
1/29

Analyzing APT19 malware using a step-by-step method
cybergeeks.tech/analyzing-apt19-malware-using-a-step-by-step-method/

Summary

In this blog post we’re presenting a full analysis of a DLL backdoor also reported publicly as
Derusbi. This particular piece of malware is associated with the actor known as APT19
(Codoso, C0d0so, Sunshop Group).

APT19, also known as C0d0so or Deep Panda, is allegedly a Chinese-based threat group
that targeted a lot of industries in the past. FireEye reported that APT19 was active in 2017
when they used 3 different methods to compromise targets: CVE-2017-0199 vulnerability,
macro-enabled Microsoft Excel (XLSM) documents and an application whitelisting bypass to
the XLSM documents.

The malware registers itself as a service if it has run with administrator privileges, otherwise,
it establishes persistence via the “Run” registry key. The main purpose of the malicious DLL
is to gather information about the victim’s environment such as username, hostname, IP
address of the host, the CPU architecture, the default language for the local system, the
amount of physical memory, the amount of physical memory currently available, the
processor name, the width and the height of the screen of the primary display monitor. The
exfiltrated data is encrypted using a XOR operation (the 1-byte key seems to be randomly-
chosen), and then encoded using the Base64 algorithm. There is a lot of network
communication performed by the malware, however, due to the fact that the C2 server
seems to be sinkholed now, we were not able to retrieve the file that was intended to be
downloaded by the process.

Technical analysis

SHA256:
DE33DFCE8143F9F929ABDA910632F7536FFA809603EC027A4193D5E57880B292

The file analyzed in this blog post is a DLL that has the following export functions:

Figure 1

DebugCreate and DebugConnect entries have the same address and represent the starting
point of the malicious activity. The process computes a random string of 3 characters using
GetTickCount API calls and the algorithm shown in figure 2:

https://cybergeeks.tech/analyzing-apt19-malware-using-a-step-by-step-method/

2/29

Figure 2

It tries to delete a file/directory called <3 random chars generated earlier>.dll from System32
directory as shown below:

3/29

Figure 3

Because the file doesn’t exist at this time, it’s created using CreateFileA API and then
deleted using DeleteFileA API. This technique is used to confirm that it has enough rights to
write files in the System32 directory:

Figure 4
The malicious process retrieves process privilege details by calling GetTokenInformation with
parameter type 0x14 (TokenElevation):

4/29

Figure 5
Malware running with admin privileges

Now it queries the “HKLM\SOFTWARE\WOW6432Node\Microsoft\Windows
NT\CurrentVersion\Svchost\netsvcs” registry value using RegQueryValueExA function:

Figure 6
The list of services retrieved earlier is shown in the next figure:

5/29

Figure 7

There is another service called WinHelpSrv that is added to this list. The “netsvcs” value is
modified to reflect the change by calling RegSetValueExA API:

Figure 8
The file creates a new service named WinHelpSrv (Windows Helper Service) as follows:

6/29

Figure 9

The description of the service is set to “This is windows helper service. Include windows
update and windows error”:

Figure 10
The malicious DLL is registered as a service by adding the “ServiceDll” value that points to
its location to the newly created service registry keys:

Figure 11
The confirmation that the operation was successful:

7/29

Figure 12
The process creates a batch file called <10 random chars>.bat (the same algorithm utilized
before to generate the random letters is used):

Figure 13
The content of the .bat file is presented below:

@echo off

net start %1

del %0

The malicious file sets the priority class 0x100 (REALTIME_PRIORITY_CLASS) for the
current process (this means that the current process has the highest possible priority):

Figure 14
After this operation, there is a call to SetThreadPriority that sets the priority 15
(THREAD_PRIORITY_TIME_CRITICAL) for the current thread:

Figure 15

8/29

Now there are 2 SHChangeNotify API calls with the following parameters: 0x4
(SHCNE_DELETE), 0x5 (SHCNF_PATH), the 3rd parameter is the path to rundll32.exe
(because the dll was run using rundll32) and the name of the batch file, respectively, and the
4th parameter is 0. These calls have the purpose of notifying the system if rundll32.exe or
the batch file is deleted:

Figure 16
The batch file is executed using the WinExec function. Basically, it starts the WinHelpSrv
service, and then the batch file is deleted:

Figure 17
Now we’ll talk a bit about the ServiceMain export function that is called when the new service
starts. The process registers a function to handle service control requests by calling the
RegisterServiceCtrlHandlerA function:

