
to identify services in a network or on the internet. It can also be used for good. A honeypot
replaying the fingerprint of a specific service can be used to setup a digital smokescreen for
attackers.

Notes

6/7



jarmscan (jarm-go) is not a product of Salesforce. They’ve published a Python based
JARM scanner implementation. Jarmscan (the scanner used here) is a Golang based
implementation by

7/7



