
1/10

Marco Figueroa

SolarWinds | Understanding & Detecting the
SUPERNOVA Webshell Trojan

sentinelone.com/labs/solarwinds-understanding-detecting-the-supernova-webshell-trojan

By Marco Figueroa, James Haughom and Jim Walter

Introduction

The recent SolarWinds’ Orion supply chain attack has proven to be one of the most
layered and damaging attacks of 2020, consisting of multiple artifacts and sophisticated
TTPs.
Several distinct malware families have emerged in relation to the compromise. These
include the SUNBURST backdoor, SUPERNOVA, COSMICGALE & TEARDROP.
Organizations protected by SentinelOne’s Singularity platform are fully protected
against all of these new threats.

In this post, we provide an analysis of the SUPERNOVA trojan, describing how the
weaponized DLL payload differs from the legitimate version it supplanted. Further, we
disclose some new Indicators of Compromise that may, in addition to previously documented
IoCs, help security teams to detect when the malicious webshell is active.

Overview of SolarWinds’ Malware Components

https://www.sentinelone.com/labs/solarwinds-understanding-detecting-the-supernova-webshell-trojan
https://www.sentinelone.com/labs/solarwinds-sunburst-backdoor-inside-the-apt-campaign/
https://www.sentinelone.com/platform/

2/10

The sophisticated nature of the SolarWinds compromise has resulted in a flurry of new
malware families, each with different characteristics and behaviors.

SUNBURST refers to a .NET backdoor (written in C#). This backdoor was distributed
as part of a trojanized MSI (Windows installer) patch and distributed via SolarWinds
updating mechanisms.
TEARDROP is a memory-resident implant used (primarily) to distribute the Cobalt
Strike beacon payload.
COSMICGALE refers to certain malicious PowerShell scripts that are executed on
compromised hosts.
SUPERNOVA refers to a web shell implant used to distribute and execute additional
code on exposed hosts.

Below, we focus on understanding and detecting the SUPERNOVA web shell implant.

The Trojanized App_Web_logoimagehandler DLL

The SUPERNOVA web shell implant is a trojanized copy of a legitimate DLL .NET library in
the SolarWinds Orion web application. The purpose of the original DLL is to serve up a user-
configured logo to web pages in the Orion web application.

Modifying the legitimate SolarWindows DLL for malicious use required just a few key
changes, and upon analysis appears deceptively ‘elegant’. Below, we illustrate some of the
key differences between the legitimate SolarWinds DLL and the weaponized ‘SUPERNOVA’
DLL.

The attackers injected an additional method, DynamicRun(), into the legitimate
SolarWinds’ LogoImageHandler class from the
App_Web_logoimagehandler.ashx.b6031896.dll , turning the benign DLL into a

sophisticated webshell.

3/10

4/10

A legitimate instance of App_Web_logoimagehandler.ashx.b6031896.dll :

A weaponized instance of App_Web_logoimagehandler.ashx.b6031896.dll :

5/10

The added DynamicRun() method is called by the ProcessRequest() method, which
handles HTTP requests. The attackers added a try/catch block to the beginning of this
method’s source code to parse part of the HTTP request and redirect control flow to the
attacker’s DynamicRun() method.

The legitimate ProcessRequest() method:

And the weaponized ProcessRequest() with added try/catch block:

6/10

The additional code simply extracts data in the form of name-value from the Request
property of an instance of the HttpContext class. Once extracted, these four values will be
passed to DynamicRun() to be executed, and the method’s return value will be written back
to the attacker as an HTTP response.

The DynamicRun() method is where the true functionality of the SUPERNOVA webshell
resides. This method accepts a blob of C# source code, along with the class to instantiate,
the method to invoke, and the method’s arguments. These parameters will be used to
compile and execute an in-memory .NET assembly sent by the attackers over HTTP.

The .NET CSharpCodeProvider class is the mechanism used to perform the in-memory
compilation. As you can see below, the GenerateInMemory parameter is set to true,
meaning a physical assembly will not be written to disk, allowing minimal forensic artifacts to

7/10

be created. The last parameter passed to the in-memory compiler is the blob of C# source
code supplied by the attacker’s HTTP request to be compiled.

Breakdown of parameters:

If no errors arise during compilation, the malware instantiates the respective class, invokes
the method passed as the third argument to the function, and returns the results.

This functionality allows the attackers to compile and execute .NET payloads at will, all within
the context of SolarWinds. This mechanism does not leverage any exploit, but simply abuses
legitimate .NET functionality. This is powerful, as it allows the malware to execute robust
compiled code on the fly, without dropping any additional files to the file system or running
any obvious or noisy commands being sent over the wire.

Detecting SUPERNOVA Webshell Activity

During our research, we created a PoC, leveraging the same CSharpCodeProvider
mechanism SUPERNOVA uses for in-memory compilation of .NET assemblies. We found
that during the compilation process, the native .NET-related utilities CSC.exe and
CVTRES.exe are spawned as child processes of the calling process.

8/10

Passed as arguments to CSC and CVTRES are paths to randomly named temporary files
that are used by these utilities during the compilation process.