Figure 18
There is a call to SetServiceStatus function using the following SERVICE_STATUS structure:
0x10 (SERVICE_WIN32_OWN_PROCESS), 0x2 (SERVICE_START_PENDING), 0 (no
controls are accepted), 0 (dwWin32ExitCode), 0 (dwServiceSpecificExitCode), 0x1
(dwCheckPoint) and 0xbb8 (3000 ms, the amount of time that the service expects an
operation to take before the next status update):

Figure 19

9/29

The malicious process creates an unnamed event object by calling the CreateEvent function:

Figure 20
Now it follows another SetServiceStatus call by using the following SERVICE_STATUS
structure: 0x10 (SERVICE_WIN32_OWN_PROCESS), 0x4 (SERVICE_RUNNING), 0x1
(SERVICE_ACCEPT_STOP), 0 (dwWin32ExitCode), 0 (dwServiceSpecificExitCode), 0
(dwCheckPoint) and 0 (dwWaitHint):

Figure 21
The final operation of this section is to create a new thread using the CreateThread function.
The same action will be performed even if the process hasn’t run with admin privileges, as
we’ll see later on:

Figure 22
Malware running without admin privileges

The malware uses an anti-analysis technique by comparing the image path of the executable
with rundll32.exe. It is done to ensure that the file is not executed by a sandbox/analyst (it
exits if that’s the case):

10/29

Figure 23
The malware is made persistent by adding a new value called WinHelpSrv under the “Run”
registry key. In our case, this value points to the location of rundll32.exe because the DLL
was run using this executable:

Figure 24
The confirmation that the persistence was successfully established:

Figure 25

11/29

As written before, a new thread is created to execute the same function mentioned when the
malware has run with administrator privileges. CreateThread API call is displayed in the next
picture:

Figure 26
There is a call to GetMessage API to retrieve messages from the thread’s message queue. If
the message is 0x10 (WM_CLOSE), 0x11 (WM_QUERYENDSESSION) or 0x16
(WM_ENDSESSION) the current function terminates its execution:

12/29

Figure

27
Thread activity – StartAddress address

During the entire execution, the internet is emulated using Fakenet. We’ve observed multiple
MultiByteToWideChar function calls used to convert character strings to UTF-16 (wide
character) strings. One such call is shown below:

Figure 28

13/29

The malware uses the WinHttpOpen function to initialize the use of WinHTTP functions. The
user agent is hardcoded in the DLL file:

Figure 29
There is a call to WinHttpSetTimeouts function in order to set time-outs involved in HTTP
transactions. nResolveTimeout, nConnectTimeout, nSendTimeout and nReceiveTimeout are
set to 0x1D4C0 (120.000ms = 120 seconds):

Figure 30
The initial target server of an HTTP request is set to 106.185.43.96 on port 0x50 (80). The
WinHttpConnect API call is displayed in figure 31.

Figure 31
The process performs a GET request to the server mentioned above, with the target
resource being /user/atv.html. The pwszReferrer parameter is set to “http://www.google.com”
and dwFlags is set to 0x100 (WINHTTP_FLAG_BYPASS_PROXY_CACHE):

Figure 32
After the WinHttpOpenRequest call there is a WinHttpSendRequest function call. The HTTP
request is intercepted by Fakenet, and it replies with a fake response:

14/29

Figure 33
Now the process is awaiting a response to the HTTP request by calling the
WinHttpReceiveResponse function:

Figure 34
Afterward, the malicious file retrieves header information using WinHttpQueryHeaders API
with 0x16 (WINHTTP_QUERY_RAW_HEADERS_CRLF) parameter – receives all the
headers returned by the HTTP server:

Figure 35
There is a second WinHttpQueryHeaders API call with 0x20000013
(WINHTTP_QUERY_FLAG_NUMBER|WINHTTP_QUERY_STATUS_CODE) parameter –
the status code returned by the HTTP server. It expects a status code of 200 (OK):

Figure 36
The process uses the WinHttpQueryDataAvailable function to see how many bytes are
available to be read with WinHttpReadData:

15/29

Figure 37
Next, there is a call to the WinHttpReadData function that is used to read data returned by
the server:

Figure 38
The malicious process uses the WSAStartup function with 0x202 parameter
(wVersionRequired) in order to use the Winsock DLL. The current directory for the process is
changed to the location of the current executable (rundll32.exe):

Figure 39
GetAdaptersInfo API is utilized to find adapter information for the local machine. The function
call is presented in the next figure.

