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TL;DR: JARM is very useful fingerprinting tool, but can be deceived by replaying server hello’s
from other services.
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The JARM scanner created by @SalesforceEng is quite an effective tool for system
fingerprinting. It uses the Server Hello responses from a TLS handshake to generate a
signature. These can then be used to find similar software or services. Ideal for finding C2 or
other malicious servers that implement TLS. So, It doesn’t come as a surprise that Shodan.io
uses this fingerprinting mechanism in their scanners. Read the Salesforce post for more
information about the JARM library, scanner and its uses.

The question, then, arises: Is it possible to spoof these JARM signatures? Let’s find out!
Salesforce stated in their post that scanning a Cobalt Strike server would result in the following
sighature 07d14d16d21d21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fbl
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That this signature isn’t Cobalt Strike specific, was revealed in the Cobalt Strike blog. Let’s still
use it as a starting point anyway.

First | used the list of addresses published by Salesforce to find a server with a matching hash.
| scanned it using jarmscan and created a packet capture of the response. The ssl handshake

(filter: ssl.handshake.type == 1) filter in Wireshark will display all TLS client hello’s sent by
the scanner.

| %
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Wireshark capture of 10 TLS Client Hello’s

And in turn the “Cobalt Strike” server will return its Server Hello’s. These are used by jarmscan
to generate a unique signature (filter: ssl.handshake.type == 2 ).
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Wireshark capture of 10 TLS Server Hello’s

These Server Hello’s are the packets we want to replay. This can easily be done by setting up a
TCP server listening for the specific Client Hello’s, then replaying their corresponding Server
Hello’s captured from the alleged Cobalt Strike server. A rather lazy, but effective approach.

| scanned the server on three separate occasions and found the duplicate bytes for every
request. | used these bytes to identify each specific Client Hello.

Luckily Wireshark has an option to display packets as C Arrays. This made it pretty easy to get
the Server Hello’s working in my Golang spoofing application.
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By replaying these responses, slowly but steadily the fingerprint can be rebuilt.

if bytes.Contains(request, [] byte { 0x00, Ox8c, Oxla, Oxla, Ox00, 0x16, Ox00, 0x33,
0x00, 0x67, OxcO, 0x9%e, OxcO, Oxa2, 0x00, Ox9%e, 0x00, 0x39, 0x00, Ox6b, 0xcoO,
Ox9f, 0xcO, 0xa3, 0x00, Ox9f, 0x00, Ox45, 0x00, Oxbe, 0x00, O0x88, O0x00, Oxc4, 0x00,
0x9a, N D I fmt.Println("replaying: tlsi2Forward") conn.Write([]
byte { 0x16, 0x03, 0x03, 0x00, 0x5a, 0x02, O0x00, 0x00, 0x56, 0x03, 0x03,
0x17, Oxa6, Oxa3, 0Ox84, 0x80, Ox0b, Oxda, Oxbb, 0x3d, 0xe9, 0x3e, 0x92, 0x65,
Ox9a, 0x68, 0x7d, Ox70, Oxda, Ox00, Oxe9, 0Ox7c, }) 3

A full signature can be faked after implementing a reply for all ten different requests.
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(Mis)usage of spoofed signatures

You're probably thinking: So what? What is the use of spoofed TLS fingerprints? They could be
used by malicious actors to hide their applications when tools like JARM scanners are deployed
to identify services in a network or on the internet. It can also be used for good. A honeypot
replaying the fingerprint of a specific service can be used to setup a digital smokescreen for
attackers.

Notes
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jarmscan (jarm-go) is not a product of Salesforce. They’ve published a Python based
JARM scanner implementation. Jarmscan (the scanner used here) is a Golang based
implementation by
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