Process tree:

Process tree with command lines:

- "C:UsersREMDesktoptest_compiler.exe"

----- "C:WindowsMicrosoft.NETFramework64v4.0.30319csc.exe" /noconfig /fullpaths
@"C:UsersREMAppDataLocalTemp2aklqpvi.cmdline"

-------------"C:WindowsMicrosoft.NETFramework64v4.0.30319cvtres.exe /NOLOGO /READONLY
/MACHINE:IX86 "/OUT:C:UsersREMAppDataLocalTempRES23D1.tmp"
"c:UsersREMAppDataLocalTempCSCF78C0CD1119A4E50AA11E695677D803B.TMP"

The syntax of these command lines are as follows.

CSC:

"C:WindowsMicrosoft.NETFramework64<version>csc.exe" /noconfig /fullpaths
@"C:Users<user>AppDataLocalTemp<random_string>.cmdline"

CVTRES:

"C:WindowsMicrosoft.NETFramework64<version>cvtres.exe /NOLOGO /READONLY /MACHINE:IX86
"/OUT:C:Users<user>AppDataLocalTemp<random_string>.tmp"
"c:Users<user>AppDataLocalTemp<random_string>.TMP"

This process tree can provide valuable insight into when the SUPERNOVA webshell is
potentially active and receiving commands from C2. This behavior may precede additional
attacker activity on the box, such as lateral movement, spawned processes, or dropped files.

Conclusion

Many organizations are currently working hard to understand and quantify their risks and
exposure to the issues arising from the SolarWinds supply chain attack. While the analysis of
the SolarWinds breach (and related offshoot attacks) are ongoing, it is already safe to say
that this could be considered one of the more organized and sophisticated campaigns of
2020.

Given the scope of this campaign, there are a few helpful things to keep in mind.

While SolarWinds estimates ~18000 installs of the malicious update, that does not
mean all those same organizations have been fully breached. Current intelligence
suggests over 140 full-blown ‘victims’.

http://microsoft.net/
http://microsoft.net/

9/10

The main C2 infrastructure has been seized and subsequently sinkholed by Microsoft
and other industry partners. This is now being used as a ‘kill switch’ for the existing
malware.
SolarWinds released a patch/update on December 15th. Orion Platform Platform
v2020.2.1 HF2 has been made available for all customers running vulnerable versions
of SolarWinds Orion. For Platform v2019 customers, Orion Platform v2019.4 HF 6 is
available. In addition, SolarWinds has taken measures to ensure that all malicious files
have been removed from their servers.

At SentinelLabs, we continue our analysis and to update all pertinent resources as new
information comes to light. We encourage all to review existing resources for ongoing
updates and information. The SentinelOne Singularity Platform protects and prevents
malicious behaviors associated with all attacks related to the SolarWinds breach.

Further Resources

SolarWinds SUNBURST Backdoor: Inside the APT Campaign

FireEye/SolarWinds: Taking Action and Staying Protected

SentinelOne’s free tool to determine if your devices are vulnerable to SUNBURST

Indicators of Compromise

SUPERNOVA Hashes:

SHA256

C15abaf51e78ca56c0376522d699c978217bf041a3bd3c71d09193efa5717c71

SHA1

75af292f34789a1c782ea36c7127bf6106f595e8

MD5

56ceb6d0011d87b6e4d7023d7ef85676

YARA Rule for SUPERNOVA

https://www.solarwinds.com/securityadvisory
https://www.solarwinds.com/securityadvisory
https://www.solarwinds.com/securityadvisory
https://www.sentinelone.com/platform/
https://www.sentinelone.com/wp-content/uploads/solarwinds-sunburst-backdoor-inside-the-stealthy-apt-campaign/
https://www.sentinelone.com/blog/fireeye-breached-taking-action-and-staying-protected/
https://www.sentinelone.com/lp/sunburst/

10/10

import "pe"

rule SentinelLabs_SUPERNOVA

{

meta:

	 description = "Identifies potential versions of

App_Web_logoimagehandler.ashx.b6031896.dll weaponized with SUPERNOVA"

	 date = "2020-12-22"

	 author = "SentinelLabs"

strings:

	 $ = "clazz"

	 $ = "codes"

	 $ = "args"

	 $ = "ProcessRequest"

	 $ = "DynamicRun"

	 $ = "get_IsReusable"

	 $ = "logoimagehandler.ashx" wide

	 $ = "SiteNoclogoImage" wide

	 $ = "SitelogoImage" wide

condition:

	 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

pe.imports("mscoree.dll")) and all of them

}

SUPERNOVA MITRE ATT&CK TTPs

Input Capture: Credential API Hooking – T1056

Subvert Trust Controls: Code Signing – T1553

Supply Chain Compromise – T1195

Exfiltration – TA0010

Application Layer Protocol – T1071

Dynamic Resolution: Domain Generation Algorithms – T1568.002
Indicator Removal On Host – T1070

Masquerading – T1036

Obfuscated Files or Information – T1027

Process Discovery – T1057

Create or Modify System Process: Windows Service – T1543.003

Remote Services – T1021

System Services: Service Execution – T1568.002

Valid Accounts – T1078

https://attack.mitre.org/techniques/T1056/004/
https://attack.mitre.org/techniques/T1553/002/
https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/tactics/TA0010/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/techniques/T1568/002/
https://attack.mitre.org/techniques/T1070/
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1021/
https://attack.mitre.org/techniques/T1569/002/
https://attack.mitre.org/techniques/T1078/