Figure 40
The malware opens the “Software\Microsoft\Windows\CurrentVersion\Internet Settings”
registry key by calling the RegCreateKeyExA function:

Figure 41

16/29

Now the user agent is extracted from the local host by calling the RegQueryValueExA
function, as follows:

Figure 42
The GetNetworkParams function is utilized to obtain network parameters for the local
machine. This information will be exfiltrated as we’ll see later on:

Figure 43
GetComputerNameW and GetUserNameW APIs are used to retrieve the NetBIOS name of
the local computer and the name of the user associated with the thread, respectively:

Figure 44
gethostname and gethostbyname functions are used to get the standard host name for the
local machine and host information corresponding to the local host, respectively:

17/29

Figure 45
The process verifies the operating system version by calling GetVersionExA function and
then it checks if the process is running on a 64-bit machine by calling GetCurrentProcess
and IsWow64Process APIs (this information is stored in the buffer along with the hostname
and username). The malware retrieves the default locale for the OS by calling
GetLocaleInfoA function with the following parameters: 0x800
(LOCALE_SYSTEM_DEFAULT), 0xb (LOCALE_IDEFAULTCODEPAGE). The result is
OEMCP 437 for English (United States) that is converted to hex and copied in the buffer
that will be exfiltrated:

Figure 46
There is a call to the GlobalMemoryStatusEx function in order to retrieve information about
the physical and virtual memory. The amount of physical memory and the amount of physical
memory currently available are saved as 32-bits values to the buffer which will be exfiltrated.
Also, the processor name is retrieved using a few cpuid instructions (“AMD Ryzen 5 3550H
with Radeon Vega Mobile Gfx”) and then copied to the same buffer. The malicious process
extracts the width and the height of the screen of the primary monitor (in pixels) via 2
GetSystemMetrics calls, as follows (these are copied to the same buffer as before):

Figure 47

18/29

Again 12 random chars are generated via the same algorithm as presented before, and then
the following URI is constructed (data=12 random chars): “/money/ofcom-fines-nuisance-
calls?0023528461146965&data=qgvuclxxlgip”. The function WinHttpOpen is called using the
user agent extracted earlier from registry, “Mozilla/4.0 (compatible; MSIE 8.0; Win32)”:

Figure 48
As before, the file calls the WinHttpSetTimeouts function using the parameters set as 120
seconds, and then it tries to connect to the C2 server (www.microsoft-cache[.]com) on port
443:

Figure 49
The process performs a GET request using WinHttpOpenRequest and WinHttpSendRequest
APIs:

Figure 50
If the request is not successful, the process sleeps for 180 seconds, and then it tries again.
The process retrieves header information by calling WinHttpQueryHeaders with 0x16
(WINHTTP_QUERY_RAW_HEADERS_CRLF) parameter:

19/29

Figure 51
As before, the malware extracts the status code and checks if it’s equal to 200 by calling
WinHttpQueryHeaders API with 0x20000013
(WINHTTP_QUERY_FLAG_NUMBER|WINHTTP_QUERY_STATUS_CODE) parameter:

Figure 52
Now there is a call to the WinHttpQueryDataAvailable function, and then it reads the data
returned by the C2 server using WinHttpReadData API:

Figure 53

20/29

The buffer containing the information that will be exfiltrated is XORed byte-by-byte with a
one-byte key. The following information belongs to the buffer: the C2 server address,
hostname, username, IP address represented as hex values, 01 constant because the
process is running on a 64-bit environment, the result of GetLocaleInfoA call (0x1b5 = 437 in
our case), the amount of physical memory represented as a 32-bit value, the amount of
physical memory currently available represented as a 32-bit value, the processor name, the
width of the screen of the primary display monitor represented as a 32-bit value (0x780 =
1920 in our case) and the height of the screen of the primary display monitor represented as
a 32-bit value (0x438 = 1080 in our case):

Figure 54
After the operation is complete, the buffer looks like in the following picture:

Figure 55

21/29

The malware developers have written their implementation of the Base64 algorithm rather
than relying on Windows APIs. The following picture presents a part of the assembly code
corresponding to it:

Figure 56

The encrypted buffer is encoded with the Base64 algorithm:

22/29

Figure 57

As before, there is a WinHttpOpen API call (same user agent as the last time) followed by a
WinHttpSetTimeouts function call, and then it tries to connect to www.microsoft-cache[.]com
on port 443 using WinHttpConnect API. The malware performs a POST request by calling
the WinHttpOpenRequest function (as before, the data parameter contains randomly-
generated characters):

Figure 58
The encrypted + encoded buffer is exfiltrated to the C2 server via a WinHttpWriteData
function call, as shown below:

Figure 59

23/29

The malicious process performs 2 WinHttpQueryHeaders function calls: 1st one has 0x16
(WINHTTP_QUERY_RAW_HEADERS_CRLF) parameter and the 2nd one has 0x20000013
(WINHTTP_QUERY_FLAG_NUMBER|WINHTTP_QUERY_STATUS_CODE) parameter. It
checks out the status code and ensures that it’s 200. The thread continues by calling
WinHttpQueryDataAvailable and WinHttpReadData APIs to retrieve the server’s response.
The malware performs another GET request to the C2 server:

Figure 60
The same steps as before are repeated one more time: 2 WinHttpQueryHeaders calls
followed by WinHttpQueryDataAvailable and then WinHttpReadData in order to read the
data sent by the server. As mentioned in the Unit42 article at
https://unit42.paloaltonetworks.com/new-attacks-linked-to-c0d0s0-group/, the server’s
response should contain a “background-color” parameter followed by “#” and an offset. The
offset is read, converted to an integer using the atoi function, and then divided by 100, as
shown in figure 61:

Figure 61

The idea is that the malware reads the data found at the position equal to offset/100. In our
case, we’ve modified the response to contain “#28300” which translates to an offset of 28300
(the position will be 28300/100 = 283). The following picture reveals the fact that the process
reads the data found at that specific position (0x11b = 283):

https://unit42.paloaltonetworks.com/new-attacks-linked-to-c0d0s0-group/

24/29

Figure

62
According to the same article, the first 4 bytes represent the total length, and the remaining
data would be Base64-encoded. Indeed we were able to identify the function where the
server’s response is Base64-decoded:

25/29

Figure 63

26/29

Figure 64

At the time of analysis, no live response has been provided by the C2 server. According to
the Unit42 article, the server would respond with a DLL file with 4 exports: StartWorker,
StopWorker, WorkerRun and DllEntryPoint. Even if we didn’t receive a valid response from
the server, we were able to find out that the malicious process allocates a new memory area
in order to write the DLL code inside:

27/29

Figure 65

The new area of memory has to be executable because the potential DLL has to run, and
that’s why the malware uses VirtualProtect in order to change the protection of the area:

Figure 66
After the malicious code would be written in the new memory location, the process would
pass the execution flow to the new DLL file, as shown in the figure below:

Figure 67

References

28/29

Unit42 report: https://unit42.paloaltonetworks.com/new-attacks-linked-to-c0d0s0-group/

VirusTotal link:
https://www.virustotal.com/gui/file/de33dfce8143f9f929abda910632f7536ffa809603ec027a41
93d5e57880b292/detection

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

Fakenet: https://github.com/fireeye/flare-fakenet-ng

FireEye: https://www.fireeye.com/current-threats/apt-groups.html#apt19

INDICATORS OF COMPROMISE

C2 domain: www.microsoft-cache[.]com

C2 IP address: 106.185.43.96

SHA256:
DE33DFCE8143F9F929ABDA910632F7536FFA809603EC027A4193D5E57880B292

URLs: 106.185.43.96/user/atv.html

www.microsoft-cache[.]com:443/money/ofcom-fines-nuisance-calls?
0023528460592137&data=<12 random chars>

www.microsoft-cache[.]com:443/world/video/shrien-dewani-arrives-uk-murder-trial-collapses-
video?0023528461146965&data=<12 random chars>

www.microsoft-cache[.]com:443/lifeandstyle/marmalade-paddington-sales-up-making-
drinking?0023528460592137&data=<12 random chars>

Yara rules for detecting the threat

rule APT19_1 {
 meta:
 author = "CyberMasterV"

Date = "2020-12-26"

 strings:
$s1 = "http://www.google.com" wide ascii
$s2 = "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-US)

AppleWebKit/533.3 (KHTML, like Gecko) Chrome/5.0.354.0 Safari/533.3" wide ascii
$s3 = "%s?%016I64d&data=%s"
$s4 = "DebugCreate"
$s5 = "DebugConnect"

 condition:
4 of them

}

https://unit42.paloaltonetworks.com/new-attacks-linked-to-c0d0s0-group/
https://www.virustotal.com/gui/file/de33dfce8143f9f929abda910632f7536ffa809603ec027a4193d5e57880b292/detection
https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/fireeye/flare-fakenet-ng
https://www.fireeye.com/current-threats/apt-groups.html#apt19

29/29

rule APT19_2 {
 meta:
 author = "CyberMasterV"
 Date = "2020-12-26"

 strings:
 $s1 = "DbgEng.Dll" wide ascii
 $s2 = "Windows Helper Service"
 $s3 = "WinHelpSrv"

$s4 = "KBKBKBKBKBKB"
 condition:
 3 of them
}

